A Philosophical Examination of the Processes of Evolution

Total Page:16

File Type:pdf, Size:1020Kb

A Philosophical Examination of the Processes of Evolution RADAR Research Archive and Digital Asset Repository Natural Selection and Natural Processes: a philosophical examination of the processes of evolution Colin Beckley (2012) https://radar.brookes.ac.uk/radar/items/76e8697b-c2b8-4d91-8790-08b637fcbc79/1/ Note if anything has been removed from thesis: Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, the full bibliographic details must be given as follows: Beckley, C, (2012), Natural Selection and Natural Processes: a philosophical examination of the processes of evolution, PhD, Oxford Brookes University WWW.BROOKES.AC.UK/GO/RADAR Natural Selection and Natural Processes: A Philosophical Examination of the Processes of Evolution Colin Beckley June 2012 This thesis is submitted in partial fulfilment of the requirements of the award of Doctor of Philosophy awarded by Oxford Brookes University 1 Acknowledgements From the earliest stages, I have been grateful to Stephen Boulter and Mark Cain from the Philosophy department at Oxford Brookes University, who invited me to take on the PhD under their supervision. In particular, Stephen’s deep questioning of some of the fundamentals proved invaluable as the thesis progressed. I am also very grateful to Andrew Lack from the Biology department at Brookes, who took on the role of biology supervisor. Without Andrew’s insights, support and encouragement, this thesis may never have been completed. Also from the biology department, I thank Casper Breuker for the provision of many pertinent papers concerning evolutionary theory. Thanks also to Simon Baker for giving his time and illustrating the strange and curious world of the prokaryotes. I wish also to thank the following staff at Brookes for their help and cooperation: Beverley Clack, David Evans, Martin Groves, Catherine Joyejob, Marlene Morrison, Jill Organ and Stephen Rayner. External to Brookes, I thank Noam Chomsky, who kindly went through my initial proposals and prevented me from committing a philosophical faux pas. I am particularly grateful to Trevor Hussey who over many years has shown such friendship whilst maintaining a very healthy constructive criticism. This has proved priceless. To Antonio Lima-de-Faria I also give special thanks for providing many scientific papers and references that enabled me to a wider and necessary appreciation of the issues. I also thank Antonio and his wife Helene for the kind reception at their home in Lund and the discussion and clarification of Antonio’s ideas. Thanks also to Philip Ball and Robert M Hazen for sending and sharing important scientific papers. I am also grateful to Mike Arnautov, who kindly took time to read through and comment wisely on the parts of my thesis that I was preparing for a series of lectures for the Wycombe Philosophy Association. I am very grateful to both Judith Payne and Elaine Rogers for taking on the onerous task as proof readers and calmly revealing my many oversights and omissions. Finally, I wish to thank Maryam, whose love and support have been so valuable to me. 2 Contents Page Abstract 4 Introduction 5 Natural Selection Chapter 1: The Historical Exposition 13 Chapter 2: Problems with the Concept of Fitness 21 Chapter 3: The Ontological Question 31 Chapter 4: A Critical Analysis 37 Chapter 5: The Further Extended Principle of Natural Selection 50 Demarcation Chapter 6: Seeking Boundaries 55 Chapter 7: Genetic Exchange 61 Form, Function and Order Chapter 8: The Constraints: Symmetry, Asymmetry and Patterns in Nature 72 Chapter 9: D’Arcy Thompson and Lima-de-Faria 88 Chapter 10: Constraints or Determinants: Gravity, Temperature, Nutrition and Size 101 Explanation and Evolutionary Pluralism Chapter 11: Explanation in Evolutionary Biology 118 Chapter 12: Explanation, Teleology and Anthropomorphic Language 135 Chapter 13: Evolutionary Pluralism 142 Chapter 14: Conclusions 154 Appendix 1 165 Appendix 2 167 Appendix 3 169 Appendix 4 171 Appendix 5 175 References 176 3 Abstract This thesis concerns evolution and how it is explained. The ambition here is to identify clearly the many aspects of evolution, and to evaluate past and present explanations of evolution for their coherence and validity. Historically natural selection has been taken to be the central and main explanans, with other explanations playing lesser roles. Here it will be argued that the sheer complexity and diversity within nature cannot be accounted for by any single explanatory mechanism and that a plurality of explanatory mechanisms is required. Loading natural selection with the main weight of explanation is an overburden which, far from strengthening its explanatory powers, actually renders it vacuous. A critical historical and philosophical examination of the concept of natural selection reveals that it has never received a formal scientific definition that commands universal respect. This has created a problem of demarcation between that which natural selection can legitimately be said to explain and that which it cannot. In fact, the ontology of natural selection is equivocal, giving rise to the many controversies that have plagued evolutionary biology. The disambiguation of the concept of natural selection is the principle aim of this thesis and guidelines on how this should be accomplished are provided. However, should these reforming guidelines fail to achieve a consensus then a more radical alternative is proposed. It is recommended that the selective terminology is replaced with the less anomalous and demanding principle of ‘meeting the conditions of existence’. Moreover, talk of the evolution and origins by means of natural selection is to be replaced by talk of evolution and origins by means of natural processes. Finally, drawing from a ‘Structuralist’ alternative, it will be demonstrated that biological evolution should not be divorced from general or cosmological evolution. Rather, elucidation should be drawn more deeply from the fields of physics, chemistry, mathematics and topology, without the use of selection-tinted spectacles. 4 Introduction Within evolutionary biology and the accompanying theoretical and philosophical literature, there are several unresolved and contentious issues, none more so than those that arise from the use of the concept of natural selection. The main issue here is that the term covers too many different relationships and that little, if anything, is ruled out. Natural Selection was seen originally as an important distinction to theological explanation but it is identified here that we have outgrown the early concept. There are today so many uses ranging from early ‘Malthusian natural selection’, to ‘positive selection’, to ‘negative selection’ to ‘balancing selection’ and, far from least but most anomalously, to ‘lifted or relaxed selection’. With such wide contrariness one must question the heuristic value of the concept and whether the application of natural selection or ‘selection’ is little more than a linguistic tick. Boundaries and parameters do matter and not exclusively for scientific purposes. During the 1920s, 1930s and 1940s natural selection was inappropriately applied to justify some obnoxious eugenic and socially racialist politics. It is justifiable and easy to condemn these applications as they transcended the intended usage. Unfortunately it is far less easy to provide clear barriers to indicate the proper application of natural selection. I will argue here, in the context of science, that if the concept of natural selection cannot be clearly defined with appropriate parameters then it is advisable to talk directly and more specifically of natural processes. The purpose of this thesis is to demonstrate that these issues can be resolved by some fairly simple changes to both the terminology currently employed and the expectations of the theorist. These changes will enable evolutionary theory to be perceived with more clarity, avoiding many of the philosophical pitfalls. To achieve this, the issues will be identified and examined critically but with a view to resolution that does not compromise evolutionary theory. Arguably, natural selection has been perceived as the classical explanation of evolutionary change, with other explanations playing lesser roles. However, this is not without problem. My original ambition was to provide natural selection with a definition that was clear and precise, thus avoiding many of the controversies, paradoxes and problems that have afflicted evolutionary theory. This has proved elusive. The main problem is that if one tightens the definition of natural selection then one loses a great deal of explanatory power. On the other hand, if one generalises the definition then one has the spectre of tautology, untestability and vacuity, with natural selection looking synonymous with evolution. And yet, all is not lost. There is a solution to the dilemma: there are many underlying naturalistic processes that can explain why evolution occurs. These will be explored and argued for. Furthermore, it will be demonstrated that this approach is easy to articulate and follow in principle, avoiding many of the
Recommended publications
  • 2008-2009 Annual Report
    ANNUAL REPORT 2008-2009 Photo: Shona Dion Photo: CONTENTS : annual report 2008-2009 Green College is a graduate residential college at the University of British Columbia, Principal’s Report............................p. 2 with a mandate to promote advanced 2008-2009 Highlights......................p. 4 interdisciplinary inquiry. The College offers Academic Programming................p. 5 resident membership to graduate students, Cecil H. and Ida Green Visiting Professorships........p. 6 Writer-in-Residence........................................................ p. 7 postdoctoral scholars and visiting faculty at Weekly Interdisciplinary Series.................................... p. 8 Monthly Interdisciplinary Series................................. p. 11 UBC, and (non-resident) faculty membership Conferences, Colloquia, and Workshops.................. p. 16 Special Lectures............................................................... p. 17 to UBC and other faculty. The College is committed to the cultivation ofintellectual College Committees......................p. 18 Standing Committees......................................................p. 18 and creative connections at the edge of the Faculty Council................................................................ p. 19 Residents’ Council.......................................................... p. 19 main disciplinary and academic space of the Resident Committees................... ................................. p. 20 university. To that end, it provides extracurricular Green
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • Adaptive Radiation Driven by the Interplay of Eco-Evolutionary and Landscape Dynamics R
    Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics R. Aguilée, D. Claessen, A. Lambert To cite this version: R. Aguilée, D. Claessen, A. Lambert. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution - International Journal of Organic Evolution, Wiley, 2013, 67 (5), pp.1291-1306. 10.1111/evo.12008. hal-00838275 HAL Id: hal-00838275 https://hal.archives-ouvertes.fr/hal-00838275 Submitted on 13 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics Robin Aguil´eea;b;∗, David Claessenb and Amaury Lambertc;d Published in Evolution, 2013, 67(5): 1291{1306 with doi: 10.1111/evo.12008 a Institut des Sciences de l'Evolution´ de Montpellier (UMR 5554), Univ Montpellier II, CNRS, Montpellier, France b Laboratoire Ecologie´ et Evolution´ (UMR 7625), UPMC Univ Paris 06, Ecole´ Normale Sup´erieure,CNRS, Paris, France c Laboratoire Probabilit´eset Mod`elesAl´eatoires(LPMA) CNRS UMR 7599, UPMC Univ Paris 06, Paris, France. d Center for Interdisciplinary Research in Biology (CIRB) CNRS UMR 7241, Coll`egede France, Paris, France ∗ Corresponding author.
    [Show full text]
  • Adaptive Radiation Adaptive Radiation by Prof
    Workshop on Population and Speciation Genomics 2020 W. Salzburger | Adaptive Radiation Adaptive Radiation by Prof. Walter Salzburger Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland The diversity of life on Earth is governed, at the MACROEVOLUTIONARY scale, by two antagonistic ———————— MACROEVOLUTION processes: Evolutionary radiations increase and extinction events decrease the organismal diversity on our Evolution on the grand scale, that is, planet through time. Evolutionary radiations are termed adaptive radiations if new lifeforms emerge evolution at the level rapidly through the extensive ecological diversification of an organismal lineage. of species and above. Examples of adaptive radiations ECOLOGICAL NICHE The relational position of a species Adaptive radiation refers to the evolution of ecological and morphological disparity within a rapidly or population in an diversifying lineage. It is the diversification of an ancestral species into an array of new species that ecosystem. It includes the interactions of all occupy various ECOLOGICAL NICHES and that differ in traits used to exploit those niches. Adaptive biotic and abiotic radiation includes the origination of both new species (speciation) and phenotypic disparity. factors that determine how a species meets Archetypal examples of adaptive radiations include Darwin’s finches on the Galápagos archipelago; its needs for food and shelter, how it silversword plants on Hawaii; anole lizards on the islands of the Caribbean; threespine stickleback fish survives, and how it in north temperate waters; and cichlid fishes in the East Africa Great Lakes and in various tropical reproduces. crater lakes (see FIGURE 1). Adaptive radiations are also visible in the FOSSIL record. For example, the FOSSIL CAMBRIAN EXPLOSION is considered an adaptive radiation.
    [Show full text]
  • Adaptive Radiation Causes
    NEET (/neet/) > NEET Study Material (/neet/neet-study-material/) > NEET Biology (/neet/neet-biology/) > Adaptive Radiation (/neet/important-notes-of-biology-for-neet- adaptive-radiation/) What is adaptive radiation? Adaptive radiation is the evolutionary diversification of many related species from a common ancestral species in a relatively short period. Osborne (1902) coined the term “Adaptive Radiation”. He stated that each large and isolated region, with sufficiently varied topogr aphy, soil, vegetation, climate, will lead to organisms with diverse characteristics. Darwin had called it “Divergence”, i.e. the tendency in an organism descended from the same ancestor to diverge in character as they undergo changes. Adaptive radiation plays a significant role in macroevolution. Adaptive radiation gives rise to species diversity in a geographical area. Adaptiv e Radiation Causes: Adaptive radiation is more common during major environmental changes and physical disturbances. It also helps an organism to successfully spread into other environments. Furthermore, it leads to speciation. Moreover, it also leads to phenotypically dissimilar, but related species. Major causes of adaptive radiation are: Ecological opportunities: When an organism enters a new area with lots of ecological opportunities, species diversify to exploit these resources. When a group of organism enter a new adaptive zone then organisms tend to adapt themselves differently. It results in adaptive divergence An adaptive zone is an unexploited area with numerous ecological opportunities, e.g. nocturnal flying to catch small insects, grazing on the grass while migrating across Savana, and swimming at the ocean’s surface to filter out Plankton Vacant adaptive zones are more common on islands, as fewer species inhabit islands compared to mainland When adaptive zones are empty, they get filled by species, which diversify quickly, e.g.
    [Show full text]
  • Public Education, Religious Establishment, and the Challenge of Intelligent Design Francis J
    Notre Dame Journal of Law, Ethics & Public Policy Volume 17 Article 4 Issue 2 Symposium on Religion in the Public Square 1-1-2012 Public Education, Religious Establishment, and the Challenge of Intelligent Design Francis J. Beckwith Follow this and additional works at: http://scholarship.law.nd.edu/ndjlepp Recommended Citation Francis J. Beckwith, Public Education, Religious Establishment, and the Challenge of Intelligent Design, 17 Notre Dame J.L. Ethics & Pub. Pol'y 461 (2003). Available at: http://scholarship.law.nd.edu/ndjlepp/vol17/iss2/4 This Article is brought to you for free and open access by the Notre Dame Journal of Law, Ethics & Public Policy at NDLScholarship. It has been accepted for inclusion in Notre Dame Journal of Law, Ethics & Public Policy by an authorized administrator of NDLScholarship. For more information, please contact [email protected]. PUBLIC EDUCATION, RELIGIOUS ESTABLISHMENT, AND THE CHALLENGE OF INTELLIGENT DESIGNt FRANcis J. BECKWITH* In 1987, in Edwards v. Aguillard, the United States Supreme Court declared unconstitutional a Louisiana statute (the Bal- anced-Treatment Act) that required the state's public schools to teach Creationism if evolution was taught and to teach evolution if Creationism was taught.' That decision was the culmination of a series of court battles and cultural conflicts that can be traced back to the famous Scopes Trial of 1925 in Dayton, Tennessee.2 Although many thought, and continue to think, that Edwards ended the debate over the teaching of origins in public schools, a t This article is adapted from FRANCISJ. BECKWITH, LAW, DARWINISM, AND PUBLIC EDUCATION: THE ESTABLISHMENT CLAUSE AND THE CHALLENGE OF INTELLI- GENT DESIGN (2003).
    [Show full text]
  • A Response to the Boyle Lecture by Simon Conway Morris
    S & CB (2006), 18, 31–34 0954–4194 JOHN POLKINGHORNE Rich Reality: a response to the Boyle Lecture by Simon Conway Morris Simon Conway Morris’s Boyle Lecture delivers a rhetorically lively and intel- lectually provocative challenge to scientistic fundamentalism and its assertively arid discourse. He rightly criticises the tone of the arguments pre- sented by people such as Richard Dawkins and Daniel Dennett, pointing out that in relation to religious belief they treat serious issues ‘with a bluntness and unsubtlety that in any normal discourse would be treated as juvenile’. There is indeed a deplorably ‘know-nothing’ character in some of the writings abut science and religion that originate from the sceptics, in which the authors totally fail to engage with the intellectual integrity and truth-seeking charac- ter of theological thought. Conway Morris’s response certainly does not suffer from the ‘combination of nervousness and accommodation’ that he – unfairly in my opinion – says characterises much of the religious participation in debate. The lecturer believes that his own subject of organic evolution is the topic that is ‘the most sensitive, in some ways the most vulnerable’ in this dialogue. I would want to add to that the equally important discussion of the exchanges taking place across the frontier between neuroscience and theological anthro- pology, since they too impinge significantly on the question of the nature and significance of the human person. Yet no one could deny the importance of a temperate and truthful engagement between evolutionary insight and the doc- trine of creation, so that a Boyle Lecture given by a distinguished palaeontolo- gist who tackles these issues with frankness and discernment is greatly to be welcomed.
    [Show full text]
  • Adaptive Radiation Versus ‘
    Review Research review Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution Author for correspondence: Thomas J. Givnish Thomas J. Givnish Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA Tel: +1 608 262 5718 Email: [email protected] Received: 7 August 2014 Accepted: 1 May 2015 Summary New Phytologist (2015) 207: 297–303 Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within doi: 10.1111/nph.13482 a lineage. Recently, some researchers have begun to use ‘adaptive radiation’ or ‘radiation’ as synonymous with ‘explosive species diversification’. This essay aims to clarify distinctions Key words: adaptive radiation, ecological between these concepts, and the related ideas of geographic speciation, sexual selection, key keys, explosive diversification, geographic innovations, key landscapes and ecological keys. Several examples are given to demonstrate that speciation, key innovations, key landscapes, adaptive radiation and explosive diversification are not the same phenomenon, and that parallel adaptive radiations. focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some ‘radiations’ involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of ‘adaptive radiation’ appear to involve effects driven partly by geographic speciation, species’ dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity.
    [Show full text]
  • A Deeper Look at the Origin of Life by Bob Davis
    A Deeper Look at the Origin of Life By Bob Davis Every major society from every age in history has had its own story about its origins. For instance, the Eskimos attributed their existence to a raven. The ancient Germanic peoples of Scandinavia believed their creator—Ymir—emerged from ice and fire, was nourished by a cow, and ultimately gave rise to the human race. Those are just two examples. But no matter the details, these origin stories always endeavor to answer people’s innate questions: Where did we come from? What is our destiny? What is our purpose? Two widely held theories in today’s world are abiogenesis and the Genesis story. The first states that life emerged through nature without any divine guidance; the second involves a supernatural Creator. Abiogenesis Abiogenesis is sometimes called “chemical evolution” because it seeks to explain how non-living (“abio”) substances gave rise to life (“genesis”). Abiogenesis was added to the list of origin stories over one hundred years ago when Charles Darwin first speculated that life could have begun in a “warm little pond, with all sorts of ammonia and phosphoric salts, lights, heat, electricity, etc. present, so that a protein compound was chemically formed ready to undergo still more complex changes.”1 Many summarize abiogenesis—coupled with its more famous twin, Darwinian macroevolution—in a somewhat disparaging but memorable way: “From the goo to you by way of the zoo!”2 Let’s use this phrase to help us understand what is meant by “abiogenesis.” The “goo” refers to the “primordial soup” or “warm little pond” where non-life is said to have given birth to life.
    [Show full text]
  • Inevitable Humans: Simon Conway Morris's Evolutionary Paleontology
    Zygon: Journal ofReligion and Science 40(no. 1, 2005):221-229 INEVITABLE HUMANS: SIMON CONWAY MORRIS'S EVOLUTIONARY PALEONTOLOGY by Holm~s Rolston, III Lift's Solution: InnJitable HU71lllns in II Lon~1y Univm~. By Simon Conway Morris. Cambridge: Cambridge Univ. Press, 2003. 486 pages. $30.00. Abstract. Simon Conway Morris, noted Cambridge University paleontologist, argues that in evolutionary natural history humans (or beings rather like humans) are an inevitable outcome of the de­ veloping speciating processes over millennia; humans are "inherent" in the system. This claim, in marked contrast to claims about con­ tingency made by other prominent paleontolo~ts, is based on nu­ merous remarkable convergencer-similar trends found repeatedly in evolutionary history. Conway Morris concludes approaching a natural theology. His argument is powerful and informed. But docs it face adequately the surprising events in such history, particularly notable in unexpected co-options that redirect the course oflife? The challenge to unClerstand how humans are both on a continuum with other species and also utterly different remains a central puzzle in paleontology. K9WorJs: convergence; Simon Conway Morris; co-option; evo­ lution; human uniqueness; natural theology; nature and cUlture; ori­ gin ofhumans; possibility space; self-organizing complexity. Simon Conway Morris's Lift's Solution: Inevitabk Humans in II Lont/y Uni­ vn-st is a remarkable book by a remarkable paleontologist. Anyone inter­ ested in philosophy of biology or the dialogue between biology and reli­ gion must read it, ifonly to get slapped with what radically different meta­ physical frameworks eminent biologists can read into, or out of: the same evolutionary facts.
    [Show full text]
  • Not Just Another Animal
    Not just another animal Evolution and human distinctiveness John Brubacher When I look at your heavens, the work of your fingers, the moon and the stars that you have established; what are human beings that you are mindful of them, mortals that you care for them? Yet you have made them a little lower than God, and crowned them with glory and honour. You have given them dominion over the works of your hands; you have put all things under their feet, all sheep and oxen, and also the beasts of the field, the birds of the air, and the fish of the sea, whatever passes along the paths of the seas. (Ps. 8:3–8 NRSV) A thought experiment I seem to have developed preoccupation with the concept of “heaps.” Imagine yourself sitting at a table, with a bag of fine-grained sand. You put one of the tiny grains of sand from your bag onto the table. Is there a heap of sand on the table? Obviously not. So, you add a second grain of sand to the first. This is still not a heap. You continue in this way, one grain at a time. At some point, you will have a heap of sand on the table, by any reasonable understanding of what a heap is. The question is, when—at what point, precisely—did the non-heap become a heap? Not sure? OK, try going in reverse. Start with your heap and take away grains of sand, again one at a time. When does the heap stop being a heap? There is no exact point at which adding a grain turns a non-heap into a heap or removing a grain turns a heap into a non-heap; neverthe- less, iterative addition or subtraction will turn one state of being into the other.
    [Show full text]
  • Natural Theology and Narrative Resonance
    The Chemical Constraints on Creation: Natural Theology and Narrative Resonance The 2010 Winifred E. Weter Faculty Award Lecture Seattle Pacific University February 2, 2010 Benjamin J. McFarland, Ph.D. Associate Professor of Biochemistry Department of Chemistry and Biochemistry The Chemical Constraints on Creation: Natural Theology and Narrative Resonance Seattle Pacific University Weter Award Lecture February 2, 2010 Benjamin J. McFarland, Ph.D. Associate Professor of Biochemistry Department of Chemistry and Biochemistry O Sapientia, quae ex ore Altissimi prodiisti, attingens a fine usque ad finem, fortiter suaviterque disponens omnia: veni ad docendum nos viam prudentiae.1 1 English translation: “O Wisdom, coming forth from the mouth of the Most High, reaching from one end to the other, mightily and sweetly ordering all things: Come and teach us the way of prudence.” From traditional “O Antiphons” service. 1 Dedication To Laurie Lynn Haugo McFarland (for showing me how to listen and tune) and To George Scott Becker (for showing me how to read the story) Thanks To Rick Steele and Cara Wall‐Scheffler (for critical readings and invaluable advice) and To Anna Miller and Tracy Norlen (for organizing and getting the word out) And To Bruce Congdon (for encouraging the trip to the conference that led to this lecture) and To my colleagues at SPU, in chemistry, in biology, and in all other disciplines (for living as a truly ecumenical community of scholars) 2 Order of Program Introduction: Tuning to the Universe The New Natural Theology Song One: From Nothing to Stars starring “Math” Song Two: From Stars to Heavy Atoms starring “Entropy” Song Three: From Heavy Atoms to Earth starring “Gravity” Song Four: From Rock to Sea and Sky starring “Water” Song Five: From Sea and Sky to Sulfur starring “Bubbles” Song Six: From Sulfur to Oxygen starring “Photosynthesis” Song Seven: From Oxygen to Humans starring “The Brain” What the Chemical Songs Mean Tuning Two Stories Conclusion: Reading the Music 3 Introduction: Tuning to the Universe In the beginning, there was music.
    [Show full text]