University of Southampton Research Repository Eprints Soton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CURRICULUM(CBCS) TEXTILE ENGINEERING (3 to 8 Semester)
Himachal Pradesh Technical University, Hamirpur (H.P.) CURRICULUM(CBCS) TEXTILE ENGINEERING rd th (3 to 8 Semester) Teaching and Examination Scheme 1 HIMACHAL PRADESH TECHNICAL UNIVERSITY, HAMIRPUR CURRICULUM OF B.TECH TEXTILE ENGINEERING 1. Credit System: A system enabling quantification of course work, with one credit being assigned to each unit after a student completes its teaching-learning process, followed by passing in both Continuous Internal Assessment CIA & Semester End Examination (SEE); Further, Choice Based Credit System (CBCS) to be helpful in customizing the course work for a student, through Core &Electives. 2. Credit Courses: All Courses registered by a student in a Semester is to earn credits. In a widely accepted definition, students to earn One Credit by registering and passing: One hour/week/Semester for Theory/Lecture (L) Courses; and, Two hours/week/Semester for Laboratory/Practical (P) Courses or Tutorials (T). NOTE: Other student activities not demanding intellectual work or enabling proper assessment like, practical training, study tour and guest lecture not to carry Credits. 3. Credit Representation: Credit values for different courses is as given in Table 1: Lectures Tutorials Practical Work Credits Total (hrs./wk./Sem.) (hrs./wk./Sem.) (hrs./wk./Sem.) (L: T: P/D) Credits 3 0 0 3:0:0 3 2 2 0 2:1:0 3 2 0 2 2:0:1 3 2 2 2 2:1:1 4 0 0 6 0:0:3 3 4.Course Load: Every student to register for a set of Courses in each Semester, with the total number of their Credits being limited by considering the permissible weeklyContactHours (typically: 30/Week); For this, an average Course Load of 24Credits/Semester (e.g., 6-7 Courses) is generally acceptable. -
Historical Group
Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 61 Winter 2012 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield, School of Education, | Prof J Betteridge (Twickenham, Middlesex) Health and Sciences, University of Derby, | Dr N G Coley (Open University) Derby, DE22 1GB [e-mail [email protected]] | Dr C J Cooksey (Watford, Hertfordshire) Secretary: | Prof E Homburg (University of Maastricht) Prof W P Griffith, Department of Chemistry, | Prof F James (Royal Institution) Imperial College, South Kensington, London, | Dr D Leaback (Biolink Technology) SW7 2AZ [e-mail [email protected]] | Dr P J T Morris (Science Museum) Treasurer; Membership Secretary: | Prof. J. W. Nicholson (University of Greenwich) Dr J A Hudson, Graythwaite, Loweswater, | Mr P N Reed (Steensbridge, Herefordshire) Cockermouth, Cumbria, CA13 0SU | Dr V Quirke (Oxford Brookes University) [e-mail [email protected]] | Dr S Robinson (Ham, Surrey) Newsletter Editor: | Prof. H. Rzepa (Imperial College) Dr A Simmons, Epsom Lodge, | Dr. A Sella (University College) La Grande Route de St Jean,St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Production: Dr G P Moss, School of Biological and Chemical, Sciences Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp Contents From the Editor 2 RSC Historical Group News - Bill Griffith 3 Identification Query - W. H. Brock 4 Members’ Publications 5 NEWS AND UPDATES 6 USEFUL WEBSITES AND ADDRESSES 7 SHORT ESSAYS 9 The Copperas Works at Tankerton - Chris Cooksey 9 Mauveine - the final word? (3) - Chris Cooksey and H. -
A Study of Rawitz's 'Inversion Staining' by ALEKSANDRA PRZEL^CKA
231 A Study of Rawitz's 'Inversion Staining' By ALEKSANDRA PRZEL^CKA {From the Cytological Laboratory, Department of Zoology, University Museum, Oxford, and the Nencki Institute, 3 Pasteur St., Warsaw 22; present address, Nencki Institute) SUMMAHY The Rawitz method involves mordanting with tannic acid and potassium antimony tartrate, and staining with basic fuchsine. The mordanting causes basic fuchsine to act as though it were an acid dye ('inversion staining'). A modification of the method is described in the present paper. This modification makes it possible to obtain the same results in a shorter time. The chief substances stained by Rawitz's method are phospholipids, certain pro- teins, and certain polysaccharides. Although the method cannot be regarded as a cytochemical test in the strict sense, yet it gives useful indications of chemical composition and in addition is valuable to the morphological cytologist as a technique for showing certain cytoplasmic inclusions (mitotic spindle, acrosome, mitochondria, 'Golgi apparatus' of certain cells). INTRODUCTION T is well known that the so-called 'Golgi apparatus' is extremely difficult to I reveal by any staining method. Baker, in the course of his investigation on this organelle in the epididymis of the mouse, found that it can be stained by basic fuchsin after a special mordanting process (1957). The method was taken from Rawitz (1895), who found that basic fuchsin, if mordanted with tannic acid and potassium antimony tartrate, loses the character of a dye for chro- matin and colours the cytoplasm instead. Rawitz called this effect 'inversion staining'. Since this technique, when applied to various kinds of cytological material, gave good selectivity in visualizing certain delicate cell structures, it seemed interesting to investigate the nature of the chemical compounds which are responsible for positive Rawitz staining. -
Revisions Inserts Rev from Rev to JOB
BALTSO0191 Version 11.0 Template 4 Revisions Inserts Rev from Rev to JOB # 06 07 52-17 Notes: 1. BD Catalog Number: 212525, 212526, 212527, 212528, 212531, 212532, 212539, 212542, 212543, 212544, 212545 2. Blank (Sheet) Size: Length: 25.5” Width: 22” 3. Number of Pages: 28 Number of Sheets: 1 4. Page Size: Length: 8.5” Width: 5.5” Final Folded Size: 4.25” x 5.5” 5. Ink Colors: No. of Colors: 2 PMS#: 032 Red; Standard Black 6. Printed two sides: Yes X No 7. Style (see illustrations below): # 5 W W W W W W W 8. Vendor Printed X Online/In House Printed Web 9. See specication control no. N/A for material information. 10. Graphics are approved by Becton, Dickinson and Company. Supplier has the responsibility for using the most current approved revision level. Label Design COMPANY CONFIDENTIAL. THIS DOCUMENT IS THE PROPERTY OF BECTON, DICKINSON AND Becton, Dickinson and Company Proofer COMPANY AND IS NOT TO BE USED OUTSIDE THE COMPANY WITHOUT WRITTEN PERMISSION. 7 Loveton Circle Sparks, MD 21152 USA Checked By Category and Description Sheet: 1 of 29 Part Number: Package Insert, 8820191JAA Gram Stain Kits and Reagents Scale: N/A A B Gram Stain Kits and Reagents English: pages 1 – 5 Italiano: pagine 14 – 18 8820191JAA(07) Français : pages 5 – 9 Español: páginas 19 – 23 2017-09 Deutsch: Seiten 10 – 14 Contact your local BD representative for instructions. / Свържете се с местния представител на BD за инструкзии. / Pokyny vám poskytne místní zástupce společnosti BD. / Kontakt den lokale BD repræsentant for at få instruktioner. -
Factors Affecting the Adsorption of Some Ionic Dyes on the Surface of Modify Cao from Eggshell
Asian Journal of Applied Sciences (ISSN: 2321 – 0893) Volume 07 – Issue 01, February 2019 Factors Affecting the Adsorption of Some Ionic Dyes on the Surface of Modify CaO from Eggshell Ibtighaa K. Radhi, Mouayed A. Hussein, Zaki N. Kadhim* Department of Chemistry, College of Science, University of Basrah Basrah, Iraq *Corresponding author’s emails: zekinasser99 [AT] yahoo.com ________________________________________________________________________________________________ ABSTRACT--- In this paper, calcium oxide (CaO) was produced by the thermal treatment of eggshell. The doping process with silver iodide (AgI), oxygen (O), sulfur(S) and nitrogen (N) was achieved by adsorbents. The adsorption of Acid fuchsine (AF), Indigo Carmine (IC), Nigrosine (NG) and Alizarine Red S (AR) on the surface of these particles was studied. The different conditions affecting the adsorption process, such as the time of equilibrium, the primary concentration of the studied dyes, the amount of the adsorbent, the acidic function, the speed of the pruning motion and the temperature were studied. The pH stability time (5-10 minutes), IC and NG (30 minutes) and AR were (90 minutes). The effect of temperature was also studied within the range (25-45 ° C). The results showed that the adsorption capacity increased by increasing the temperature, ie the reaction is endothermic. The study showed the effect of the acidic function on the percentage of pigmentation. The percentage was increased by increasing the acidic function in the basal circles on the surfaces except for the AR dye. It decreased the percentage by increasing the acidic function. The effect of the weight of the adsorbent was studied on the percentage of adsorption. -
In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone. -
(12) United States Patent (10) Patent No.: US 6,242,602 B1 Giri Et Al
USOO62426O2B1 (12) United States Patent (10) Patent No.: US 6,242,602 B1 Giri et al. (45) Date of Patent: Jun. 5, 2001 (54) ONE POTSYNTHESIS OF G. F. Bettinetti et al., “Synthesis of 5, 10-Dialkyl-5, 5,10-DIHYDROPHENAZINE COMPOUNDS 10-dihydrophenazines”, Synthesis, Nov. 1976, pp. 748-749. AND 5,10-SUBSTITUTED DHYDROPHENAZINES B. M. Mikhailov et al., “Metal Compounds of Phenazine and Their Transformations', 1950, Chemical Abstracts, vol. 44, (75) Inventors: Punam Giri; Harlan J. Byker; Kelvin pp. 9452–9453. L. Baumann, all of Holland, MI (US) Axel Kistenmacher et al., “Synthesis of New Soluble Triph (73) Assignee: Gentex Corporation, Zeeland, MI (US) enodithiazines and Investigation of Their Donor Properties”, Chem. Ber, 1992, 125, pp. 1495–1500. (*) Notice: Subject to any disclaimer, the term of this Akira Sugimoto et al., “Preparation and Properties of Elec patent is extended or adjusted under 35 tron Donor Acceptor Complexes of the Compounds Having U.S.C. 154(b) by 0 days. Capto-Dative Substituents', Mar.-Apr. 1989, vol. 26, pp. (21) Appl. No.: 09/280,396 435-438. (22) Filed: Mar. 29, 1999 Primary Examiner Richard L. Raymond (51) Int. Cl." ....................... C07D 241/46; CO7D 241/48 ASSistant Examiner Ben Schroeder (52) U.S. Cl. ............................................. 544/347; 544/347 (74) Attorney, Agent, or Firm-Brian J. Rees; Factor & (58) Field of Search ............................................... 544/347 Partners, LLC (56) References Cited (57) ABSTRACT U.S. PATENT DOCUMENTS Dihydrophenazines and bis(dihydrophenazines) are pre 2,292,808 8/1942 Waterman et al. .................. 260/267 pared in high yield under commercially viable reaction 2,332,179 10/1943 Soule .................................. -
Textile Institute
NOVEMBER 1944 P 1 2 1 THE JOURNAL OF THE TEXTILE INSTITUTE THE BLEACHING OF JUTE FOR TEXTILE PURPOSES B y B . P . R i d g e and A . H . L i t t l e . SUMMARY Details are given of methods that have been found satisfactory for bleaching jute materials to different degrees without undue loss of weight or strength. For mild bleaching, treatment is suggested with cold or warm hypochlorite solutions that are maintained in an alkaline condition. Cold alkaline permanganate fol lowed by a bisulphite clearing process, and hot sodium chlorite under slightly acid conditions also give reasonable results. For better shades a hot peroxide bleach may be given after an alkaline hypochlorite treatment, but for uniformity it is best first to scour the material under mild conditions with a soda ash solution at 65° to 750 C., using about 7-5 per cent, of ash on the weight of jute, whilst still further improvement in shade is obtained if the scouring bath contains a small proportion of peroxide. Other methods that may be used are the ordinary peroxide bleach without previous hypochlorite treatment as normally used for cotton goods, or alternate steepings first in a dilute alkaline hypochlorite and then in a hot solution of sodium hydrosulphite or bisulphite. White or nearly white jute can be obtained only if substantially all the lignin is removed, when the wet strength is seriously reduced. Information is recorded on the bleaching of yarn in package form and on the processing of mixtures of jute with cotton, linen, wool and rayon. -
Perkin's Mauve: the History of the Chemistry
REFLECTIONS Perkin’s Mauve: The History of the Chemistry Andrew Filarowski Those of us who owe our living in part to the global dyestuff and chemical industry should pause today and remember the beginnings of this giant industry which started 150 years ago today with William Perkins’ discovery of mauveine whilst working in his home laboratory during the Easter holiday on April 28, 1856. Prior to this discovery, all textiles were dyed with natural dyestuffs and pigments. What did Perkin’s Reaction Entail? William Henry Perkin carried out his experiments at his home laboratory in the Easter break of 1856. He was trying to produce quinine (C20H24N2O2). This formula was known but not the structural formula. Because chemistry was in such an early stage of development Perkin thought that by simply balancing the masses (simple additive and subtractive chemistry) in an equation he would obtain the required compound. He therefore believed that if he took two allyltoluidine molecules, C10H13N, and oxidised them with three oxygen atoms (using potassium dichromate) he would get quinine (C20H24N2O2) and water. 2 (C10H13N) + 3O C20H24N2O2 + H2O It is unsurprising to us now but Perkin reported “that no quinine was formed, but only a dirty reddish brown precipitate.” However, he continued in his trials and decided to use aniline (C6H5NH2) and its sulphate, and to oxidise them using potassium dichromate. This produced a black precipitate that Perkin at first took to be a failed experiment, but he noticed on cleaning his equipment with alcohol that a coloured solution was obtained. Perkin’s Patent W H Perkin filed his patent on the 26th August 1856 for “Producing a new colouring matter for the dyeing with a lilac or purple color stuffs of silk, cotton, wool, or other materials.” (sic) Patent No. -
DEPARTMENT of TEXTILE TECHNOLOGY Vision
DEPARTMENT OF TEXTILE TECHNOLOGY Vision: The Vision of the Department of Textile Technology, Anna University is to be recognized as a leader in textile and apparel technology education, research and application of knowledge and skills to benefit the society. Mission: The mission of the Department of Textile Technology, Anna University is To deliver the highest quality textile and apparel technologists with societal values. To carryout cutting-edge research and develop innovative technology for the benefit of society at national and international level. To inculcate a sense of highest ethical and professional standards among the students. ANNA UNIVERSITY, CHENNAI: 600 025 UNIVERSITY DEPARTMENTS M.TECH. TEXTILE TECHNOLOGY REGULATIONS – 2019 CHOICE BASED CREDIT SYSTEM 1. PROGRAM EDUCATIONAL OBJECTIVES(PEOs): Master of Textile Technology curriculum is designed to prepare the graduates to 1. Have attitude and knowledge for the successful professional and technical career 2. Design and conduct experiments and interpret the results, Design new process and product for textile industry 3. Manage research and development activities in textile industry and research organizations and 4. Enhance their skills for managing textile manufacturing industry 2. PROGRAM OUTCOMES(POs): The Textile Technology Post Graduates will have the ability to 1. Apply the knowledge gained through the post graduate programme to effectively teach the students at the undergraduate level 2. Effectively carryout fundamental and applied research 3. Develop new process or product at the textile industry 4. Develop new process or product at the textile research organizations 5. Apply the knowledge of textile technology to effectively manage textile industry 6. Effectively function as individual or as a part of a team to accomplish a stated goal. -
CLXX VIIL- the Methylation of Quercetin
View Article Online / Journal Homepage / Table of Contents for this issue 1632 PEREIN : THE METHYLATION OF QUERCETIN. CLXX VIIL- The Methylation of Quercetin. Published on 01 January 1913. Downloaded by Nanyang Technological University 25/08/2015 11:37:09. By ARTHURGEORGE PERKIN. WHEREASin 1884 Herzig (Monntsh., 5, 72) observed that quercetin could not be completely methylated by means of methyl iodide and alkali, v. Kostanecki and Dreher, as the result of their experiments with the monohydroxyxanthones (Rer., 1893, 26, 76), showed that although the methyl ethers of the 2-, 3-, and 4-compounds could be readily prepared by this method, the 1-hydroxyxanthone in which the hydroxyl is adjacent to the carbonyl group was thus not affected. In relation also to the dihydroxyxanthone, chrysin, Kostanecki states (Bey., 1893, 26, 2901), “Dass im Chrysin beim methyliren ein Hydroxyl unangeriffen bleibt . das Hydroxyl welches im Orthostellung steht, sich nicht methyliren lasst.” Alizarin (Schunck and Marchlewski, T., 1894, 65, 185) behaves similarly, and, indeed, this property has been so generally observed in the case of aromatic hydroxy-ketones and acids that the resist- View Article Online PERKIN : TEE METHY LATION OF QUERCETIN. 1633 ance of an hydroxyl group to methylation by this process has in many cases been considered to serve for the detection of a carbonyl group. Although ethyl iodide resembles methyl iodide in this respect, and it appears to have been generally considered that the complete ethylation of such hydroxy-compounds could not be effected by means of this reagent, certain exceptions in this case are to be found in the literature, notably as regards resaceto- phenone (Gregor, Mo?~nfsh.,1894, 15, 437, and Wechsler, ibid., p. -
Sir William Henry Perkin: the 18-Year-Old Chemist That Changed the World of Fashion
Sir William Henry Perkin: The 18-Year-Old Chemist That Changed The World of Fashion [sg_popup id=”39″ event=”onload”][/sg_popup]On March 12th, 2018, Google Doodle honored the 180th birthday of British chemist, Sir William Henry Perkin, who is best known for his accidental discovery of the first synthetic organic dye, mauveine. In 1856, in a makeshift chemistry lab in his apartment, 18-year-old Perkin and his professor, August William von Hofmann, had spent the previous three years trying to find a way to make quinine, a chemical substance found in the bark of the cinchona tree. Quinine was the best treatment for malaria at the time. Due to the extensive extraction process from the bark, the medicine was expensive. Hofmann wanted to find a cheaper way of producing this lifesaving medicine in the lab. However, the project wasn’t going well. And after yet another unsuccessful attempt at creating quinine, the story goes that Perkin was cleaning out a beaker when he noticed that when the leftover dark brown sludge was diluted with alcohol, it left a bright, rich fuchsia- purple stain on the glass. Along with being a brilliant chemist, Perkin was also a painter, so he immediately saw the potential for the vivid purple dye. To keep his accidental discovery to himself, he moved his work to a garden shed, and later that same year, filed for a patent on a dye he called mauveine. Mauveine was used as the first synthetic dye for cloth. Before this discovery, to create a colorful fabric in the mid-1800s, the color had to be extracted from something in nature, like berries, beetle’s exoskeleton, or bat guano.