Genome Analysis of the Unicellular Eukaryote Euplotes Vannus Provides Insights 2 Into Mating Type Determination and Tolerance to Environmental Stresses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed. -
Suitability of Great South Bay, New York to Blooms of Pfiesteria Piscicida and P
City University of New York (CUNY) CUNY Academic Works School of Arts & Sciences Theses Hunter College Summer 8-10-2015 Suitability of Great South Bay, New York to Blooms of Pfiesteria piscicida and P. shumwayae Prior to Superstorm Sandy, October 29, 2012 Pawel Tomasz Zablocki CUNY Hunter College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/hc_sas_etds/6 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Suitability of Great South Bay, New York, to Blooms of Pfiesteria piscicida and P. shumwayae Prior to Superstorm Sandy, October 29, 2012. By Pawel Zablocki Submitted in partial fulfillment of the requirements for the degree of Master of Arts Hunter College of the City of New York 2015 Thesis sponsor: __25 July 2015 Peter X. Marcotullio Date First Reader _2 August 2015 Karl H. Szekielda Date Second Reader i Acknowledgements I would like to thank my advisor, Professor H. Gong and two of my excellent readers—Professor Peter Marcotullio and Professor Karl Szekielda who provided their invaluable advice, alleviated my concerns, and weathered the avalanche of my questions. ii Abstract of the Thesis Pfiesteria piscicida and P. shumwayae are toxic dinoflagellates implicated in massive fish kills in North Carolina and Maryland during 1990s. A set of physical, chemical, and biological factors influence population dynamics of these organisms. This study employs information gathered from relevant literature on temperature, salinity, dissolved oxygen, pH, turbulent mixing, and dissolved nutrients, bacteria, algae, microzooplankton, mesozooplankton, bivalve mollusks, finfish, and other toxic dinoflagellates, which influence Pfiesteria population dynamics. -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Interactions Between the Parasite Philasterides Dicentrarchi and the Immune System of the Turbot Scophthalmus Maximus.A Transcriptomic Analysis
biology Article Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus.A Transcriptomic Analysis Alejandra Valle 1 , José Manuel Leiro 2 , Patricia Pereiro 3 , Antonio Figueras 3 , Beatriz Novoa 3, Ron P. H. Dirks 4 and Jesús Lamas 1,* 1 Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 2 Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 3 Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; [email protected] (P.P.); antoniofi[email protected] (A.F.); [email protected] (B.N.) 4 Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +34-88-181-6951; Fax: +34-88-159-6904 Received: 4 September 2020; Accepted: 14 October 2020; Published: 15 October 2020 Simple Summary: Philasterides dicentrarchi is a free-living ciliate that causes high mortality in marine cultured fish, particularly flatfish, and in fish kept in aquaria. At present, there is still no clear picture of what makes this ciliate a fish pathogen and what makes fish resistant to this ciliate. In the present study, we used transcriptomic techniques to evaluate the interactions between P. dicentrarchi and turbot leucocytes during the early stages of infection. The findings enabled us to identify some parasite genes/proteins that may be involved in virulence and host resistance, some of which may be good candidates for inclusion in fish vaccines. -
Parameterisation of Microprotozooplankton Grazing and Growth
Parameterisation of Microprotozooplankton Grazing and Growth: From data analysis to simulations in ecosystem model coupled to general circulation-biogeochemical model. Dissertation Zur Erlangung des Akademischen Grades eines Doktors der Naturwissenschaften - Dr. rer. Nat. – Im Fachbereich 2 (Biologie/Chemie) Der Universität Bremen vorgelegt von Sévrine Sailley Institutes: Alfred Wegener Institut for Polar and Marine Research (AWI), Bremerhaven, Germany University of East Anglia (UEA), Norwich, UK British Antarctic Survey (BAS), Cambridge, UK University Bremen, Germany This work was funded by Euroceans program, project number WP3.2-SYS-1092. 2 Erster Gutachter: Prof. Dr. Dieter Wolf-Gladrow Zweiter Gutachter: Prof. Dr. Corinne Le Quéré Tag des öffentlichen Kolloquims: Universität Bremen, 23 November 2009 Eidesstattliche Erklärung Hiermit erkläre ich nach § 6 Abs. 5 der Promotionsordnung der Uni Bremen (vom 14 März 2007), dass ich die Vorliegende Dissertation (1) ohne unerlaubte Hilfe angefertigt habe, (2) keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe und (3) die den benutzen Werken wörtlich oder inhaltlich entnommen Stellen als solche kenntlich gemacht habe Sévrine Sailley 3 4 Acknowledgments Here, I would like to thank people who helped me in different ways through this thesis. There are quite a lot of people who should figure here, so if I’ve forgotten somebody, I’m sorry it wasn’t on purpose. Thanks to Christine and Dieter for welcoming me at AWI and in Bremerhaven and helping not just with the thesis but also simply life in Germany, thanks for being more than just supervisors. Thanks to Clare Enright for helping me arrange my stay at BAS, but also with going through all the bugs that happened in PlankTOM, or simply little problems with the cluster. -
Phylogenomic Analysis of Balantidium Ctenopharyngodoni (Ciliophora, Litostomatea) Based on Single-Cell Transcriptome Sequencing
Parasite 24, 43 (2017) © Z. Sun et al., published by EDP Sciences, 2017 https://doi.org/10.1051/parasite/2017043 Available online at: www.parasite-journal.org RESEARCH ARTICLE Phylogenomic analysis of Balantidium ctenopharyngodoni (Ciliophora, Litostomatea) based on single-cell transcriptome sequencing Zongyi Sun1, Chuanqi Jiang2, Jinmei Feng3, Wentao Yang2, Ming Li1,2,*, and Wei Miao2,* 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China 2 Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei Province, PR China 3 Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, PR China Received 22 April 2017, Accepted 12 October 2017, Published online 14 November 2017 Abstract- - In this paper, we present transcriptome data for Balantidium ctenopharyngodoni Chen, 1955 collected from the hindgut of grass carp (Ctenopharyngodon idella). We evaluated sequence quality and de novo assembled a preliminary transcriptome, including 43.3 megabits and 119,141 transcripts. Then we obtained a final transcriptome, including 17.7 megabits and 35,560 transcripts, by removing contaminative and redundant sequences. Phylogenomic analysis based on a supermatrix with 132 genes comprising 53,873 amino acid residues and phylogenetic analysis based on SSU rDNA of 27 species were carried out herein to reveal the evolutionary relationships among six ciliate groups: Colpodea, Oligohymenophorea, Litostomatea, Spirotrichea, Hetero- trichea and Protocruziida. The topologies of both phylogenomic and phylogenetic trees are discussed in this paper. In addition, our results suggest that single-cell sequencing is a sound method of obtaining sufficient omics data for phylogenomic analysis, which is a good choice for uncultivable ciliates. -
Grazing of Two Euplotid Ciliates on the Heterotrophic Dinoflagellates Pfiesteria Piscicida and Cryptoperidiniopsis Sp
AQUATIC MICROBIAL ECOLOGY Vol. 33: 303–308, 2003 Published November 7 Aquat Microb Ecol NOTE Grazing of two euplotid ciliates on the heterotrophic dinoflagellates Pfiesteria piscicida and Cryptoperidiniopsis sp. Scott G. Gransden1, Alan J. Lewitus1, 2,* 1Belle W. Baruch Institute for Marine and Coastal Science, University of South Carolina, PO Box 1630, Georgetown, South Carolina 29442, USA 2Marine Resources Research Institute, SC Department of Natural Resources, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA ABSTRACT: Pfiesteria piscicida and Cryptoperidiniopsis spp. breaks have been associated with millions of dollars of are common co-occurring heterotrophic dinoflagellates in lost revenue to the fisheries and tourism industries estuaries along the Atlantic coast of the United States. We (Burkholder & Glasgow 1997, CENR 2000). isolated P. piscicida, Cryptoperidiniopsis sp., and 2 benthic ciliates (Euplotes vannus and E. woodruffi) from North Inlet Increased awareness of Pfiesteria spp.’s potential estuary, South Carolina, and examined the growth and graz- impact on environmental and human health has led ing properties of the ciliates on cultures of the dinoflagellates to several studies on the dinoflagellates’ trophic dy- maintained with cryptophyte (Storeatula major) prey. Ciliate namics. Ingestion of P. piscicida by copepods, rotifers, growth and grazing parameters on cryptophyte monocultures or benthic ciliates has been reported (Burkholder & and mixed diets of cryptophytes and P. piscicida were signifi- cantly higher with E. woodruffi than E. vannus. Also, the net Glasgow 1995, Mallin et al. 1995). More recently, grazing impact of E. woodruffi on P. piscicida prey was higher Stoecker et al. (2000) added 5-chloromethylfluorescein than the impact on Cryptoperidiniopsis sp., while the E. -
Seven Scuticociliates (Protozoa, Ciliophora) from Alabama, USA, with Descriptions of Two Parasitic Species Isolated from a Freshwater Mussel Potamilus Purpuratus
European Journal of Taxonomy 249: 1–19 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.249 www.europeanjournaloftaxonomy.eu 2016 · Pan X. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:43278833-B695-4375-B1BD-E98C28A9E50E Seven scuticociliates (Protozoa, Ciliophora) from Alabama, USA, with descriptions of two parasitic species isolated from a freshwater mussel Potamilus purpuratus Xuming PAN 1,2 1 College of Life Science and Technology, Harbin Normal University, Harbin 150025, China. 2 School of Fisheries, Aquaculture & Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36849, USA. Email: [email protected] urn:lsid:zoobank.org:author:B438F4F6-95CD-4E3F-BD95-527616FC27C3 Abstract. Isolates of Mesanophrys cf. carcini Small & Lynn in Aescht, 2001 and Parauronema cf. longum Song, 1995 infected a freshwater mussel (bleufer, Potamilus purpuratus (Lamarck, 1819)) collected from Chewacla Creek, Auburn, Alabama, USA. Free-living specimens of Metanophrys similis (Song, Shang, Chen & Ma, 2002) 2002, Uronema marinum Dujardin, 1841, Uronemita fi lifi cum Kahl, 1931, Pleuronema setigerum Calkins, 1902 and Pseudocohnilembus hargisi Evans & Thompson, 1964, were collected from estuarine waters near Orange beach, Alabama. Based on observations of living and silver-impregnated cells, we provide redescriptions as well as comparisons with original descriptions for the seven species. We also comment on the geographic distributions of known populations of these aquatic ciliate species and provide a table reporting some aquatic scuticociliates of the eastern US Gulf Coast. Keywords. Ciliates, scuticociliates, morphology, freshwater mussel, Alabama, USA. Pan X. 2016. Seven scuticociliates (Protozoa, Ciliophora) from Alabama, USA, with descriptions of two parasitic species isolated from a freshwater mussel Potamilus purpuratus. -
Scuticociliate Infection and Pathology in Cultured Turbot Scophthalmus Maximus from the North of Portugal
DISEASES OF AQUATIC ORGANISMS Vol. 74: 249–253, 2007 Published March 13 Dis Aquat Org NOTE Scuticociliate infection and pathology in cultured turbot Scophthalmus maximus from the north of Portugal Miguel Filipe Ramos1, Ana Rita Costa2, Teresa Barandela2, Aurélia Saraiva1, 3, Pedro N. Rodrigues2, 4,* 1CIIMAR (Centro Interdisciplinar de Investigação Marinha e Ambiental), Rua dos Bragas, 289, 4050-123 Porto, Portugal 2ICBAS (Instituto de Ciências Biomédicas Abel Salazar), Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal 3FCUP (Faculdade de Ciências da Universidade de Porto), Praça Gomes Teixeira, 4099-002 Porto, Portugal 4IBMC (Instituto de Biologia Molecular e Celular), Rua do Campo Alegre, 823, 4150-180 Porto, Portugal ABSTRACT: During the years 2004 and 2005 high mortalities in turbot Scophthalmus maximus (L.) from a fish farm in the north of Portugal were observed. Moribund fish showed darkening of the ven- tral skin, reddening of the fin bases and distended abdominal cavities caused by the accumulation of ascitic fluid. Ciliates were detected in fresh mounts from skin, gill and ascitic fluid. Histological examination revealed hyperplasia and necrosis of the gills, epidermis, dermis and muscular tissue. An inflammatory response was never observed. The ciliates were not identified to species level, but the morphological characteristics revealed by light and electronic scanning microscopes indicated that these ciliates belonged to the order Philasterida. To our knowledge this is the first report of the occurrence of epizootic disease outbreaks caused by scuticociliates in marine fish farms in Portugal. KEY WORDS: Philasterida · Scuticociliatia · Histophagous parasite · Scophthalmus maximus · Turbot · Fish farm Resale or republication not permitted without written consent of the publisher INTRODUCTION litis; these changes are associated with the softening and liquefaction of brain tissues (Iglesias et al. -
Disease of Aquatic Organisms 86:163
Vol. 86: 163–167, 2009 DISEASES OF AQUATIC ORGANISMS Published September 23 doi: 10.3354/dao02113 Dis Aquat Org NOTE DNA identification of ciliates associated with disease outbreaks in a New Zealand marine fish hatchery 1, 1 1 1 2 P. J. Smith *, S. M. McVeagh , D. Hulston , S. A. Anderson , Y. Gublin 1National Institute of Water and Atmospheric Research (NIWA), Private Bag 14901, Wellington, New Zealand 2NIWA, Station Road, Ruakaka, Northland 0166, New Zealand ABSTRACT: Ciliates associated with fish mortalities in a New Zealand hatchery were identified by DNA sequencing of the small subunit ribosomal RNA gene (SSU rRNA). Tissue samples were taken from lesions and gill tissues on freshly dead juvenile groper, brain tissue from adult kingfish, and from ciliate cultures and rotifers derived from fish mortality events between January 2007 and March 2009. Different mortality events were characterized by either of 2 ciliate species, Uronema marinum and Miamiensis avidus. A third ciliate, Mesanophrys carcini, was identified in rotifers used as food for fish larvae. Sequencing part of the SSU rRNA provided a rapid tool for the identification and mon- itoring of scuticociliates in the hatchery and allowed the first identification of these species in farmed fish in New Zealand. KEY WORDS: Small subunit ribosomal RNA gene · Scuticociliatosis · Uronema marinum · Miamiensis avidus · Mesanophrys carcini · Groper · Polyprion oxygeneios · Kingfish · Seriola lalandi Resale or republication not permitted without written consent of the publisher INTRODUCTION of ciliate pathogens in fin-fish farms (Kim et al. 2004a,b, Jung et al. 2007) and in crustacea (Ragan et The scuticociliates are major pathogens in marine al. -
Scrippsiella Trochoidea (F.Stein) A.R.Loebl
MOLECULAR DIVERSITY AND PHYLOGENY OF THE CALCAREOUS DINOPHYTES (THORACOSPHAERACEAE, PERIDINIALES) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie der Ludwig-Maximilians-Universität München zur Begutachtung vorgelegt von Sylvia Söhner München, im Februar 2013 Erster Gutachter: PD Dr. Marc Gottschling Zweiter Gutachter: Prof. Dr. Susanne Renner Tag der mündlichen Prüfung: 06. Juni 2013 “IF THERE IS LIFE ON MARS, IT MAY BE DISAPPOINTINGLY ORDINARY COMPARED TO SOME BIZARRE EARTHLINGS.” Geoff McFadden 1999, NATURE 1 !"#$%&'(&)'*!%*!+! +"!,-"!'-.&/%)$"-"!0'* 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 2& ")3*'4$%/5%6%*!+1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 7! 8,#$0)"!0'*+&9&6"*,+)-08!+ 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 :! 5%*%-"$&0*!-'/,)!0'* 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ;! "#$!%"&'(!)*+&,!-!"#$!'./+,#(0$1$!2! './+,#(0$1$!-!3+*,#+4+).014!1/'!3+4$0&41*!041%%.5.01".+/! 67! './+,#(0$1$!-!/&"*.".+/!1/'!4.5$%"(4$! 68! ./!5+0&%!-!"#$!"#+*10+%,#1$*10$1$! 69! "#+*10+%,#1$*10$1$!-!5+%%.4!1/'!$:"1/"!'.;$*%."(! 6<! 3+4$0&41*!,#(4+)$/(!-!0#144$/)$!1/'!0#1/0$! 6=! 1.3%!+5!"#$!"#$%.%! 62! /0+),++0'* 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<=! -
One Freshwater Species of the Genus Cyclidium, Cyclidium Sinicum Spec. Nov. (Protozoa; Ciliophora), with an Improved Diagnosis of the Genus Cyclidium
NOTE Pan et al., Int J Syst Evol Microbiol 2017;67:557–564 DOI 10.1099/ijsem.0.001642 One freshwater species of the genus Cyclidium, Cyclidium sinicum spec. nov. (Protozoa; Ciliophora), with an improved diagnosis of the genus Cyclidium Xuming Pan,1 Chengdong Liang,1 Chundi Wang,2 Alan Warren,3 Weijie Mu,1 Hui Chen,1 Lijie Yu1 and Ying Chen1,* Abstract The morphology and infraciliature of one freshwater ciliate, Cyclidium sinicum spec. nov., isolated from a farmland pond in Harbin, northeastern China, was investigated using living observation and silver staining methods. Cyclidium sinicum spec. nov. could be distinguished by the following features: body approximately 20–25Â10–15 µmin vivo; buccal field about 45– 50 % of body length; 11 somatic kineties; somatic kinety n terminating sub-caudally; two macronuclei and one micronucleus; M1 almost as long as M2; M2 triangle-shaped. The genus Cyclidium is re-defined as follows: body outline usually oval or elliptical, ventral side concave, dorsal side convex; single caudal cilium; contractile vacuole posterior terminal; adoral membranelles usually not separated; paroral membrane ‘L’-shaped, with anterior end terminating at the level of anterior end of M1; somatic kineties longitudinally arranged and continuous. Phylogenetic trees based on the SSU rDNA sequences showed that C. sinicum spec. nov. clusters with the type species, Cyclidium glaucoma, with full support. Cyclidium is not monophyletic with members of the clade of Cyclidium+Protocyclidium+Ancistrum+Boveria. INTRODUCTION During a survey of the freshwater ciliate fauna in northeast- ern China, one scuticociliates was isolated and observed in Scuticociliates are common inhabitants of freshwater, brack- vivo and after silver staining.