The Introduction and Analysis of a Novel Soft Actuator for a Soft Continuum Robot Arm
Total Page:16
File Type:pdf, Size:1020Kb
THE INTRODUCTION AND ANALYSIS OF A NOVEL SOFT ACTUATOR FOR A SOFT CONTINUUM ROBOT ARM A DISSERTATION Presented in partial fulfillment of the requirement for the Master of Science in mechanical engineering in the Swenson college of science and engineering By Zahra Sadat Navabi Ghamsari Advisor Dr. Debao Zhou University of Minnesota Duluth July 2018 Copyright page Zahra Sadat Navabi Ghamsari (2018) © University of Minnesota Duluth Thesis Committee members • Dr. Debao Zhou, chair • Dr. Michel Greminger • Dr. Jiann-Shiou Yang Acknowledgement I would like to thank Dr. Maps from the physics department at the University of Minnesota Duluth because of his generous help during my research. I also would like to thank my advisor, Dr. Zhou for all his support and guidance. In the end, I thank my family for all their support and cares. i Abstract In this research, a novel pneumatic soft actuator for continuum robot arm has been designed, partially modeled and manufactured. The actuator is consisting of a single tube made of silicone rubber, some elastic rings around the tube that partially divide the tube into different sections and shape-memory alloy (SMA) springs that connects the rings to each other. By increasing pressure inside the tube, the tube starts inflating in a nonuniform manner due to the existence of the rings on the surface of the tube and the nonlinear behavior of the silicone rubber. By activating SMA springs on the surface of different sections of the tube, the inflated region on the tube will be controlled. The actuator has been manufactured and tested individually. To manufacture the tube, the commercial Eco-flex 030 epoxy has been used and been molded using commercially available Bic pens as a mold. The change in the behavior of the silicone rubber tube after adding each element to the tube has been studied to monitor the change in the nonlinear behavior of the tube. The SAM springs have been made by training nitinol wires from the Flexinol company into springform. The SMA springs properties have been calculated to match the required property of the system. The behavior of the resulted actuator has been studied both during actuation and deactivation of the SMA springs. To model the behavior of the actuator, the properties of silicon rubber has been extracted by conducting required mechanical tests. Later, by fitting the results to different hyperplastic models the behavior of Eco-flex 030 has been modeled. To choose the best ii model, the behavior of the silicone rubber tube trough changing in pressure has been simulated using Ansys. The material model with closest results to the actual experimental model have been chosen. Due to the nonlinearity of the silicone rubber, the volume- pressure change inside the tube exhibits instability in the related function which is the result of both the material property and the geometry of the system. This will result in instability and failure of the solver. Therefore, the comparison between the different models was made by comparing the instability pressure. The presented actuator has the advantage of needing less number of air supplies to have the same degree of freedom compared to the conventional pneumatic actuators, thanks to utilizing the instability of silicone rubber. iii Table of Contents Acknowledgement ............................................................................................................................ i Abstract ............................................................................................................................................ ii Table of Contents ............................................................................................................................ iv Tables list ........................................................................................................................................ vi Figures list ...................................................................................................................................... vii Chapter 1- Introduction ................................................................................................................... 1 Background .................................................................................................................................. 1 Motivation ................................................................................................................................... 4 Scope ............................................................................................................................................ 5 Chapter 2- Review of literature ....................................................................................................... 6 Soft actuators .............................................................................................................................. 6 a) Electroactive Polymer Actuators (EPA) ................................................................................ 6 b) Shape Memory Alloys (SMA) ............................................................................................... 7 c) Pnumatics Channels Inside Elastomers ................................................................................ 9 Pneumatic continuum robot arms ............................................................................................ 11 Harnessing the instability of material ...................................................................................... 13 Problem summery ..................................................................................................................... 14 Chapter 3- Modeling the nonlinearity of silicone elastomer ......................................................... 15 Hyperplastic material models ................................................................................................... 15 Silicone elastomer mechanical properties ............................................................................... 20 Modeling the instability of silicon rubber tube........................................................................ 24 Effect of thickness on the instability feature ........................................................................... 30 Chapter 4- Actuator design ............................................................................................................ 33 iv Design concept of the proposed actuator ................................................................................ 33 SMA springs design ................................................................................................................... 37 Assembling the actuator parts .................................................................................................. 41 Chapter 5- Actuator test results .................................................................................................... 42 Chapter 6- Discussion .................................................................................................................... 45 Future works .............................................................................................................................. 47 References ..................................................................................................................................... 48 v Tables list Table 1 Different models constants from experiment....................................................... 25 Table 2 Change in average element size vs time for different hyper elastic models ........ 28 Table 3 The instability pressure for different models ....................................................... 29 Table 4 The comparison between the instability pressure in different wall thicknesses .. 32 Table 5 Variable values for defining the spring dimensions ............................................ 40 Table 6 Thermal behavior of nitinol wire [47] ................................................................. 43 vi Figures list Figure 1 The uniaxial tension test specimen dimensions in inches .................................. 20 Figure 2 Tensile testing equipment ................................................................................... 21 Figure 3 Uniaxial stress strain curve for Eco flex 030...................................................... 22 Figure 4 stress relaxation test results for eco flex 030 ...................................................... 22 Figure 5 The biaxial test specimen dimensions in mm ..................................................... 24 Figure 6 Instron biaxial plana testing machine ................................................................. 24 Figure 7 Equibiaxial tension test result ............................................................................. 24 Figure 8 Curve fitting result for neo Hookean model ....................................................... 25 Figure 9 Curve fitting result for Mooney Rivlin 2 model ................................................. 25 Figure 10 Curve fitting result for Gent model .................................................................. 25 Figure 11 Curve fitting result for Ogden order 2 model ................................................... 25 Figure 12 Tube model geometry ....................................................................................... 26 Figure 13 Partially inflated tube simulated in Ansys ........................................................ 27 Figure 14 Neo Hookean simulation results ......................................................................