The Continuum Hypothesis: Independence and Truth Value
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Sets and Pluralities
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Gustavo Fernández Díez Sets and Pluralities Revista Colombiana de Filosofía de la Ciencia, vol. IX, núm. 19, 2009, pp. 5-22, Universidad El Bosque Colombia Available in: http://www.redalyc.org/articulo.oa?id=41418349001 Revista Colombiana de Filosofía de la Ciencia, ISSN (Printed Version): 0124-4620 [email protected] Universidad El Bosque Colombia How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Sets and Pluralities1 Gustavo Fernández Díez2 Resumen En este artículo estudio el trasfondo filosófico del sistema de lógica conocido como “lógica plural”, o “lógica de cuantificadores plurales”, de aparición relativamente reciente (y en alza notable en los últimos años). En particular, comparo la noción de “conjunto” emanada de la teoría axiomática de conjuntos, con la noción de “plura- lidad” que se encuentra detrás de este nuevo sistema. Mi conclusión es que los dos son completamente diferentes en su alcance y sus límites, y que la diferencia proviene de las diferentes motivaciones que han dado lugar a cada uno. Mientras que la teoría de conjuntos es una teoría genuinamente matemática, que tiene el interés matemático como ingrediente principal, la lógica plural ha aparecido como respuesta a considera- ciones lingüísticas, relacionadas con la estructura lógica de los enunciados plurales del inglés y el resto de los lenguajes naturales. Palabras clave: conjunto, teoría de conjuntos, pluralidad, cuantificación plural, lógica plural. Abstract In this paper I study the philosophical background of the relatively recent (and in the last few years increasingly flourishing) system of logic called “plural logic”, or “logic of plural quantifiers”. -
Sets, Functions
Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: • real numbers, • complex numbers, C • integers, • All students in our class Defining Sets Sets can be defined directly: e.g. {1,2,4,8,16,32,…}, {CSC1130,CSC2110,…} Order, number of occurence are not important. e.g. {A,B,C} = {C,B,A} = {A,A,B,C,B} A set can be an element of another set. {1,{2},{3,{4}}} Defining Sets by Predicates The set of elements, x, in A such that P(x) is true. {}x APx| ( ) The set of prime numbers: Commonly Used Sets • N = {0, 1, 2, 3, …}, the set of natural numbers • Z = {…, -2, -1, 0, 1, 2, …}, the set of integers • Z+ = {1, 2, 3, …}, the set of positive integers • Q = {p/q | p Z, q Z, and q ≠ 0}, the set of rational numbers • R, the set of real numbers Special Sets • Empty Set (null set): a set that has no elements, denoted by ф or {}. • Example: The set of all positive integers that are greater than their squares is an empty set. • Singleton set: a set with one element • Compare: ф and {ф} – Ф: an empty set. Think of this as an empty folder – {ф}: a set with one element. The element is an empty set. Think of this as an folder with an empty folder in it. Venn Diagrams • Represent sets graphically • The universal set U, which contains all the objects under consideration, is represented by a rectangle. -
The Universal Finite Set 3
THE UNIVERSAL FINITE SET JOEL DAVID HAMKINS AND W. HUGH WOODIN Abstract. We define a certain finite set in set theory { x | ϕ(x) } and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition ϕ has complexity Σ2, so that any affirmative instance of it ϕ(x) is verified in any sufficiently large rank-initial segment of the universe Vθ ; the set is empty in any transitive model and others; and if ϕ defines the set y in some countable model M of ZFC and y ⊆ z for some finite set z in M, then there is a top-extension of M to a model N in which ϕ defines the new set z. Thus, the set shows that no model of set theory can realize a maximal Σ2 theory with its natural number parameters, although this is possible without parameters. Using the universal finite set, we prove that the validities of top-extensional set-theoretic potentialism, the modal principles valid in the Kripke model of all countable models of set theory, each accessing its top-extensions, are precisely the assertions of S4. Furthermore, if ZFC is consistent, then there are models of ZFC realizing the top-extensional maximality principle. 1. Introduction The second author [Woo11] established the universal algorithm phenomenon, showing that there is a Turing machine program with a certain universal top- extension property in models of arithmetic. -
Arxiv:1804.02439V1
DATHEMATICS: A META-ISOMORPHIC VERSION OF ‘STANDARD’ MATHEMATICS BASED ON PROPER CLASSES DANNY ARLEN DE JESUS´ GOMEZ-RAM´ ´IREZ ABSTRACT. We show that the (typical) quantitative considerations about proper (as too big) and small classes are just tangential facts regarding the consistency of Zermelo-Fraenkel Set Theory with Choice. Effectively, we will construct a first-order logic theory D-ZFC (Dual theory of ZFC) strictly based on (a particular sub-collection of) proper classes with a corresponding spe- cial membership relation, such that ZFC and D-ZFC are meta-isomorphic frameworks (together with a more general dualization theorem). More specifically, for any standard formal definition, axiom and theorem that can be described and deduced in ZFC, there exists a corresponding ‘dual’ ver- sion in D-ZFC and vice versa. Finally, we prove the meta-fact that (classic) mathematics (i.e. theories grounded on ZFC) and dathematics (i.e. dual theories grounded on D-ZFC) are meta-isomorphic. This shows that proper classes are as suitable (primitive notions) as sets for building a foundational framework for mathematics. Mathematical Subject Classification (2010): 03B10, 03E99 Keywords: proper classes, NBG Set Theory, equiconsistency, meta-isomorphism. INTRODUCTION At the beginning of the twentieth century there was a particular interest among mathematicians and logicians in finding a general, coherent and con- sistent formal framework for mathematics. One of the main reasons for this was the discovery of paradoxes in Cantor’s Naive Set Theory and related sys- tems, e.g., Russell’s, Cantor’s, Burati-Forti’s, Richard’s, Berry’s and Grelling’s paradoxes [12], [4], [14], [3], [6] and [11]. -
Chapter I Set Theory
Chapter I Set Theory There is surely a piece of divinity in us, something that was before the elements, and owes no homage unto the sun. Sir Thomas Browne One of the benefits of mathematics comes from its ability to express a lot of information in very few symbols. Take a moment to consider the expression d sin( θ). dθ It encapsulates a large amount of information. The notation sin( θ) represents, for a right triangle with angle θ, the ratio of the opposite side to the hypotenuse. The differential operator d/dθ represents a limit, corresponding to a tangent line, and so forth. Similarly, sets are a convenient way to express a large amount of information. They give us a language we will find convenient in which to do mathematics. This is no accident, as much of modern mathematics can be expressed in terms of sets. 1 2 CHAPTER I. SET THEORY 1 Sets, subsets, and set operations 1.A What is a set? A set is simply a collection of objects. The objects in the set are called the elements . We often write down a set by listing its elements. For instance, the set S = 1, 2, 3 has three elements. Those elements are 1, 2, and 3. There is a special symbol,{ }, that we use to express the idea that an element belongs to a set. For instance, we∈ write 1 S to mean that “1 is an element of S.” For∈ the set S = 1, 2, 3 , we have 1 S, 2 S, and 3 S. -
Sets and Functions
Unit SF Sets and Functions Section 1: Sets The basic concepts of sets and functions are topics covered in high school math courses and are thus familiar to most university students. We take the intuitive point of view that sets are unordered collections of objects. We first recall some standard terminology and notation associated with sets. When we speak about sets, we usually have a “universal set” U in mind, to which the various sets of our discourse belong. Definition 1 (Set notation) A set is an unordered collection of distinct objects. We use the notation x ∈ S to mean “x is an element of S” and x∈ / S to mean “x is not an element of S.” Given two subsets (subcollections) of U, X and Y , we say “X is a subset of Y ,” written X ⊆ Y , if x ∈ X implies that x ∈ Y . Alternatively, we may say that “Y is a superset of X.” X ⊆ Y and Y ⊇ X mean the same thing. We say that two subsets X and Y of U are equal if X ⊆ Y and Y ⊆ X. We use braces to designate sets when we wish to specify or describe them in terms of their elements: A = {a, b, c}, B = {2, 4, 6,...}. A set with k elements is called a k-set or set with cardinality k. The cardinality of a set A is denoted by |A|. Since a set is an unordered collection of distinct objects, the following all describe the same 3-element set {a, b, c} = {b, a, c} = {c, b, a} = {a, b, b, c, b}. -
Set Theory for Computer Science by Prof Glynn Winskel
Notes on Set Theory for Computer Science by Prof Glynn Winskel c Glynn Winskel 2 i A brief history of sets A set is an unordered collection of objects, and as such a set is determined by the objects it contains. Before the 19th century it was uncommon to think of sets as completed objects in their own right. Mathematicians were familiar with properties such as being a natural number, or being irrational, but it was rare to think of say the collection of rational numbers as itself an object. (There were exceptions. From Euclid mathe- maticians were used to thinking of geometric objects such as lines and planes and spheres which we might today identify with their sets of points.) In the mid 19th century there was a renaissance in Logic. For thousands of years, since the time of Aristotle and before, learned individuals had been familiar with syllogisms as patterns of legitimate reasoning, for example: All men are mortal. Socrates is a man. Therefore Socrates is mortal. But syllogisms involved descriptions of properties. The idea of pioneers such as Boole was to assign a meaning as a set to these descriptions. For example, the two descriptions \is a man" and \is a male homo sapiens" both describe the same set, viz. the set of all men. It was this objectification of meaning, understanding properties as sets, that led to a rebirth of Logic and Mathematics in the 19th century. Cantor took the idea of set to a revolutionary level, unveiling its true power. By inventing a notion of size of set he was able compare different forms of infinity and, almost incidentally, to shortcut several traditional mathematical arguments. -
1. Life • Father, Georg Waldemar Cantor, Born in Den- Mark, Successful Merchant, and Stock Broker in St Petersburg
Georg Cantor and Set Theory 1. Life • Father, Georg Waldemar Cantor, born in Den- mark, successful merchant, and stock broker in St Petersburg. Mother, Maria Anna B¨ohm, was Russian. • In 1856, because of father's poor health, family moved to Germany. • Georg graduated from high school in 1860 with an outstanding report, which mentioned in par- ticular his exceptional skills in mathematics, in particular trigonometry. • “H¨ohereGewerbeschule" in Darmstadt from 1860, Polytechnic of Z¨urich in 1862. Cantor's father wanted Cantor to become:- ... a shining star in the engineering firmament. • 1862: Cantor got his father's permission to study mathematics. • Father died. 1863 Cantor moved to the Uni- versity of Berlin where he attended lectures by Weierstrass, Kummer and Kronecker. • Dissertation on number theory in 1867. • Teacher in a girls' school. • Professor at Halle in 1872. • Friendship with Richard Dedekind. 2 • 1874: marriage with Vally Guttmann, a friend of his sister. Honeymoon in Interlaken in Switzer- land where Cantor spent much time in mathe- matical discussions with Dedekind. • Starting in 1877 papers in set theory. \Grund- lagen einer allgemeinen Mannigfaltigkeitslehre". Theory of sets not finding the acceptance hoped for. • May 1884 Cantor had the first recorded attack of depression. He recovered after a few weeks but now seemed less confident. • Turned toward philosophy and tried to show that Francis Bacon wrote the Shakespeare plays. • International Congress of Mathematicians 1897. Hurwitz openly expressed his great admiration of Cantor and proclaimed him as one by whom the theory of functions has been enriched. Jacques Hadamard expressed his opinion that the no- tions of the theory of sets were known and in- dispensable instruments. -
Church's Set Theory with a Universal
Church’s Set Theory with a Universal Set Thomas Forster Contents 1 Rieger-Bernays permutation models 2 2 Church-Oswald models 6 2.1 Applications of the technique . 9 2.1.1 Models of NF2 ........................ 9 2.1.2 An elementary example . 11 2.1.3 P-extending models of Zermelo to models of NFO . 14 2.1.4 Church’s Model . 17 2.2 Wellfounded sets in CO-structures . 20 3 Open problems 26 3.1 The Axioms of Sumset and Power set . 26 3.2 Natural strengthenings of theorem 22 . 26 3.3 Axiomatisability . 27 3.4 Constructive CO constructions . 27 3.5 Schr¨oder-Bernstein . 28 3.6 Mitchell’s set theory . 29 3.7 Extensional quotients? . 29 Abstract A detailed and fairly elementary introduction is given to the techniques used by Church to prove the consistency of his set theory with a universal set by constructing models of it from models of ZF. The construction is explained and some general facts about it proved. Introduction In 1974 Alonzo Church and Urs Oswald simultaneously and independently lit upon a refinement of Rieger-Bernays permutation models which enabled them to give elementary proofs of consistency for some set theories with a universal set. My own interest began much later, when I made the aquaintance of Flash Sheridan, a former student of Church’s who was then writing an Oxford D.Phil. 1 thesis on Church’s work in this area. I am greatly endebted to Flash for kindling my interest in this engaging bywater, and for showing me some relevant and (even now) unpublished material. -
Consistent Set Theories with Universal Set
IV CONSISTENT SET THEORIES WITH UNIVERSAL SET On occasion of the 1971 Berkeley symposium celebrating Alfred Tarski’s achievements in logic and algebra Alonzo Church, who otherwise did not work much in set theory, presented a new system of set theory (Church 1974). Church saw the two basic assumptions of post-naïve set theories in a restriction of comprehension to a form of separation (as in ZFC) and in a limitation of size (as in NBG). Similar to the criticism levelled against Limitation of Size in chapter II above Church regarded Limitation of Size as ad hoc (against the antinomies) and ‘never well supported’ as it proclaims a stopping point of further structures although classes are introduced (in NBG and MK) as collections, which can be quantified over. Church’s set theory – let us call it “CST” here – follows ZFC in its idea of separation, but allows for collections that are ‘large’ in a way that even the larger transfinite sets of ZFC are not. CST does not introduce classes, but introduces a distinction within the area of sets. It allows even for U = {x | x=x}. CST distinguishes between ‘low sets’, which have a 1:1-relation to a well- founded set, ‘high sets’, which are (absolute) complements of low sets and ‘intermediate’ sets which are neither. These labels pertain to the cardinality of sets. High sets are in 1:1-correspondence to the universal set U, low sets never. Because of the CST version of the Axiom of Choice for a set x which is not low every ordinal has a 1:1-relation to some subset of x. -
What Is Mathematics: Gödel's Theorem and Around. by Karlis
1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27 -
Section 6.1 Sets and Set Operations
Section 6.1 Sets and Set Operations Sets A set is a well-defined collection of objects. The objects in this collection are called elements of the set. If a is an element of the set A then we write a A,ifa is not an element of a set A,thenwe 2 write a/A. 2 Roster and Set-Builder Notation Roster notation will be used most commonly in this class, and consists of listing the elements of a set in between curly braces. Set-builder notation is when a rule is used to define a definite property that an object must have in order to be in the set. 1. Let A be the set of all letters in the English alphabet. (a) Write A in roster notation and in set-builder notation. (b) Is the greek letter β an element of A? Set Equality Two sets A and B are equal,writtenA = B,ifandonlyiftheyhaveexactlythe same elements. 2. Let A = a, e, l, t, r . Which of the following sets are equal to A?(Chooseallthatapply.) { } (a) x xisaletterofthewordlatter { | } (b) x xisaletterofthewordlater { | } (c) x xisaletterofthewordlate { | } (d) x xisaletterofthewordrated { | } (e) x xisaletterofthewordrelate { | } Subset If every element of a set A is also an element of a set B,thenwesaythatA is a subset of B and we write A B. ✓ Note: If we write A B,thenthismeansthatA is a proper subset of B,withoutthepossibility ⇢ of equality. Therefore, for any set A, A is NOT a proper subset of itself. 3. If A = u, v, y, z and B = x, y, z ,determinewhetherthefollowingstatementsaretrueorfalse.