A Tribute to George E. Palade

Total Page:16

File Type:pdf, Size:1020Kb

A Tribute to George E. Palade Obituary A tribute to George E. Palade George E. Palade (1912–2008) received Cellular and Molecular Medicine and his MD from the School of Medicine of transformed the development of basic sci- the University of Bucharest, Romania. He ences at UCSD. was a member of the faculty of that school Palade’s scientific contributions, which until 1945, when he came to the United spanned nearly 50 years, led to a funda- States for postdoctoral studies. Palade mental understanding of the structure joined Albert Claude at the Rockefeller and function of cells and defined the Institute for Medical Research in 1946 and new field of cell biology. They opened was appointed assistant professor there in novel areas of research that countless 1948. He progressed to full professor and scientists in diverse fields now explore. was head of the Laboratory of Cell Biology Reminiscing about the early days at the until 1973, when he moved to Yale Univer- Rockefeller when the field of cell biology sity as professor to establish the Section was conceived, Palade wrote, “After so of Cell Biology. He wrote that his move to many years, it is difficult to recapture in Yale was driven by “. my belief that the words the atmosphere of intense activity, time had come for fruitful interactions remarkable achievements, great excite- between the new discipline of Cell Biol- ment, and unlimited optimism that pre- ogy and the traditional fields of interest vailed in the laboratory, which otherwise of medical schools, namely Pathology and looked like an unattractive dungeon sunk Clinical Medicine” (1). Palade was chair of in the third basement of one of the old the Section of Cell Biology from 1975 to buildings of The Rockefeller Institute.” Figure 2 1983, when, upon his retirement as chair, “The new field had virtually no tradi- A cell biology giant. Photo courtesy of the it became the Department of Cell Biol- tion; everybody working in it came from author. ogy. That same year he was named Senior some other province in natural sciences.” Research Scientist, Professor Emeritus “Added to all this excitement was a per- of Cell Biology, and Special Advisor to vading free spirit — often irreverent but contributions to medicine, a reflection of the Dean. In 1990, Palade moved to the always helpful, because it acted as an anti- his training as an MD, which enabled him University of California, San Diego. Once dote against imagined grandeur. Keith to view his science in the larger context of again, he welcomed a new challenge and Porter was responsible for a good part of human disease. began an entirely new career as Professor that spirit” (2, 3). Fortunately, that spirit Palade was elected to membership in of Medicine in Residence and Dean for still exists in our field. the National Academy of Sciences, the Scientific Affairs in the School of Medi- Palade, along with Keith Porter and Institute of Medicine, and the American cine. He started the new Department of others at the Rockefeller, was a founder of Academy of Arts and Sciences. In 1974, he the American Society for Cell Biology in received the Nobel Prize in Physiology or 1960, with approximately 230 members Medicine (shared with Albert Claude and at its first meeting in Chicago. The ASCB Christian de Duve). He was also a recipient has grown to a membership of approxi- of the National Medal of Science (USA) in mately 10,000, indicative of current activ- 1986, the Albert Lasker Award, the Gaird- ity in the field. Palade was its president ner Special Award, and many other honors. in 1976. He was active in establishing the In announcing the 1974 prize, the Nobel Journal of Cell Biology (originally the Jour- Committee said of Palade, “He added nal of Biochemical and Biophysical Cytology) important methodological improvements in 1955, as well as the Annual Reviews of both to the differential centrifugation and Cell Biology in 1985. Palade was influen- to the electron microscopy. In particular, tial as a member of the advisory panel to he became instrumental in combing the the director of the NIH in ensuring that two techniques . in order to obtain bio- support for the basic sciences was recog- logically basic information” (5). nized. The importance of basic science in He was best known for his pioneering human pathophysiology was indicated in work in elucidating the pathway for syn- his acceptance speech for the Nobel Prize thesis and vectorial transport of proteins in 1974: “Cell biology finally makes pos- along the secretory pathway (6). This is sible a century-old dream: that of analysis exemplified in this classic electron micro- Figure 1 of diseases at the cellular level, the first graph taken by Palade from his 1955 arti- Palade first described the ER. Reproduced step toward their final control” (4). Phy- cle “A small particulate component of the with permission from the Journal of Biophysi- sician-scientists in all fields will imme- cytoplasm” (7) (Figure 1). There, he first cal and Biochemical Cytology (7). diately recognize the importance of his described the association of what were The Journal of Clinical Investigation http://www.jci.org Volume 118 Number 11 November 2008 3517 obituary subsequently determined to be ribosomes wonderful example set by both him and 1. Palade, G.E. 1974. Autobiography. http://nobel- prize.org/nobel_prizes/medicine/laureates/1974/ with membranes. He and Porter later his wife, cell biologist Marilyn Farquhar. palade-autobio.html. named this structure the endoplasmic As David Sabatini, one of his early gradu- 2. Palade, G.E. 1977. Keith Roberts Porter and the reticulum. Together, they and the group ate students at the Rockefeller, wrote of development of contemporary cell biology. J. Cell Biol. 75:D3–D18. at the Rockefeller developed techniques Palade (Figure 2) in 2004, “Palade’s per- 3. Tartakoff, A.M. 2002. George Emil Palade: char- for fixation and thin sectioning of cells, sonal attributes make him one of the most ismatic virtuoso of cell biology. Nat. Rev. Mol. Cell for fractionating cells by centrifugation, admired and beloved figures in today’s Biol. 23:871–876. and for studying the fractions by elec- scientific scene. Palade not only has a pow- 4. Palade, G.E. 1974. Banquet speech: George E. Pal- ade’s speech at the Nobel Banquet, December 10, tron microscopy and biochemistry — the erful intellect that allows him quickly to 1974. http://nobelprize.org/nobel_prizes/medi- essence of cell biology. cut to the essence of a scientific problem cine/laureates/1974/palade-speech.html. After a long illness, Palade passed away and propose for it a feasible solution, but 5. The Nobel Assembly at Karolinska Institutet. 1974. The Nobel Prize in Physiology or Medicine 1974 quietly at home on October 8, 2008, at is also a man of great human qualities [press release]. http://nobelprize.org/nobel_prizes/ the age of 95. Palade will be remembered — warm and sensitive, polite and gracious” medicine/laureates/1974/press.html. and honored at Yale, the Rockefeller, and (8). His loss is profound. 6. Palade, G. 1975. Intracellular aspects of the process of protein synthesis. Science. 189:347–358. UCSD, where he has had a profound influ- 7. Palade, G.E., et al. 1955. A small particulate com- ence much beyond the boundaries of his James D. Jamieson ponent of the cytoplasm. J. Biophys. Biochem. Cytol. laboratory. He inspired so many students, Department of Cell Biology, Yale University 1:59–68. 8. UCSD. 2004. Program for the dedication of the postdocs, and faculty to ask important School of Medicine, New Haven, Connecti- George Palade Laboratories for Cellular and Molec- questions and to teach according to the cut, USA. E-mail: [email protected]. ular Medicine. March 16. 3518 The Journal of Clinical Investigation http://www.jci.org Volume 118 Number 11 November 2008.
Recommended publications
  • George Palade 1912-2008
    George Palade, 1912-2008 Biography George Palade was born in November, 1912 in Jassy, Romania to an academic family. He graduated from the School of Medicine of the The Founding of Cell Biology University of Bucharest in 1940. His doctorial thesis, however, was on the microscopic anatomy of the cetacean delphinus Delphi. He The discipline of Cell Biology arose at Rockefeller University in the late practiced medicine in the second world war, and for a brief time af- 1940s and the 1950s, based on two complimentary techniques: cell frac- terwards before coming to the USA in 1946, where he met Albert tionation, pioneered by Albert Claude, George Palade, and Christian de Claude. Excited by the potential of the electron microscope, he Duve, and biological electron microscopy, pioneered by Keith Porter, joined the Rockefeller Institute for Medical Research, where he did Albert Claude, and George Palade. For the first time, it became possible his seminal work. He left Rockefeller in 1973 to chair the new De- to identify the components of the cell both structurally and biochemi- partment of Cell Biology at Yale, and then in 1990 he moved to the cally, and therefore begin understanding the functioning of cells on a University of California, San Diego as Dean for Scientific Affairs at molecular level. These individuals participated in establishing the Jour- the School of Medicine. He retired in 2001, at age 88. His first wife, nal of Cell Biology, (originally the Journal of Biochemical and Biophysi- Irina Malaxa, died in 1969, and in 1970 he married Marilyn Farquhar, cal Cytology), which later led, in 1960, to the organization of the Ameri- another prominent cell biologist, and his scientific collaborator.
    [Show full text]
  • Ultrastructure in Ochromonas Danica
    EFFECTS OF CHLORAMPHENICOL ON CHLOROPLAST AND MITOCHONDRIAL ULTRASTRUCTURE IN OCHROMONAS DANICA HEIDI SMITH-JOHANNSEN and SARAH P . GIBBS From the Department of Biology, McGill University, Montreal 110, P. Q., Canada ABSTRACT The effect of chloramphenicol (CAP) on cell division and organelle ultrastructure was studied during light-induced chloroplast development in the Chrysophyte alga, Ochromonas danica . Since the growth rate of the CAP-treated cells is the same as that of the control cells for the first 12 hr in the light, CAP is presumed to be acting during that interval solely by inhibiting protein synthesis on chloroplast and mitochondrial ribosomes. CAP markedly inhibits chloroplast growth and differentiation . During the first 12 hr in the light, chloro- phyll synthesis is inhibited by 9317/c , the formation of new thylakoid membranes is reduced by 91 70, and the synthesis of chloroplast ribosomes is inhibited by 81 %. Other chloroplast- associated abnormalities which occur during the first 12 hr and become more pronounced with extended CAP treatment are the presence of prolamellar bodies and of abnormal stacks of thylakoids, the proliferation of the perinuclear reticulum, and the accumulation of dense granular material between the chloroplast envelope and the chloroplast endo- plasmic reticulum . CAP also causes a progressive loss of the mitochondrial cristae, which is paralleled by a decline in the growth rate of the cells, but it has no effect on the synthesis of mitochondrial ribosomes. We postulate that one or more chloroplast ribosomal proteins are synthesized on chloroplast ribosomes, whereas mitochondrial ribosomal pro- teins are synthesized on cytoplasmic ribosomes. INTRODUCTION Both chloroplasts and mitochondria are known insoluble inner membrane proteins, are believed to contain DNA and RNA and to have all the to be synthesized on mitochondrial ribosomes (3) .
    [Show full text]
  • Nov. Issue of ASCB Newsletter
    ASCB NOVEMBER 2010 NEWSLETTER VOLUME 33, NUMBER 10 Improving Submit Images to Work–Life Satisfaction The Cell: An Image Library Page 15 Published Images and Videos Accepted To further discovery and education, the ASCB’s repository for cellular images and videos accepts Are You First published and unpublished work. According to Caroline Kane, the PI for The Cell: An Image Author or Last? Library, “This new repository of cell images is expertly reviewed and annotated to provide a valuable resource for researchers, educators, and the general public. Access to the database is Page 21 free and open. The Cell aims to advance research and, ultimately, have a positive impact upon human health and education.” The Cell’s expanded licensing options for contributors and users will promote faster growth and enhanced usefulness. The Cell is available as a repository for images in published articles Cell Biology and supplementary materials. It can also serve as an archive for additional images and movies Italian Style that helped lead to discovery. Page 23 Understanding Distribution Rights The Cell welcomes unpublished and previously published images, but contributors must have the distribution rights. Many publishers, like the ASCB, which publishes Molecular Biology of the Cell, allow authors to retain copyright. However, publishers may nevertheless limit distribution Inside of the work. Limitations may relate to intended use (commercial and/or educational), alteration, and attribution. Authors should confirm the distribution rights before selecting the appropriate Public Policy Briefing 3 option when contributing to The Cell. Contributors with appropriate distribution rights might select a public domain license. Annual Meeting Program 6 This license is appropriate for those who own copyright without limitations as well as for those Networking at Annual Meeting 11 submitting images or videos where all authors are U.S.
    [Show full text]
  • Marilyn Gist Farquhar (1928-2019)
    Marilyn Gist Farquhar 1928–2019 A Biographical Memoir by Dorothy Ford Bainton, Pradipta Ghosh, and Samuel C. Silverstein ©2021 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. MARILYN GIST FARQUHAR July 11, 1928–November 23, 2019 Elected to the NAS, 1984 Marilyn Farquhar will be remembered professionally for her original contributions to the fields of intercellular junctions, which she discovered and described in collab- oration with George Palade, membrane trafficking (endo- cytosis, regulation of pituitary hormone secretion, and crinophagy), localization, signaling, the pharmacology of intracellular heterotrimeric G proteins and the discovery of novel modulators of these G proteins, and podocyte biology and pathology. Over her 65-year career she was a founder of three of these fields (intercellular junctions, crinophagy, and spatial regulation of intracellular G-pro- tein signaling) and was a recognized and valued leader in guiding the evolution of all of them. She sponsored, mentored, and nurtured 64 pre- and postdoctoral fellows, By Dorothy Ford Bainton, Pradipta Ghosh, and Samuel research associates, and visiting scientists. Her work was C. Silverstein largely supported by uninterrupted funding from the National Institutes of Health (NIH). She was listed as one of the ten most cited women authors by Citation Index from 1981 to 1989. She served as President of the American Society of Cell Biology (1981-1982) and received the society’s prestigious E. B. Wilson Award for her many contributions to basic cell biology in 1987, the Distinguished Scientist Medal of the Electron Microscopy Society of America (1987), the Homer Smith Award of the American Society of Nephrology (1988), the Histochemical Society’s Gomori award (1999), FASEB’s Excel- lence in Science Award (2006), and the Rous-Whipple (1991) and Gold Headed Cane (2020) awards of the American Society for Investigative Pathology.
    [Show full text]
  • Reporterseq Reveals Genome-Wide Dynamic Modulators of the Heat
    RESEARCH ARTICLE ReporterSeq reveals genome-wide dynamic modulators of the heat shock response across diverse stressors Brian D Alford1†, Eduardo Tassoni-Tsuchida1,2†, Danish Khan1, Jeremy J Work1, Gregory Valiant3, Onn Brandman1* 1Department of Biochemistry, Stanford University, Stanford, United States; 2Department of Biology, Stanford University, Stanford, United States; 3Department of Computer Science, Stanford University, Stanford, United States Abstract Understanding cellular stress response pathways is challenging because of the complexity of regulatory mechanisms and response dynamics, which can vary with both time and the type of stress. We developed a reverse genetic method called ReporterSeq to comprehensively identify genes regulating a stress-induced transcription factor under multiple conditions in a time- resolved manner. ReporterSeq links RNA-encoded barcode levels to pathway-specific output under genetic perturbations, allowing pooled pathway activity measurements via DNA sequencing alone and without cell enrichment or single-cell isolation. We used ReporterSeq to identify regulators of the heat shock response (HSR), a conserved, poorly understood transcriptional program that protects cells from proteotoxicity and is misregulated in disease. Genome-wide HSR regulation in budding yeast was assessed across 15 stress conditions, uncovering novel stress-specific, time- specific, and constitutive regulators. ReporterSeq can assess the genetic regulators of any transcriptional pathway with the scale of pooled genetic screens and the precision of pathway- specific readouts. *For correspondence: [email protected] †These authors contributed equally to this work Introduction Competing interests: The The heat shock response (HSR) is a conserved stress response that shields cells from cytoplasmic authors declare that no proteotoxicity by increasing the expression of protective proteins (Lindquist, 1986; Mori- competing interests exist.
    [Show full text]
  • Live Cell Imaging of Meiosis in Arabidopsis Thaliana
    TOOLS AND RESOURCES Live cell imaging of meiosis in Arabidopsis thaliana Maria A Prusicki1, Emma M Keizer2†, Rik P van Rosmalen2†, Shinichiro Komaki1‡, Felix Seifert1§, Katja Mu¨ ller1, Erik Wijnker3, Christian Fleck2#*, Arp Schnittger1* 1Department of Developmental Biology, University of Hamburg, Hamburg, Germany; 2Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands; 3Department of Plant Science, Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands Abstract To follow the dynamics of meiosis in the model plant Arabidopsis, we have established a live cell imaging setup to observe male meiocytes. Our method is based on the concomitant visualization of microtubules (MTs) and a meiotic cohesin subunit that allows following five cellular *For correspondence: parameters: cell shape, MT array, nucleus position, nucleolus position, and chromatin condensation. [email protected] (CF); [email protected] We find that the states of these parameters are not randomly associated and identify 11 cellular (AS) states, referred to as landmarks, which occur much more frequently than closely related ones, indicating that they are convergence points during meiotic progression. As a first application of our †These authors contributed system, we revisited a previously identified mutant in the meiotic A-type cyclin TARDY equally to this work ASYNCHRONOUS MEIOSIS (TAM). Our imaging system enabled us to reveal both qualitatively and Present address: ‡Plant Cell
    [Show full text]
  • Communications Between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis
    cells Review Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis Pengcheng Zhang, Daniels Konja, Yiwei Zhang and Yu Wang * The State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; [email protected] (P.Z.); [email protected] (D.K.); [email protected] (Y.Z.) * Correspondence: [email protected] Abstract: Mitochondria associated membranes (MAM), which are the contact sites between en- doplasmic reticulum (ER) and mitochondria, have emerged as an important hub for signaling molecules to integrate the cellular and organelle homeostasis, thus facilitating the adaptation of energy metabolism to nutrient status. This review explores the dynamic structural and functional features of the MAM and summarizes the various abnormalities leading to the impaired insulin sensitivity and metabolic diseases. Keywords: mitochondria; endoplasmic reticulum; MAM; energy metabolism 1. Introduction Citation: Zhang, P.; Konja, D.; Zhang, In mammalian cells, the mitochondrion is the organelle specialized for energy produc- Y.; Wang, Y. Communications tion through the processes of oxidative phosphorylation, tricarboxylic acid (TCA) cycle between Mitochondria and and fatty acid β-oxidation [1]. Approximately 90% of cellular reactive oxygen species Endoplasmic Reticulum in the (ROS) are produced from mitochondria during the reactions of oxidative phosphorylation Regulation of Metabolic Homeostasis. (OXPHOS)
    [Show full text]
  • The Magic Is the Protein.’’ Don’T Wait a Lifetime for a Decision
    Vol. 19 / No. 4 / April 2020 THE MEMBER MAGAZINE OF THE AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY ‘‘ The magic isn’t the squid… The magic is the protein.’’ Don’t wait a lifetime for a decision. C. elegans daf-2 mutants can live up to 40 days. JBC takes only 17 days on average to reach a fi rst decision about your paper. Learn more about fast, rigorous review at jbc.org. www.jbc.org NEWS FEATURES PERSPECTIVES 2 22 37 EDITOR’S NOTE ‘THE MAGIC ISN’T THE SQUID ... USE THE MIC! Caution: Tchotchkes at work The magic is the protein.’ 38 3 28 WHAT CAN YOUR OMBUDS OFFICE MEMBER UPDATE ‘START SIMPLE. IT ALWAYS GETS DO FOR YOU? MORE COMPLICATED.’ 6 A conversation with Paul Dawson IN MEMORIAM 10 ANNUAL MEETING RETROSPECTIVE Marilyn Farquhar (1928 – 2019) 32 MOLECULAR & CELLULAR PROTEOMICS SESSION 13 LIPID NEWS 32 A deeper insight into phospholipid MCP TO HOST PROTEOMICS SESSION biosynthesis in Gram-positive bacteria 33 GINGRAS STUDIES PROTEOMICS’ IMPLICATIONS FOR RESEARCH 14 34 JOURNAL NEWS SELBACH SEEKS THE SCIENCE BEHIND THE MAGIC 14 Scrutinizing pigs’ biggest threat 35 15 Progesterone from an unexpected source GARCIA USES MASS SPECTRONOMY TO UNRAVEL THE HUMAN EPIGENOME may affect miscarriage risk 16 Finding neoantigens faster — advances in the study of the immunopeptidome Don’t wait a lifetime for a decision. 18 From the journals C. elegans daf-2 mutants can live up to 40 days. JBC takes only 17 days on average to reach a fi rst decision about your paper. Learn more about fast, rigorous review at jbc.org.
    [Show full text]
  • Advanced Cellular Biochemistry
    University of Montana ScholarWorks at University of Montana Syllabi Course Syllabi Spring 2-1-2007 BMED 600.01: Advanced Cellular Biochemistry Mark L. Grimes University of Montana - Missoula, [email protected] Scott Samuels University of Montana, Missoula, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/syllabi Let us know how access to this document benefits ou.y Recommended Citation Grimes, Mark L. and Samuels, Scott, "BMED 600.01: Advanced Cellular Biochemistry" (2007). Syllabi. 11120. https://scholarworks.umt.edu/syllabi/11120 This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Advanced Cellular Biochemistry Bioc/Phar 600 Spring 2007 Instructors M. Grimes Scott Samuels 243-4977; HS 112 243-6145; Clapp 207 [email protected] [email protected] Class 8:40 am - 10:00 am MF Skaggs Building 336 Jan 22, 2007 - May 4, 2007 Class 8:40 am - 10:00 am W Skaggs Building 114 Jan 22, 2007 - May 4, 2007 Catalog course description (4 cr.) Exploration on a molecular level the regulation of structure, function, and dynamics of eukaryotic cells. Topics include membranes, cytoskeleton, transcription, translation, signal transduction, cell motility, cell proliferation, and programmed cell death. Overview Cell Biology is vast and dense and encompasses biochemistry, biophysics, molecular biology, microscopy, genetics, physiology, computer science, and developmental biology. This course will use as a main text Alberts, et al., Molecular Biology of the Cell, 4th ed.
    [Show full text]
  • Keith Roberts Porter: 1912–1997
    Keith Roberts Porter: 1912–1997 eith Roberts Porter died on May 2, 1997, just over a month short of his 85th birthday. He had the K perspicacity, good fortune, and patience to take advantage of the fast moving frontier of analytical biology after the Second World War to provide many of the tech- niques and experimental approaches that established the new field of biomedical research now known as cell biol- ogy. He was renowned for taking the first electron micro- graph of an intact cell, but his contributions went far be- yond that seminal instance. They ranged from technical developments, such as the roller flask for cell culture and the Porter-Blum ultramicrotome, to experimental and ob- servational achievements, such as studies on the synthesis and assembly of collagen, on the role of coated vesicles in endocytosis, on lipid digestion in the intestine, and on the universality of the 9 1 2 axoneme in cilia. The initial ultra- structure descriptions of the endoplasmic reticulum and the sarcoplasmic reticulum, identification of the role of T-tubules in excitation–contraction coupling in muscle and the role of the cytoskeleton in cell transformation and shape change, were his, as were many other contributions, described in some detail elsewhere (Peachey and Brinkley, 1983; Moberg, 1996). Absent from this list are his early pi- oneering work establishing the androgenetic haploid in frogs, an exercise in nuclear transplantation with conse- quences for the recent cloning of mammals, and his later ad- ventures with pigment migration in fish chromatophores. In addition to his specific scientific contributions, Keith Porter also made more important philosophical contribu- tions to the field that he helped to shape.
    [Show full text]
  • Cromartie a Comparison of the Films Contagion and the Band Played On
    CURRICULUM VITAE Gregory J. Cole Present Position: Professor Department of Biological and Biomedical Sciences Julius L. Chambers Biomedical/Biotechnology Research Institute North Carolina Central University 700 George Street Durham, NC 27707 Voice: 919-530-6034 Fax: 919-530-7760 e-mail: [email protected] Webpage: https://sites.google.com/site/colelabpage Education: 1973-1976 B.A., Biology, State University of New York, Plattsburgh, NY 1978-1982 Ph.D., Biological Science (Program in Neuroscience), Florida State University, Tallahassee, Florida Post-doctoral Experience: 1982-1985 Department of Biological Chemistry, Washington University School of Medicine, St. Louis, MO Professional Experience: 1985-1986 Instructor, Department of Biological Chemistry, Washington University School of Medicine, St. Louis, MO 1986-1987 Research Assistant Professor, Department of Biochemistry, University of Miami School of Medicine, Miami, FL 1987-1991 Assistant Professor, Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC 1 1991-1993 Associate Professor, Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC 1993-1998 Associate Professor, Neurobiotechnology Center, The Ohio State University, Columbus, OH 1993-1998 Associate Professor, Department of Cell Biology, Neurobiology, & Anatomy, The Ohio State University, Columbus, OH 1998-1999 Professor, Department of Cell Biology, Neurobiology, & Anatomy, The Ohio State University, Columbus, OH 1998-2000 Professor, Neurobiotechnology Center,
    [Show full text]
  • Over a Century of Quality Scientific Publishing
    OVER A CENTURY OF QUALITY SCIENTIFIC PUBLISHING Rockefeller University Press (RUP) is committed scientists who actively contribute to their fields, appreciate to quality and integrity in scientific publishing. We use the the value of peer review, and desire a better publication latest technologies and carry out rigorous peer review, experience for all. applying the highest standards of novelty, mechanistic Rockefeller University Press journals are indispensable insight, data integrity, and general interest to fulfill our mission of publishing excellent science. Our nonprofit assets to comprehensive life sciences collections at journals were established by the research community, and institutions that are engaged in cutting-edge research editorial decisions and policies continue to be driven by and train future generations of capable scientists. Journal of Cell Biology (JCB) Journal of Cell Biology publishes advances in any area of basic cell VOL 219 • NO 6 • JUNE 2020 WWW.JCB.ORG biology as well as applied cellular advances in fields such as immunology, neurobiology, JCB Editor-in-Chief: Jodi Nunnari, Chair of the Department of Molecular and metabolism, microbiology, developmental Cellular Biology, College of Biological Sciences, at University of California, Davis; biology, and plant biology. Est. 1955 Executive Editor: Tim Spencer, PhD 2021 | Vol. 220 Total publications: ~27,000 / total citations: ~2.6M 12 print and online issues | Articles published daily Impact Factor (IF): 8.811 Print ISSN: 0021-9525 | Online ISSN: 1540-8140 5-Year IF: 9.058 www.jcb.org IF rank in Cell Biology among primary research journals: 21 Journal of Experimental Medicine (JEM) Journal of Experimental publishes papers providing novel conceptual Editorial Board Co-Chairs: Carl Nathan, R.A.
    [Show full text]