Non-Perturbative Gravity at Different Length Scales

Total Page:16

File Type:pdf, Size:1020Kb

Non-Perturbative Gravity at Different Length Scales Non-Perturbative Gravity at different Length Scales Sarah Folkerts M¨unchen2013 Non-Perturbative Gravity at different Length Scales Sarah Folkerts Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Sarah Folkerts aus Saarbr¨ucken M¨unchen, den 20.09.2013 Erstgutachter: Prof. Dr. Georgi Dvali Zweitgutachter: Prof. Dr. Stefan Hofmann Tag der m¨undlichen Pr¨ufung:18.12.2013 Abstract In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP problem. Since the axion is the (pseudo-) Goldstone boson of a broken U(1) global symmetry, quantum gravitational global symmetry violations could reinstate the CP problem even in the presence of the axion. We show that in the presence of massless neutrinos possible conflicts with the axion solution can be resolved. Demanding a viable axion solution of the strong CP problem, we derive new bounds on neutrino masses. In addition, we investigate the QCD vacuum energy screening mechanism for light quarks. It is well-known that the θ-dependence of the QCD vacuum vanishes linearly with the lightest quark mass. By an analogy with Schwinger pair creation in a strong electric field, v Abstract vi we consider vacuum screening by η0 bubble nucleation. We find that using the standard instanton approximation for the η0 potential, the linear dependence is not recovered. We take this as an indication for the non-analyticity of the QCD vacuum energy proposed by Witten. In the last part of this thesis, we are concerned with gravitational effects on cosmological scales. The recent Planck data indicate that one of the best motivated dark matter candidates, the axion, is in conflict with bounds on isocurvature perturbations. We show that the isocurvature fluctuations can be efficiently suppressed when introducing a non-minimal kinetic coupling for the axion field during inflation. Thus, the axion can be a viable dark matter candidate for a large range of parameters. We show that the same coupling allows for the Standard Model Higgs to drive inflation and the dark matter density to be produced by the axion. Gravitational effects on large scales would also be sensitive to a possible mass for the graviton. However, such a modification has been known to be plagued by inconsistencies. In light of the recent proposal of a ghost-free theory of massive gravity by de Rham, Gabadadze and Tolley, we investigate the cubic order interactions of this theory in terms of helicities of a massive spin-2 particle. We find that it is not possible to truncate the action at cubic order without introducing higher derivative terms strongly coupled at scale Λ5. Additionally, we consider possible cubic interaction terms for a massive spin-2 particle on a Minkowski background. We derive the unique interaction terms which are free of higher derivatives. Zusammenfassung In dieser Dissertation untersuchen wir verschiedene Aspekte der als effektive Feldthe- orie aufgefassten Quantengravitation. Basierend auf Argumenten der Selbstkomplet- tierung von Einstein-Gravitation zeigen wir, dass jede Theorie, die keine propagierenden Zust¨andemit negativer Norm aufweist und die sich zudem auf Einstein-Gravitation im Niederenergie-Limes reduziert, selbstkomplett ist. Durch die Formierung von schwarzen L¨ochern in Streuexperimenten bei hohen Energien, sind Distanzen, die kleiner als die Planck Skala sind, von jedwedem Zugriff abgeschirmt. Freiheitsgrade mit einer Masse, die gr¨oßerals die Planck-Masse ist, werden hierbei auf klassische schwarze L¨ocher abge- bildet, die wiederum durch die schon existierende Infrarot-Theorie beschrieben sind. In Modifikationen von Geist-freier Gravitation bei hohen Energien ist die Abschirmung durch schwarze L¨ocher sogar noch effizienter, da solche, mit Einstein-Gravitation ver- glichen, st¨arkere gravitative Wechselwirkungen erzeugen. In Angesicht dessen sind kon- ventionelle Versuche der UV Komplettierung im Wilsonschen Sinne ¨außersteingeschr¨ankt. Weiterhin betrachten wir das von Dvali und Gomez vorgeschlagene Quantenbild schwarzer L¨ocher gem¨aßdem schwarze L¨ocher als ein Bose-Einstein Kondensat von vielen schwach gekoppelten Gravitonen aufgefasst werden k¨onnen. Im Speziellen untersuchen wir ein nicht-relativistisches Analogon, welches gewisse Aspekte dieses Graviton- Kondensat- Bildes widerspiegelt. In diesem Beispielsystem kollabiert ein Kondensat attraktiver Bosonen unter durch inkoh¨arente Streuprozesse verursachter Aussendung von Teilchen. Wir zeigen, dass sich das Kondensat w¨ahrendseiner Zeitentwicklung am kritischen Punkt aufhalten kann mit dem hiermit verbundenen Auftreten einer leichten Mode. Ein weiterer Aspekt der gravitativen Wechselwirkung betrifft die Frage, in wie weit Quantengravitation globale Symmetrien bricht. Betrachtungen, die auf dem No-Hair Theorem wie auch Wurmloch-L¨osungenberuhen, legen nahe, dass globale Symmetrien verletzt werden k¨onnen.In der vorliegenden Arbeit parametrisieren wir solche Effekte in einer effektiven Feldtheorie von Dreiform-Feldern und untersuchen die m¨oglichen Im- plikationen f¨urdie Axionl¨osungdes starken CP-Problems. Da das Axion ein (Pseudo) Goldstone-Boson einer gebrochenen, globalen U(1) Symmetrie ist, k¨onnten solche, auf der Quantengravitation beruhenden, Symmetriebrechungen das CP Problem wieder einf¨uhren,trotz der Anwesenheit eines Axions. Wir zeigen, dass in der Gegenwart eines massenlosen Neutrinos die m¨oglichen Konflikte mit der Axionl¨osungaufgel¨ostwerden vii Zusammenfassung viii k¨onnen. Aus der Voraussetzung, dass eine valide Axionl¨osungdes CP-Problems ex- istiert, leiten wir neue Grenzen f¨urdie Neutrinomasse her. Weiterhin untersuchen wir den Abschirmungsmechanismus, der durch die Vakuumenergie f¨urleichte Quarks in der QCD verursacht wird. Es ist bekannt, dass die θ-Abh¨angigkeit des QCD-Vakuums mit der leichtesten Quarkmasse linear verschwindet. Analog zur Schwinger-Paarerzeugung in einem starken elektrischen Feld betrachten wir die Vakuumsabschirmung durch die Blasenbildung von η0-Vakua. Unter Verwendung des Potentials f¨ur η0, das durch Standard- Instanton-Rechnungen gegeben ist, k¨onnenwir die lineare Abh¨angigkeit nicht repro- duzieren. Wir betrachten dies als Indikation f¨urdie von Witten vorgeschlagene Nicht- Analytizit¨atder QCD-Vakuumenergie. Im letzten Teil der Arbeit betrachten wir Gravitationseffekte auf kosmologischen Skalen. Neuste Daten des Planck Satelliten weisen darauf hin, dass einer der vielversprechensten Kandidaten f¨urdie Dunkle Materie, das Axion, in Konflikt ist mit durch adiabatischen Fluktuationen vorgegebenen Grenzen. Wir zeigen, dass diese Fluktuationen effizient unterdr¨uckt werden k¨onnen, wenn f¨urdas Axionenfeld w¨ahrendder Inflation ein nicht- minimaler kinetischer Kopplungsterm eingef¨uhrtwird. Auf Grundlage dessen kann das Axion als m¨oglicher Kandidat f¨urdunkle Materie erhalten bleiben. Weiterhin zeigen wir, dass ein solcher kinetischer Term dem Higgs-Teilchen des Standardmodells erlaubt die Inflation anzutreiben und dass die Dichte der dunklen Materie tats¨achlich vom Axion erzeugt werden kann. Gravitationseffekte auf großen Skalen sind zudem potentiell von einer m¨oglich endlichen Masse des Gravitons abh¨angig.Jedoch ist bekannt, dass solche Modifikationen der Grav- itation zu Inkonsistenzen f¨uhrenk¨onnen.Unter Betrachtung des k¨urzlich von de Rham, Gabadadze and Tolley vorgeschlagenen Szenarios einer Geist-freien Theorie der massiven Gravitation untersuchen wir die Wechselwirkungen kubischer Ordnung in dieser Theo- rie, ausgedr¨uckt in den Helizit¨ateneines massiven Spin-2 Teilchens. Wir finden, dass es nicht m¨oglich ist, die entsprechende Wirkung in kubischer Ordnung zu trunkieren, ohne
Recommended publications
  • The Large Numbers Hypothesis: Outline of a Self-Similar Quantum
    The Large Numbers Hypothesis: Outline of a self-similar quantum-cosmological Model H. GENREITH ∗ Institut f¨ur Geophysik und Meteorologie der Universit¨at zu K¨oln Abstract leads to a scaled quantum of action 3 In 1919 A. Einstein suspected first that gravita- H =Λ h (2) · tional fields could play an essential role in the in order to handle the Universe like an elementary structure of elementary particles. In 1937, P.A.M. particle. Hence the Universe should have an angu- Dirac found a miraculous link between the prop- lar momentum of about H/2π and it can be sus- erties of the visible Universe and elementary par- pected to be a huge rotating black-hole close to its ticles. Both conjectures stayed alive through the Kerr limit, or close to G¨odel’s spin [1, 2, 35, 10], following decades but still no final theory could be which is the value for the rotating cosmological so- derived to this issues. The herein suggested frac- lution to Einstein’s equations of General Relativity. tal model of the Universe gives a consistent expla- The recent discussion regarding the origin of and nation to Dirac’s Large Numbers Hypothesis and destiny of the Universe raises, for example, the combines the conjectures of Einstein and Dirac. question of where the Universe comes from. The main explanation for this is that time and space 1 Introduction were created with the big-bang and therefore the question of where the Universe is embedded or what 1.1 The Large Numbers Hypothesis happened before the creation, is not admissible.
    [Show full text]
  • What Is Gravity and How Is Embedded in Mater Particles Giving Them Mass (Not the Higgs Field)? Stefan Mehedinteanu
    What Is Gravity and How Is Embedded in Mater Particles giving them mass (not the Higgs field)? Stefan Mehedinteanu To cite this version: Stefan Mehedinteanu. What Is Gravity and How Is Embedded in Mater Particles giving them mass (not the Higgs field)?. 2017. hal-01316929v6 HAL Id: hal-01316929 https://hal.archives-ouvertes.fr/hal-01316929v6 Preprint submitted on 23 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License What Is Gravity (Graviton) and How Is Embedded in Mater Particles Giving Them Mass (Not the Higgs Field)? Stefan Mehedinteanu1 1 (retired) Senior Researcher CITON-Romania; E-Mail: [email protected]; [email protected] “When Einstein was asked bout the discovery of new particles, the answer it was: firstly to clarify what is with the electron!” Abstract It will be shown how the Micro-black-holes particles produced at the horizon entry into a number of N 106162 by quantum fluctuation as virtual micro-black holes pairs like e+ e- creation, stay at the base of: the origin and evolution of Universe, the Black Holes (BH) nuclei of galaxies, of the free photons creation of near mass-less as by radiation decay that condensate later at Confinement in to the structure of gauge bosons (gluons) .
    [Show full text]
  • Cosmological Matter-Antimatter Asymmetry and Antimatter in the Universe
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server COSMOLOGICAL MATTER-ANTIMATTER ASYMMETRY AND ANTIMATTER IN THE UNIVERSE A.D. DOLGOV INFN, sezione di Ferrara, Via Paradiso, 12 - 44100 Ferrara, Italy and ITEP, Bol. Cheremushkinskaya 25, Moscow 113259, Russia Models of baryogenesis which may lead to astronomically significant amount of antimatter in the universe are reviewed. Observational features are briefly discussed. 1 Introduction Prediction of antimatter by Dirac 1 (1928) and quick subsequent discovery of the first antimatter particle, positron, by Anderson 2 (1933) are among greatest scientific achievements of XX cen- tury. Discovery of antiproton 22 years later 3 was the next step which had opened a whole new world of antiparticles. Now for (almost) every elementary particle a corresponding antiparticle has also been observed. The latter have opposite signs of all associated charges and, according to CPT theorem4, the same masses and, if unstable, life-times. Such symmetry between par- ticles and antiparticles naturally leads to suggestion that the universe as a whole may be also symmetric with respect to transformation from particles to antiparticles and there should exist astronomically large regions consisting of antimatter: anti-stars, clouds of diffuse antimatter, whole anti-galaxies, or even large clusters of anti-galaxies. As Dirac 5 said in his Nobel lecture a: “... we must regard it rather as an accident that the Earth (and presumably the whole solar system), contains a preponderance of negative electrons and positive protons. It is quite possible that for some of the stars it is the other way about, these stars being built up mainly of positrons and negative protons.
    [Show full text]
  • Curriculum Vitae: M. Coleman Miller Date of Birth
    Curriculum Vitae: M. Coleman Miller Date of Birth: 6 July 1968 The University of Maryland Place of Birth: Detroit, MI Department of Astronomy Citizenship: USA College Park, MD 20742-2421 E-mail: [email protected] Telephone: (301) 405-1037 FAX: (301) 314-9067 Webpage: http://www.astro.umd.edu/∼miller/ Research Interests Theoretical Astrophysics Computer Simulations and Modeling Physics of Dense Matter Physics in Strong Magnetic Fields General Relativity Gravitational Radiation PlasmaPhysics GravitationalLensing Education 1984 - 1990 California Institute of Technology, Pasadena, California Department: Physics, with Computer Science minor Thesis Topic: Radiation Transfer in Very Strong Magnetic Fields Degrees: M.S. (1986), Ph.D. (1990) (Advisor: E. S. Phinney) National Science Foundation Graduate Fellow, 1984-1987 1980 - 1984 Hillsdale College, Hillsdale, Michigan Major fields: Mathematics and Physics Degree: B.S., Summa Cum Laude (1984) Research Experience 2009 - Professor of Astronomy, University of Maryland 2020 Radboud Excellence Professor, Radboud University, Nijmegen, Netherlands 2017 - 2019 Chair, Maryland Astronomy Center for Theory and Computation 2015 - 2019 Astronomy Director, Joint Space-Science Institute 2013 - 2014 Director, Joint Space-Science Institute 2004 - 2009 Associate Professor of Astronomy, University of Maryland 2004 - 2006 Chair, Maryland Astronomy Center for Theory and Computation 1999 - 2004 Assistant Professor of Astronomy, University of Maryland 1997 - 1999 Member of the AXAF Science Center, Chicago beta test site 1994 - 1997 Compton Gamma-Ray Observatory Fellow, University of Chicago 1993 - 1999 Research Scientist, University of Chicago Constructed the first detailed model of kilohertz QPOs of neutron star low-mass X- ray binaries, investigated gravitational lensing of gamma-ray bursts and galaxies, and performed various studies of accreting black holes and neutron stars.
    [Show full text]
  • Grand Unified Theories - Ii
    - 31 - GRAND UNIFIED THEORIES - II J. Ellis CERN, Geneva, Switzerland INTRODUCTION In the previous lectures1»2) you have seen how the inadequacies of the standard SU(3) x SU(2) x U(l) model of the strong, weak, and electromagnetic interactions motivate the construction of grand unified theories (GUTs) which are sketched in Fig. 1. The strategy- then adopted was to assign the fundamental fermions — quarks and leptons — to "generations" forming economical representations of a simple grand unifying group G. The observed dis• parity of the strong and weak coupling constants implies that the group G must be broken down at a very high energy scale. The properties of the running coupling constants in re- normalizable field theories enable one to estimate3) this breaking scale to be around 1015 GeV in simple models'*) such as SU(5). Although the grand unification symmetry is very strongly broken, it can still be used to make predictions for parameters observable at low energies. In addition to the quantization of electromagnetic charge (|Q_|/|Q | = 1) which ^e p flows from the embedding of electromagnetic U(l) into a simple group, it is possible to 2 make predictions for the neutral weak mixing parameter sin 6W and for the ratios of certain 2 quark and lepton masses. While the predictions for sin 9W and m^/m^. are spectacularly successful, there are clouds over the predictions for the masses of other quarks1»2). The real tests of GUTs lie, however, with their predictions for new interactions, which can lead to qualitatively new phenomena such as baryon decay or neutrino masses and oscilla• tions.
    [Show full text]
  • Black Hole Entropy Entanglement And
    BLACK HOLE ENTROPY ! ENTANGLEMENT! AND! HOLOGRAPHIC SPACETIME" Ted Jacobson" University of Maryland" Goddard Scientific Colloquium, Feb. 7, 2018 Holographic " Information" principle" paradox" Area 3 4~GN /c geometry" black hole " Einstein eqn " from" entropy" as vacuum " entanglement " thermodynamics" QFT " renormalization" Albert Einstein, aged 33, 1912" GRAVITY IS CURVATURE OF SPACETIME" Spatial curvature analogy:" " Spacetime" Initially parallel lines " don’t stay parallel" time" earth" apple" Time runs slower lower down!" B" Apple free-fall " apple" is the straightest path " in spacetime between A & B…" and the path of longest time." How much slower? " One billionth of a second per year per foot" A" ’ 2 earth" at the earth s surface (g/c )." Spiral of Mercury’s orbit: didn’t fit Newton’s theory, " by 43’’/century…" That’s about 9 minutes advance time for the transit per century… " General relativity nailed it." To calculate the rate of perihelion advance Einstein needed only the first approximation to the line element outside the sun: " " 2 2 2 2 2 2 2 ds = (1− rS r)dt − (1+ rS r)dr − r (dθ +sin θ dϕ ) 2 rS = 2GM c = 3km The Schwarzschild Singularity (1916) 2 2 −1 2 2 2 2 2 ds = (1− rS r)dt − (1− rS r) dr − r (dθ +sin θ dϕ ) 2 rS = 2GM c = 3km "Schwarzschild radius" Schwarzschild (1916): “in order that this discontinuity coincides with the origin” one should define the radial coordinate appropriately. Droste (1916): “a moving particle can never pass that sphere because it would take an infinite amount of time” The true, non-singular nature of the Schwarzschild “singularity” was not widely understood until 42 years later… but it was understood perfectly well by one man in 1932… Georges Lemaitre First person to understand the nature of the Schwarzschild singularity as an event horizon (1932).
    [Show full text]
  • Neutrino Decoherence from Quantum Gravitational Stochastic Perturbations
    Neutrino decoherence from quantum gravitational stochastic perturbations Stuttard, Thomas; Jensen, Mikkel Published in: Physical Review D DOI: 10.1103/PhysRevD.102.115003 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Stuttard, T., & Jensen, M. (2020). Neutrino decoherence from quantum gravitational stochastic perturbations. Physical Review D, 102(11), [115003]. https://doi.org/10.1103/PhysRevD.102.115003 Download date: 30. sep.. 2021 PHYSICAL REVIEW D 102, 115003 (2020) Neutrino decoherence from quantum gravitational stochastic perturbations Thomas Stuttard and Mikkel Jensen Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark (Received 9 July 2020; accepted 30 October 2020; published 1 December 2020) Neutrinos undergoing stochastic perturbations as they propagate experience decoherence, damping neutrino oscillations over distance. Such perturbations may result from fluctuations in space-time itself if gravity is a quantum force, including interactions between neutrinos and virtual black holes. In this work we model the influence of heuristic neutrino-virtual black hole interaction scenarios on neutrino propagation and evaluate the resulting signals in astrophysical and atmospheric neutrinos. We derive decoherence operators representing these effects in the framework of open quantum systems, allowing experimental constraints on such systems to be connected to quantum gravitational effects. Finally, we consider
    [Show full text]
  • Arxiv:1805.01467V1 [Astro-Ph.GA] 3 May 2018 the Existence of Stellar Mass Black Holes (Abbott Et Al
    Draft version May 7, 2018 Typeset using LATEX twocolumn style in AASTeX62 A Population of Bona Fide Intermediate Mass Black Holes Identified as Low Luminosity Active Galactic Nuclei Igor V. Chilingarian,1, 2 Ivan Yu. Katkov,2 Ivan Yu. Zolotukhin,2, 3, 4 Kirill A. Grishin,2, 5 Yuri Beletsky,6 Konstantina Boutsia,6 and David J. Osip6 1Smithsonian Astrophysical Observatory, 60 Garden St. MS09, Cambridge, MA 02138, USA 2Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, Universitetsky prospect 13, Moscow, 119992, Russia 3Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnij Arkhyz 369167, Russia 4Universit´ede Toulouse; UPS-OMP, IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France 5Department of Physics, M.V. Lomonosov Moscow State University, 1 Vorobyovy Gory, Moscow, 119991, Russia 6Las Campanas Observatory, Carnegie Institution of Washington, Colina el Pino, Casilla 601 La Serena, Chile (Received April 26, 2018; Revised {; Accepted {) Submitted to ApJ ABSTRACT Nearly every massive galaxy harbors a supermassive black hole (SMBH) in its nucleus. SMBH masses are millions to billions M , and they correlate with properties of spheroids of their host galaxies. While the SMBH growth channels, mergers and gas accretion, are well established, their origin remains 5 6 uncertain: they could have either emerged from massive \seeds" (10 10 M ) formed by direct − collapse of gas clouds in the early Universe or from smaller (100M ) black holes, end-products of first stars. The latter channel would leave behind numerous intermediate mass black holes (IMBHs, 2 5 10 10 M ). Although many IMBH candidates have been identified, none is accepted as definitive, − thus their very existence is still debated.
    [Show full text]
  • The Virtual Black Hole in 2D Quantum Gravity Search for the Quark-Gluon
    Der neutrale Kei Zerfall ist experimentell wesentlich weniger genau untersucht als der entsprechende K± Zerfall (bei letzterem wurden bisher einige zehntausend Er- eignisse beobachtet, bei ersterem nicht einmal tausend). Allerdings hat er einige interessante physikalische Eigenschaften: aus Symmetriegründen ist der ansonsten dominierende Formfaktor F stark unterdrückt, wodurch sich die Pionen in einem (fast) reinem p-Zustand befinden, während beim K*t Zerfall ein Mischzustand vorliegt. Weiters stellt sich im Rahmen chiraler Störungstheorie eine empfindli- che Abhängigkeit des Verzweigungsverhältnisses von dem nur ungenau bekannten Kopplungsparameter L3 heraus, was den neutralen Ket Zerfall zur Messung dieses Parameters prädestiniert. Der Vortrag berichtet über theoretische Untersuchungen sowie erste experimentel- le Ergebnisse der Kti Analyse. Da das im Mai veröffentlichte neue Ergebnis der Re^/e) Messung eine grosse Resonanz gefunden hat, wird auch dieses kommen- tiert werden. •) Gefördert aus Mitteln des BMWV: GZ 616.360/2-W und GZ 616.363/2-VIII, sowie des Fonds zur Förderung der wissenschaftlichen Forschung: P-8929-PHY. The Virtual Black Hole in 2D Quantum Gravity D. Grumiller1, W. Kummer1, D.V. Vassilevich2, i 'Institut für Theoretische Physik, TU Wien, Wiedner Hauptstrasse 8-10, j A-1040 Wien; 2Institut für Theoretische Physik, Universität Leipzig, Augu- j stusplatz 10, D-04109 Leipzig > As shown recently 2d quantum gravity theories — including spherically reduced ~H Einstein-gravity — after an exact path integral of its geometric part can be treated ^ perturbatively in the loops of (scalar) matter. Obviously the classical mechanism of O black hole formation should be contained in the tree approximation of the theory. ~ This is shown to be the case for the scattering of two scalars through an interme- —L diate state which by its effective black hole mass is identified as a "Virtual black •£* hole".
    [Show full text]
  • Stsci Newsletter: 2017 Volume 034 Issue 02
    2017 - Volume 34 - Issue 02 Emerging Technologies: Bringing the James Webb Space Telescope to the World Like the rest of the Institute, excitement is building in the Office of Public Outreach (OPO) as the clock winds down for the launch of the James Webb Space Telescope. Our task is translating and sharing this excitement over groundbreaking engineering—and the scientific discoveries to come—with the public. Webb @ STScI In the lead-up to Webb’s launch in Spring 2019, the Institute continues its work as the science and operations center for the mission. The Institute has played a critical role in a number of recent Webb mission milestones. Updates on Hubble Operation at the Institute Observations with the Hubble Space Telescope continue to be in great demand. This article discusses Cycle 24 observing programs and scheduling efficiency, maintaining COS productivity into the next decade, keeping Hubble operations smooth and efficient, and ensuring the freshness of Hubble archive data. Hubble Cycle 25 Proposal Selection Hubble is in high demand and continues to add to our understanding of the universe. The peer-review proposal selection process plays a fundamental role in establishing a merit-based science program, and that is only possible thanks to the work and integrity of all the Time Allocation Committee (TAC) and review panel members, and the external reviewers. We present here the highlights of the Cycle 25 selection process. Using Gravity to Measure the Mass of a Star In a reprise of the famous 1919 solar eclipse experiment that confirmed Einstein's general relativity, the nearby white dwarf, Stein 2051 B, passed very close to a background star in March 2014.
    [Show full text]
  • Black Hole Paradoxes Mario Rabinowitz Armor Research 715 Lakemead Way Redwood City, CA 94062-3922 [email protected] Abstr
    Black Hole Paradoxes Mario Rabinowitz Armor Research 715 Lakemead Way Redwood City, CA 94062-3922 [email protected] Abstract The Black Hole enigma has produced many paradoxical concepts since its introduction by John Michell in 1783. As each paradox was resolved and our understanding about black holes matured, new paradoxes arose. A consensus regarding the resolution of some conundrums such as the Naked Singularity Paradox and the Black Hole Lost Information Paradox has still not been achieved. Black hole complementarity as related to the lost information paradox (LIP) and the LIP itself are challenged by gravitational tunneling radiation. Where possible, the paradoxes will be presented in historical context presenting the interplay of competing perspectives such as those of Bekenstein, Belinski, Chandrasekar, Hawking, Maldacena, Page, Preskill, Susskind, 't Hooft, Veneziano, Wald, Winterberg, Yilmaz, and others. The average kinetic energy of emitted particles may have a feature in common with themionic emission. A broad range of topics will be covered including: Why can or can't the formation of a black hole be observed? Can one observe a naked singularity like the one clothed by a black hole? What can come out of, or seem to come out of, a black hole? What happens to the information that falls into a black hole? Doesn't the resolution of the original black hole entropy paradox introduce an equally challenging puzzle? Related anomalies in the speed of light, the speed of gravity, the speed of inflation, and Mach's principle are considered. As we shall see, these paradoxes have served as an incentive for research to sharpen our thinking, and even to promote the development of both new theoretical and experimental physics.
    [Show full text]
  • The Nature of the Gravitational Vacuum
    The nature of the gravitational vacuum 1 Samir D. Mathur Department of Physics The Ohio State University Columbus, OH 43210, USA [email protected] Abstract The vacuum must contain virtual fluctuations of black hole microstates for each mass M. We observe that the expected suppression for M ≫ mp is counteracted by the large number Exp[Sbek] of such states. From string theory we learn that these microstates are extended objects that are resistant to compression. We ar- gue that recognizing this ‘virtual extended compression-resistant’ component of the gravitational vacuum is crucial for understanding gravitational physics. Remark- ably, such virtual excitations have no significant effect for observable systems like stars, but they resolve two important problems: (a) gravitational collapse is halted outside the horizon radius, removing the information paradox; (b) spacetime ac- arXiv:1905.12004v1 [hep-th] 28 May 2019 quires a ‘stiffness’ against the curving effects of vacuum energy; this ameliorates the cosmological constant problem posed by the existence of a planck scale Λ. 1Essay awarded an honorable mention in the Gravity Research Foundation 2019 Awards for Essays on Gravitation. Classical general relativity is expected to fail if we encounter curvature singularities. Two singularities of special interest are the central singularity of a black hole and the big bang singularity of cosmology. Both the associated spacetimes exhibit horizons, and the evolution equations are similar as well: the interior of a uniform collapsing dust ball maps, under time reversal, to a region of the dust cosmology. But the questions we face are very different in the two cases. With black holes, we ask how information can escape from the horizon in Hawking radiation.
    [Show full text]