NATURE August 13~ 1960 Vol

Total Page:16

File Type:pdf, Size:1020Kb

NATURE August 13~ 1960 Vol 540 NATURE August 13~ 1960 voL. 1s7 ing the detonation wave. As mentioned in the book, the famous in all branches of philosophy who appear this theory is essentially the same as that proposed in the pages of this remarkable book. Next we read by different authors as long ago as 1928 but not then how refugees from the Reformation and the counter­ generally published. Reformation transplanted luxury industries to Basle. There are useful chapters on the instrumentation The second part of the book ("Tho Development of used in modern explosives research and on the the Chemical Industry in Basle") commences by effects of air and ground blast waves, and consider­ showing that chemical industry grew from the able space is given to shaped nhargcs and to the co-operation between tho trado in crude drugs and behaviour of solids under explosive attack. Perhaps colouring matters, the apothecaries' shop, and the the most disappointing parts of the book are those gas works. In a short history of the ancient drug dealing with the blast waves produced in gases by trade drugs which are also colouring matters (for detonating explosives ; no mention is made of the example, saffron, buckthorn), are mentioned, as well modern approach basod on the methods of fluid as many others, some of which are illustrated in mechanics and the descript,ions are derived from some­ colour. Surprise is expressed that until the nineteenth what questionable qualitative assumptions. centw·y the whole drug was considered essential and The book is not easy to read ; in the attempt to be no one thought of searching for pure 'active' principles. comprehensive there is a tendency in places to deal Extraction of 'principles' soon became commercially too briefly with difficult physical concepts and this popular and in 1857 J. R. Geigy and U. Heusler built fault is aggravated by the widol:lpread use of symbols a plant in Basle to extract dye-woods. The silk as a shorthand method of writing. Evon though the ribbon industry in Ba.slo naturally attracted dyers symbols are clearly defined in an appendix it is to the neighbourhood. In 1859, three years after irritating to have to be continually refening to it. Perkin's discovery of mauveine, Geigy switched his However, it may be said that this is a reference attention to the manufacture of synthetic dyes, volume for tho research worker rather than a text­ starting with the preparation of fuchsine. Also in book, and as such its wealth of detailed information 1859, Clavol commenced the manufacture of fuchsine and exhaustive lists of referennes make its appearance in Basle and his firm eventually became Ciba {a welcome. W. L. MuRRAY name formed from the initial letters of the Society for Chemical Industry in Basle). The factors loading to the rapid growth in chemical STORY OF CHEMICAL INDUSTRY industry in Basle are described. These are briefly (1) the case with which coal-tar could be obtained IN BASLE from England, France and Germany, (2) the advan­ The Story of Chemical Industry in Basle tage of being able to dispose of waste products in the Pp. 234. (Published by CIBA Limited on the Rhine, (3) plenty of capital from the older industries, occasion of its 75th Anniversary.) (Basle: CIBA (4) the local market for dyes provided by the silk Limited, 1959.) ribbon industry, (5) the socio-political freedom arising from the unification of the Swiss cantons into a HE title of this work is far too modest. In 233 federal State, and (6) the rapid riso in the population T beautifully printed anrl illustrated pages the (and hence the labour supply) of Basle. history of chemistry is set out in such a way as to give Dyestuffs are next dealt with in some detail, and I Basle its rightful place in the fields of drugs, plastics, have space hero only to mention such names as textiles and dyeing. Although Ciba Ltd. are the Liebig, Perkin, Hoffmann, Verquin, Graebe and publishers, full credit has been given to the firms of Liebermann, Caro, Peter Griess, Martins, Walter, Sandoz, Geigy, and Hoffmann La Roche, as well as Baeyer, Sand-Meyer and Heumann. to other fll'ms and individual scientists throughout The history of the scientific pharmaceutical the world, for their contributions to science and industry commences in this book with the founding technology. of the fll'st institute for experimental pharmacology The first part describes tho founding of tho first by Buck.heim in Estonia in 1849. Then follows the Universities in Paris (by Bartholomew the English­ bacteriological and antiseptic discoveries of man in 1231), Oxford, Salerno and Montpellier. Tho Semmelweis, Pasteur, Lemaire, Lister and, last but influence of the Guilds is noted as is also the contribu­ not least, Socin in Basle, who in 1871 was using tion to tho Renaissance made by the monasteries. In phenol for wounds. Then on to Robert Koch's in the fourteenth century the Dominican monastery in 'Citro cultivation of bacteria and the work of Ehrlich Basle possessed works by Avicenna, commentaries on tho application of dyes and arsenicals to medicine. on Aristotle, Latin translations of the works of Galen Among tho newer bactericides we read how Prontosil and the medical works of Albert the Great (usually (Domagk 1935) led to 'Cibazol' (Ciba-1938, better referred to in English books as Albcrtus Magnus). known to us as Sulphathiazole). In 1950 the La In 1460 tho University of Basle (modelled on those of Roche group produced Isoniazide (for tuberculosis) Paris and Bologna) was founded and eight years la.ter and Ciba in 1958 introduced 'Ciba 1906' for leprosy. the printing of books commenced in Basle. Turning to drugs derived from natural precursors The University of Baslo received a refroshing blast we are told tho story of Nnporcaine (Ciba 1929), of fi·eHh air in 1526 when Paracclsus occupied the chair Dolantin (1940) and Cliradon (Ciba 1949) and of of medicine for a few months. As every student of Rntazolidino (Geigy). (The latter derived from chemistry knows this rebel publicly burnt the works quinine in the mistaken belief that antipyrine is a of Galen and A vicenna and scoffed at the alchemists, quinoline derivative.) stating that medicine, not gold, was the true aim of Similar treatment is given for very many other alchemy. organic medicaments: Ergotamine (Sandoz 1918), The story continuos to the eighteenth century, and Coramine (Hartmann of Ciba, 1918), Prisco! and tho ago of enlighterunent. Voltaire, Diderot, Nicholas Privino (Ciba 1939), and the isolation of Reserpine Leblanc, Edmund Cartwright, James Watt, Adam in 1952 (Ciba). Vitamin C was first synthesized by Smith, Montesquieu and Rousseau are just a few of Reichstein in 1933 and within two years La Roche © 1960 Nature Publishing Group No. 4737 August 13, 1960 NATURE 541 were manufacturing it. In the 'thirties Ciba helped Now we have yet another book with the same title to isolate progesterone and later worked with and a much braver effort. This new book, by Daudel, Reichstein on cortisone. Lefebvre and Moser, represents a creditable attempt Part 2 finishes with a historical account of plastics, to set down in an orderly manner those developments from ancient ceramic arts via gun-cotton (Schoenbein which in recent years have made quantum chemistry a of the University of Basle in 1845), celluloid, the subject of real interest to the experimental worker. Chardonnet denitrification process, to the important The centre of gravity of the book is the unsaturated modern epoxy resins of to-day such as Ciba's 'Araldite'. hydrocarbons and their physical and chemical The plain grey board covers of this book give no properties. This is not inappropriate, since until hint of the wealth of material within. Beautifully quite recently it would have been true to say that this printed on high-quality paper with hundreds of particular field of study had yielded a greater crop of illustrations, dozens of which are in beautiful colours, quantitative results than any other branch of it stands in a class of its own. theoretical chemistry. It is inevitable that a book of I have noticed only one error of fact (p. 123). The this sort should dwell on certain topics at the expense dibromoanthraquinone which Graebe and Liebermann of others, and it would be easy to criticize the authors hydrolysed to alizarin was, in fact, the 2 : 3 dibromo for having omitted any discussion of the recent compound and not the 1 : 2 as described, although striking advances in, for example, the theoretical this piece of 'research luck' was not discovered until chemistry of the transition elements. But this would several years after the event. A few expressions be ungrateful, &s the authors have obviously taken strike the English reader as unusual, for example, "in pains to include reference to the most important six years the price of quinine dare from 1·3 to 2 ·5 papers in the theory of conjugated molecules ; the florins per oz.", "diazo dyestuffs" (we say 'azo dyes'), fact that their book is not as broad as its title suggests and the use of the word 'somnifacients' for what we only bears witness to the great rate at which (with perhaps less Latin and more Greek) call theoretical chemistry is now developing. 'hypnotics'. Turning to details, one is glad to have a clear This work reflects great credit on Drs. Huber and account of the theory of antisymmetrized wave Menzi, who wrote the text, on Drs. Wilhelm and functions and the Hartree-Fock equations. Of less Kappeli, who had the idea of thus celebrating Ciba's value is the short chapter on biochemical applications : seventy-fifth anniversary, on the photographers and we still know so little about the cell that it seems blockmakers, and on all those concerned with the premature to attach any weight to a quantum book.
Recommended publications
  • Historical Group
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 61 Winter 2012 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield, School of Education, | Prof J Betteridge (Twickenham, Middlesex) Health and Sciences, University of Derby, | Dr N G Coley (Open University) Derby, DE22 1GB [e-mail [email protected]] | Dr C J Cooksey (Watford, Hertfordshire) Secretary: | Prof E Homburg (University of Maastricht) Prof W P Griffith, Department of Chemistry, | Prof F James (Royal Institution) Imperial College, South Kensington, London, | Dr D Leaback (Biolink Technology) SW7 2AZ [e-mail [email protected]] | Dr P J T Morris (Science Museum) Treasurer; Membership Secretary: | Prof. J. W. Nicholson (University of Greenwich) Dr J A Hudson, Graythwaite, Loweswater, | Mr P N Reed (Steensbridge, Herefordshire) Cockermouth, Cumbria, CA13 0SU | Dr V Quirke (Oxford Brookes University) [e-mail [email protected]] | Dr S Robinson (Ham, Surrey) Newsletter Editor: | Prof. H. Rzepa (Imperial College) Dr A Simmons, Epsom Lodge, | Dr. A Sella (University College) La Grande Route de St Jean,St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Production: Dr G P Moss, School of Biological and Chemical, Sciences Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp Contents From the Editor 2 RSC Historical Group News - Bill Griffith 3 Identification Query - W. H. Brock 4 Members’ Publications 5 NEWS AND UPDATES 6 USEFUL WEBSITES AND ADDRESSES 7 SHORT ESSAYS 9 The Copperas Works at Tankerton - Chris Cooksey 9 Mauveine - the final word? (3) - Chris Cooksey and H.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,242,602 B1 Giri Et Al
    USOO62426O2B1 (12) United States Patent (10) Patent No.: US 6,242,602 B1 Giri et al. (45) Date of Patent: Jun. 5, 2001 (54) ONE POTSYNTHESIS OF G. F. Bettinetti et al., “Synthesis of 5, 10-Dialkyl-5, 5,10-DIHYDROPHENAZINE COMPOUNDS 10-dihydrophenazines”, Synthesis, Nov. 1976, pp. 748-749. AND 5,10-SUBSTITUTED DHYDROPHENAZINES B. M. Mikhailov et al., “Metal Compounds of Phenazine and Their Transformations', 1950, Chemical Abstracts, vol. 44, (75) Inventors: Punam Giri; Harlan J. Byker; Kelvin pp. 9452–9453. L. Baumann, all of Holland, MI (US) Axel Kistenmacher et al., “Synthesis of New Soluble Triph (73) Assignee: Gentex Corporation, Zeeland, MI (US) enodithiazines and Investigation of Their Donor Properties”, Chem. Ber, 1992, 125, pp. 1495–1500. (*) Notice: Subject to any disclaimer, the term of this Akira Sugimoto et al., “Preparation and Properties of Elec patent is extended or adjusted under 35 tron Donor Acceptor Complexes of the Compounds Having U.S.C. 154(b) by 0 days. Capto-Dative Substituents', Mar.-Apr. 1989, vol. 26, pp. (21) Appl. No.: 09/280,396 435-438. (22) Filed: Mar. 29, 1999 Primary Examiner Richard L. Raymond (51) Int. Cl." ....................... C07D 241/46; CO7D 241/48 ASSistant Examiner Ben Schroeder (52) U.S. Cl. ............................................. 544/347; 544/347 (74) Attorney, Agent, or Firm-Brian J. Rees; Factor & (58) Field of Search ............................................... 544/347 Partners, LLC (56) References Cited (57) ABSTRACT U.S. PATENT DOCUMENTS Dihydrophenazines and bis(dihydrophenazines) are pre 2,292,808 8/1942 Waterman et al. .................. 260/267 pared in high yield under commercially viable reaction 2,332,179 10/1943 Soule ..................................
    [Show full text]
  • Perkin's Mauve: the History of the Chemistry
    REFLECTIONS Perkin’s Mauve: The History of the Chemistry Andrew Filarowski Those of us who owe our living in part to the global dyestuff and chemical industry should pause today and remember the beginnings of this giant industry which started 150 years ago today with William Perkins’ discovery of mauveine whilst working in his home laboratory during the Easter holiday on April 28, 1856. Prior to this discovery, all textiles were dyed with natural dyestuffs and pigments. What did Perkin’s Reaction Entail? William Henry Perkin carried out his experiments at his home laboratory in the Easter break of 1856. He was trying to produce quinine (C20H24N2O2). This formula was known but not the structural formula. Because chemistry was in such an early stage of development Perkin thought that by simply balancing the masses (simple additive and subtractive chemistry) in an equation he would obtain the required compound. He therefore believed that if he took two allyltoluidine molecules, C10H13N, and oxidised them with three oxygen atoms (using potassium dichromate) he would get quinine (C20H24N2O2) and water. 2 (C10H13N) + 3O C20H24N2O2 + H2O It is unsurprising to us now but Perkin reported “that no quinine was formed, but only a dirty reddish brown precipitate.” However, he continued in his trials and decided to use aniline (C6H5NH2) and its sulphate, and to oxidise them using potassium dichromate. This produced a black precipitate that Perkin at first took to be a failed experiment, but he noticed on cleaning his equipment with alcohol that a coloured solution was obtained. Perkin’s Patent W H Perkin filed his patent on the 26th August 1856 for “Producing a new colouring matter for the dyeing with a lilac or purple color stuffs of silk, cotton, wool, or other materials.” (sic) Patent No.
    [Show full text]
  • Sir William Henry Perkin: the 18-Year-Old Chemist That Changed the World of Fashion
    Sir William Henry Perkin: The 18-Year-Old Chemist That Changed The World of Fashion [sg_popup id=”39″ event=”onload”][/sg_popup]On March 12th, 2018, Google Doodle honored the 180th birthday of British chemist, Sir William Henry Perkin, who is best known for his accidental discovery of the first synthetic organic dye, mauveine. In 1856, in a makeshift chemistry lab in his apartment, 18-year-old Perkin and his professor, August William von Hofmann, had spent the previous three years trying to find a way to make quinine, a chemical substance found in the bark of the cinchona tree. Quinine was the best treatment for malaria at the time. Due to the extensive extraction process from the bark, the medicine was expensive. Hofmann wanted to find a cheaper way of producing this lifesaving medicine in the lab. However, the project wasn’t going well. And after yet another unsuccessful attempt at creating quinine, the story goes that Perkin was cleaning out a beaker when he noticed that when the leftover dark brown sludge was diluted with alcohol, it left a bright, rich fuchsia- purple stain on the glass. Along with being a brilliant chemist, Perkin was also a painter, so he immediately saw the potential for the vivid purple dye. To keep his accidental discovery to himself, he moved his work to a garden shed, and later that same year, filed for a patent on a dye he called mauveine. Mauveine was used as the first synthetic dye for cloth. Before this discovery, to create a colorful fabric in the mid-1800s, the color had to be extracted from something in nature, like berries, beetle’s exoskeleton, or bat guano.
    [Show full text]
  • A Study on Historical Dyes Used in Textiles: Dragon's
    MICAELA MARGARIDA FERREIRA DE SOUSA A STUDY ON HISTORICAL DYES USED IN TEXTILES: DRAGON’S BLOOD, INDIGO AND MAUVE Dissertação apresentada para obtenção do Grau de Doutor em Conservação e Restauro, especialidade Ciências da Conservação, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia. LISBOA 2008 Acknowledgments I would like to thank my supervisors Prof. Maria João Melo (Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa: FCT-UNL) and Prof. Joaquim Marçalo (Instituto Técnológico e Nuclear: ITN) for giving me the opportunity to participate in the project: “The Molecules of Colour in Art: a photochemical study” as well as the general supervision of my PhD project. I’m also grateful to Prof. Sérgio Seixas de Melo (Universidade de Coimbra: UC), the project coordinator. I would also like to thank all the people involved in this PhD project: Prof. Jorge Parola (FCT- UNL) for the RMN analysis, supervision of indigo work in homogeneous media and supervision of mauve counter ions analysis; Prof. Fernando Pina (FCT-UNL) for the supervision on the dragon’s blood flavylium characterization; Prof. Conceição Oliveira (Instituto Superior Técnico: IST) for her help in the MS measurements; researcher Catarina Miguel (FCT-UNL) for validating and obtaining some indigo photodegradation results on homogeneous media; master student Isa Rodrigues(FCT-UNL) for the HPLC-DAD analysis on the Andean Paracas textiles; Prof. Fernando Catarino (Faculty of Sciences – University of Lisbon: FC-UL) for the dragon’s blood resins botanical details and Prof. João Lopes (University of Porto: UP) for the dragon’s blood PCA analysis. Moreover I’m grateful to all the people and institutions that sent samples of the different organic dyes analysis: a) Dragon’s blood samples : the botanical garden of Lisbon, the botanical garden of Ajuda, to Roberto Jardim, director of the botanical garden of Madeira, to the Natural Park of Madeira for the Dracaena draco samples and Prof.
    [Show full text]
  • A Study in Mauve: Unveiling Perkin's Dye in Historic Samples
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Estudo Geral FULL PAPER DOI: 10.1002/chem.200800718 A Study in Mauve: Unveiling Perkins Dye in Historic Samples Micaela M. Sousa,[a] Maria J. Melo,*[a] A. Jorge Parola,[b] Peter J. T. Morris,[c] Henry S. Rzepa,[d] and J. SØrgio Seixas de Melo*[e] Abstract: The analysis of different his- plex mixture of at least thirteen methyl C25 were found to be important tracers toric mauve samples—mauve salts and derivatives (C24 to C28) with a 7-amino- to probe the original synthesis. Coun- dyed textiles—was undertaken to es- 5-phenyl-3-(phenylamino)phenazin-5- terion analysis showed that all the tablish the exact nature of the iconic ium core. A fingerprint was established mauve salts should be dated after 1862. dye produced by W. H. Perkin in the in which mauveines A or B were domi- Perkins original recipe could be identi- nineteenth century. Fourteen samples nant, and in which mauveines B2 and fied in three textile samples, and in from important museum collections these cases, mauveines A and C25 were were analyzed, and it was determined found to be the major chromophores. Keywords: chemical archaeology · that, in contrast to the general wisdom These are now shown to be the samples dyes/pigments · mauveine · Perkin · that mauveine consists of C and C containing the “original mauve”. 26 27 structure elucidation structures, Perkins mauveine is a com- Introduction (from 1859), phenamine or indisine[1]—is a story that dem- onstrates how well-prepared minds can succeed, in this case Mauveine in a historical context: The synthetic colourant with new colours, in contributing to an important period in mauveine is a major landmark in the history of science and the history of the modern world.
    [Show full text]
  • Wolfe Chemistry Article-Edited DB
    H-SC Journal of Sciences (2018) Vol. VII Wolfe and Mueller Synthesis and Characterization of Mauveine and its Substituted Aniline Derivatives Charles A. Wolfe ’20 and Paul H. Mueller Department of Chemistry, Hampden-Sydney College, Hampden-Sydney, VA 23943 Perkin’s synthesis: Abstract The year was 1857 in colonial Britain, a vast empire aggressively expanding well into the tropics. In their conquest however, the British colonies began to fall ill to malaria thus halting their expansion. To treat their sickly colonies, the British began to import quinine from the Brazilian colonies owned by Portugal: an Dunn’s synthesis: imperial adversary. To avoid this dependency British science went to work looking for a new way to synthesize quinine in a lab. In his quest to find quinine a young William Henry Perkin, a 19-year-old student of von Hofmann at the Royal College of Chemistry, discovered an odd black tar in his flask after another failed quinine synthesis attempt. Upon rinsing the flask, Perkin noticed the tar turned into a deep purple color. The Introduction excited Perkin then promptly patented the mauve colored dye as “aniline purple” or as we call it The project involved performing both the Dunn and “mauveine.” Mauveine is more than just an dye Plater synthesis methods each with three different however, for it greatly contributed to the history of aniline mixtures and then characterize the products. modern industrial chemistry by paving the way for The three aniline mixtures each contained two other famous aniline dyes such as fuchsia and the anilines. microbial stain methylene blue.
    [Show full text]
  • Changes: the Evolution of the Chemicals Industry in the U.K
    Global Outlook Changes: The Evolution of the Chemicals Industry in the U.K. Claudia Flavell-While Rumors of the demise of the U.K. chemicals industry Institution of Chemical Engineers (IChemE) are greatly exaggerated. sk Jane or John Q. Public — Joe Bloggs, as the Early development of the industry Brits would call him — about the state of the The history of the U.K.’s chemicals industry begins in Achemicals industry in the United Kingdom, and the early 19th century, driven by demand for acids, alkalis, you’ll probably get a response along the lines of “There’s soaps, and dyestuffs. Indeed, the first aniline dye was not much left of it. It’s all gone to China and who knows discovered in the U.K. by William Perkin in 1856. Known where else. We don’t produce anything in this country any as mauveine and produced from coal tar, it was a synthetic more.” alternative to the very rare and extremely expensive natural That view is not only discouraging and depressing — it purple (i.e., mauve) dyes available at the time. Other is also quite wrong. As Britain’s famed rock star David synthetic dyes in a range of colors followed, and with them Bowie noted in his 1972 song, time inevitably brings a fledgling dyestuffs industry in the north of England, changes — and you have to turn and face the strange. supplying the country’s textiles centers in Lancashire and In 2010, chemical production in the U.K. totalled Yorkshire. US$93.5 billion, according to the American Chemistry The alkali industry established itself during the 19th Council’s Global Business of Chemistry report (1), making century near salt deposits at Teesside in the northeast of the U.K.’s chemicals industry the tenth-largest in the world England, and at Runcorn in the northwest.
    [Show full text]
  • Synthesis of Repeating Sequence Polyaniline Derivatives by Kenneth Allen Cutler B.S. Chemistry, Valparaiso University, 2001 M.S
    Synthesis of Repeating Sequence Polyaniline Derivatives by Kenneth Allen Cutler B.S. Chemistry, Valparaiso University, 2001 M.S. Chemistry, University of Pittsburgh, 2008 Submitted to the Graduate Faculty of Arts and Science in partial fulfillment of the requirements for the degree of Masters of Science University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH School of Arts and Science This thesis was presented by Kenneth Allen Cutler It was defended on July 28, 2008 and approved by Dr. Tara Meyer, Associate Professor, Department of Chemistry Dr. Toby Chapman, Associate Professor, Department of Chemistry Dr. Stephane Petoud, Assistant Professor, Department of Chemistry Dr. Tara Meyer: Associate Professor, Department of Chemistry ii Synthesis of Repeating Sequence Polyaniline Derivatives Kenneth Allen Cutler, M.S. University of Pittsburgh, 2008 Copyright © by Kenneth Allen Cutler 2008 iii SYNTHESIS OF REPEATING SEQUENCE POLYANILINE DERIVATIVES Kenneth Allen Cutler, M.S. University of Pittsburgh, 2008 In order to increase solubility while maintaining conductivity, polymers incorporating periodic ortho-substituted units in the backbone of the classic para-polyaniline were prepared. The geometry of the ortho-substituted unit was postulated to allow for property enhancing substitution without the disruption -conjugation. Crucial to this goal was the protection of the ortho-diamine unit during synthetic procedures. Of the many motifs that were explored, the urea protection scheme proved to be the most amenable to the coupling reactions required to prepare segmer units with a para-ortho-para sequence. Trimeric segmers bearing 0-2 methyl substituents on the ortho-substituted unit were prepared. The substituentless and monomethyl segmers were combined with BOC-protected dimers para-aniline to yield polymers with modest molecular 3 weights by GPC vs.
    [Show full text]
  • Colour, Pigments and Dyes Science, Art & Nature
    COLOUR, PIGMENTS AND DYES SCIENCE, ART & NATURE Ken Derham Halesworth U3A Science Group, April 2019 WHAT IS COLOUR? • Colour is a characteristic of human visual perception. • This perception of colour derives from the stimulation of cone cells in the human eye by electromagnetic radiation in the visible spectrum. Wikipedia VISIBLE LIGHT A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated. Wikipedia Violet light - Shorter wavelength, higher frequency has higher energy E = h v (Planck’s equation) WHY DO OBJECTS APPEAR COLOURED? Objects appear different colours because they absorb some colours (wavelengths) and reflected or transmit other colours. The colours we see are the wavelengths that are reflected or transmitted. White objects appear white because they reflect all colours. Black objects absorb all colours so no light is reflected. TRANSMITTED LIGHT PRIMARY COLOURS: ADDITIVE MIXING OF LIGHT • Mix Red, Green, and Blue light, you get white light. • Red, green, and blue (RGB) are referred to as the primary colours of light. • Mixing the colours generates new colours, as shown on the colour wheel. This is additive colour. • As more colours are added, the result becomes lighter, heading towards white. • RGB is used to generate colour on a computer screen, a TV, and other electronic displays. PRIMARY COLOURS: SUBTRACTIVE MIXING OF PIGMENTS • Mixing colours using paint, or ink, uses subtractive colour mixing. • The primary colours of light are red, green, and blue. • If you subtract these from white you get cyan, magenta, and yellow. • Mixing the colours generates new colours as shown on the colour wheel.
    [Show full text]
  • MAUVE and ITS ANNIVERSARIES* Anthony S
    Bull. Hist. Chem., VOLUME 32, Number 1 (2007) 35 MAUVE AND ITS ANNIVERSARIES* Anthony S. Travis, Edelstein Center, Hebrew University of Jerusalem/Leo Baeck Institute London Introduction chemical constitution of the natural dye indigo, as well as other natural products. Of particular interest, however, In 1856, William Henry Perkin in were the components of, and pos- London prepared the first aniline sible uses for, the vast amount of dye, later known as mauve. The coal-tar waste available from coal- eighteen-year-old inventor sought, gas works and distilleries. Around but failed, to find a licensee for 1837, Liebig’s assistant A. Wilhelm his process, and then embarked Hofmann extracted several nitro- on manufacture, with the back- gen-containing oils from coal tar ing of his father and a brother. and showed that of these bases the The opening of their factory and one present in greatest abundance the sudden demand for mauve in was identical with a product earlier 1859 foreshadowed the growth obtained from indigo as well as of the modern organic chemical from other sources. It was soon industry. The search throughout known as aniline. Europe for novel colorants made In 1845 Hofmann moved to scientific reputations and trans- London to head the new Royal Col- formed the way in which research lege of Chemistry (RCC). There he was conducted, in both academic continued his studies into aniline and industrial laboratories. Ac- and its reactions. At that time, there cordingly, the sesquicentennial William Henry Perkin (1838-1907), in 1860. Heinrich Caro (1834-1910), technical leader were no modern structural formulae of mauve provides an opportune at BASF, 1868-1889.
    [Show full text]
  • The Second Industrial Revolution
    STS 007 Class Notes class 17 Second Industrial Revolution Pivot point: 1850 – bring together European and American history – will go to MIT and US on Thursday Crystal Palace 1851 - middle class (vote, after 1831) – Corn Laws repealed 1846 – but enormous worry about working class – Irish famine- 1848 revolutions “Spring of nations” France, Germany, Italy, Denmark (Russia and A-H) Democracy, liberalism, nationalism, socialism US in 1850 To learn more about the US in 1850, see: The Compromise of 1850 Individuals vs. collective in victory: Tolstoy reading – about War and Peace, Napoleonic victories (and also retreat from Moscow) – the spectacle of millions of men in motion – “revolution” – causality: looking for laws – “change the subject” - Two fallacies: beginnings and endings, individuals – Tufte’s famous representation How does it change how you think about “technology in history”? Schivelbusch The Culture of Defeat How you think about “technology in history” – three examples: Civil War, France, Germany – Dower’s Embracing Defeat (we will read Hiroshima)– “losers in battle, winners in spirit” – savage winners, fear of being overrun by barbarians – borrowing technology and organization in service of higher cause Theme of “unconditional surrender” – Sherman and Grant South affirming white supremacy – slavery a fatal misadventure (69) – now there will be a New South – “the Cold War of Reconstruction” (73) – go back to status quo under different arrangements – but military occupation, Northern rules – led to repression – ten years – black codes – things began to settle down – economic colony (84)- low per capita income, a third to national average 1 Much more “civilized” to Europeans than Yankees – read p. 46 – a second war for independence Capitalist but with another knightly spirit – technological-economic modernity and feudal- romantic spirit (54) Choice of two kinds of exploitation/production (energy) [“For Obama,” Mr.
    [Show full text]