Arxiv:1805.01467V1 [Astro-Ph.GA] 3 May 2018 the Existence of Stellar Mass Black Holes (Abbott Et Al
Draft version May 7, 2018 Typeset using LATEX twocolumn style in AASTeX62 A Population of Bona Fide Intermediate Mass Black Holes Identified as Low Luminosity Active Galactic Nuclei Igor V. Chilingarian,1, 2 Ivan Yu. Katkov,2 Ivan Yu. Zolotukhin,2, 3, 4 Kirill A. Grishin,2, 5 Yuri Beletsky,6 Konstantina Boutsia,6 and David J. Osip6 1Smithsonian Astrophysical Observatory, 60 Garden St. MS09, Cambridge, MA 02138, USA 2Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, Universitetsky prospect 13, Moscow, 119992, Russia 3Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnij Arkhyz 369167, Russia 4Universit´ede Toulouse; UPS-OMP, IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France 5Department of Physics, M.V. Lomonosov Moscow State University, 1 Vorobyovy Gory, Moscow, 119991, Russia 6Las Campanas Observatory, Carnegie Institution of Washington, Colina el Pino, Casilla 601 La Serena, Chile (Received April 26, 2018; Revised {; Accepted {) Submitted to ApJ ABSTRACT Nearly every massive galaxy harbors a supermassive black hole (SMBH) in its nucleus. SMBH masses are millions to billions M , and they correlate with properties of spheroids of their host galaxies. While the SMBH growth channels, mergers and gas accretion, are well established, their origin remains 5 6 uncertain: they could have either emerged from massive \seeds" (10 10 M ) formed by direct − collapse of gas clouds in the early Universe or from smaller (100M ) black holes, end-products of first stars. The latter channel would leave behind numerous intermediate mass black holes (IMBHs, 2 5 10 10 M ). Although many IMBH candidates have been identified, none is accepted as definitive, − thus their very existence is still debated.
[Show full text]