Section 6.1 Sets and Set Operations

Total Page:16

File Type:pdf, Size:1020Kb

Section 6.1 Sets and Set Operations Section 6.1 Sets and Set Operations Sets A set is a well-defined collection of objects. The objects in this collection are called elements of the set. If a is an element of the set A then we write a A,ifa is not an element of a set A,thenwe 2 write a/A. 2 Roster and Set-Builder Notation Roster notation will be used most commonly in this class, and consists of listing the elements of a set in between curly braces. Set-builder notation is when a rule is used to define a definite property that an object must have in order to be in the set. 1. Let A be the set of all letters in the English alphabet. (a) Write A in roster notation and in set-builder notation. (b) Is the greek letter β an element of A? Set Equality Two sets A and B are equal,writtenA = B,ifandonlyiftheyhaveexactlythe same elements. 2. Let A = a, e, l, t, r . Which of the following sets are equal to A?(Chooseallthatapply.) { } (a) x xisaletterofthewordlatter { | } (b) x xisaletterofthewordlater { | } (c) x xisaletterofthewordlate { | } (d) x xisaletterofthewordrated { | } (e) x xisaletterofthewordrelate { | } Subset If every element of a set A is also an element of a set B,thenwesaythatA is a subset of B and we write A B. ✓ Note: If we write A B,thenthismeansthatA is a proper subset of B,withoutthepossibility ⇢ of equality. Therefore, for any set A, A is NOT a proper subset of itself. 3. If A = u, v, y, z and B = x, y, z ,determinewhetherthefollowingstatementsaretrueorfalse. { } { } (a) x, y B 2 (b) x, y, z B { }⇢ (c) u, w / A { } 2 (d) x, w A { }✓ The Empty and Universal Set The set that contains no elements is called the empty set and the symbol for the empty set is ?.Thesetofallelementsunderdiscussioniscalledthe universal set and is usually denoted by U. Note: The empty set is a subset of every set. That is, ? A where A is any set. ✓ Set Operations Set Union Let A and B be sets. The union of A and B,writtenA B,isthesetofallelements [ that belong to either A or B or both. This is like adding the two sets. Below is a Venn Diagram illustrating the set A B. [ A B [ A B 2 Fall 2017, Maya Johnson Set Intersection Let A and B be sets. The intersection of A and B,writtenA B,istheset \ of all elements that belong to both A and B. This is what the two sets have in common. Below is a venn diagram illustrating the set A B. \ A B \ A B Complement of a Set If U is a universal set and A is a subset of U,thenthesetofallelements in U that are not in A is called the complement of A and is denoted Ac.Belowarevenndiagrams illustrating the sets Ac and Bc. Ac Bc 4. If A and B are two subsets of a universal set U,illustratethesetsAc B and A Bc using venn \ \ diagrams. 3 Fall 2017, Maya Johnson Set Complementation If U is a universal set and A is a subset of U,then a. U c = ? b. ?c = U c. (Ac)c = A d. A Ac = U e. A Ac = ? [ \ Properties of Set Operations Let U be a universal set. If A, B,andC are arbitrary subsets of U,then A B = B A Commutative law for union [ [ A B = B A Commutative law for intersection \ \ A (B C)=(A B) C Associative law for union [ [ [ [ A (B C)=(A B) C Associative law for intersection \ \ \ \ A (B C)=(A B) (A C) Distributive law for union [ \ [ \ [ A (B C)=(A B) (A C) Distributive law for intersection \ [ \ [ \ De Morgan’s Laws Let A and B be sets. Then (A B)c = Ac Bc [ \ (A B)c = Ac Bc \ [ 5. Write venn diagrams to represent each of the following sets. (a) A Bc [ (b) Ac Bc \ 4 Fall 2017, Maya Johnson 6. Write venn diagrams to represent each of the following sets. (a) A B Cc \ \ (b) Ac B C [ [ Disjoint Sets Two sets A and B are disjoint if and only if they have no elements in common. That is, if A B = ?. \ 5 Fall 2017, Maya Johnson 7. Let U denote the set of all senators in Congress and let D= xisinU xisaDemocrat { | } R= xisinU xisaRepublican { | } F= xisinU xisafemale { | } L= xisinU xisalawyer . { | } Write the set that represents each statement. (a) The set of all Republicans who are female or are lawyers. (b) The set of all senators who are not Republicans or are lawyers Are the sets in parts (a) and (b) disjoint? 6 Fall 2017, Maya Johnson 8. Let U = -9, -6, -1, 2, 5, 7, 11, 13, 17, 19 , A = -9, -1, 5, 11, 17 , B = -6, 2, 7, 13, 19 ,andC { } { } { } = -9, -6, 2, 5, 13, 17 . Find each set using roster notation. { } (a) (A B) C \ [ (b) (A B C)c [ [ (c) (A B C)c \ \ -91-6,42/5,711,13174 7 Fall 2017, Maya Johnson Section 6.2 The Number of Elements in a Finite Set Counting Problems If a problem requires knowing the number of elements in a given set, then we call such a problem a Counting problem. Number of Elements in A If A is a set, then n(A)isthenumberofelementsinthesetA.IfA is a finite set, then we can simply count the number of elements in A to find n(A). Note: If U is a universal set and A is a subset of U,thenn(Ac)=n(U) n(A) − 1. Let the universal set U = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 . Find the following. { } (a) n(U) (b) n(Ac), where A = x xisanevennumberfrom1to10 { | } (c) n(B), where B = 1, 3, 9 { } (d) n(?) Addition Rule for Sets: Very Useful Formula If A and B are finite sets then n(A B)=n(A)+n(B) n(A B) [ − \ 2. If n(B)=13,n(A B)=24,andn(A B)=6,findn(A). [ \ 8 Fall 2017, Maya Johnson 3. In a survey of 272 people, a pet food manufacturer found that 69 owned a dog but not a cat, 28 owned a cat but not a dog, and 73 owned neither a dog or a cat. (a) How many owned both a cat and a dog? (b) How many owned a dog? Number of Subsets Suppose A is a set and that n(A)=m,wherem is any nonnegative integer. Then the number of subsets of A is 2m.Thenumberofproper subsets of A is 2m 1. − 4. Let A and B be subsets of a universal set U and suppose n(U)=48,n(A)=13,n(B)=23,and n(A B) = 8. Compute: \ (a) n(Ac B) \ (b) n(Bc) (c) n(Ac Bc) \ (d) How many subsets does A have? (e) How many proper subsets does A have? 9 Fall 2017, Maya Johnson 5. Let A, B,andC be sets in a universal set U.Wearegivenn(U)=66,n(A)=32,n(B)=33, n(C)=33,n(A B)=16,n(A C)=10,n(B C)=18,n(A B Cc) = 9. Find the following \ \ \ \ \ values. (a) n((A B C)c) [ [ (b) n(Ac Bc C) \ \ 10 Fall 2017, Maya Johnson 6. Use the following information to determine the number of people in each region of the Venn Diagram. Agroupof295studentswereaskedwhichofthesesportstheyparticipatedinduringhighschool. 44 students participated in all of these sports. 87 students participated in basketball and track. 39 students participated in basketball and tennis but not track. 79 students participated in track but not tennis. 155 students participated in basketball. 142 students did not participate in tennis. 103 students participated in exactly one sport. a = b = 32 Track Tennis c = a b c d = e d f e = g f = Basketball h g = h = ;I!IhtIn÷IuAIMEE . * = 32 11 Fall 2017, Maya Johnson Section 6.3 The Multiplication Principle The Multiplication Principle Suppose there are m ways to do a task T and there are n ways to do a task T .Thentherearem n 1 2 · ways of doing the task T1 followed by the task T2. 1. Four commuter trains and two express buses depart from city A to City B in the morning, and five commuter trains and five express buses operate on the return trip in the evening (from City B to City A). In how many ways can a commuter from City A to City B complete a daily round trip via bus and/or train? Generalized Multiplication Principle Suppose a task T1 can be done in N1 ways, a task T2 can be done in N2 ways,...,and, finally, a task Tm can be done in Nm ways. Then the number of ways of doing the tasks T1,T2,...,Tm in succession is given by the product N N N . 1 2 ··· m 2. A new state employee is o↵ered a choice of eight basic health plans, five dental plans, and two vision care plans. How many di↵erent health-care plans are there to choose from if one plan is selected from each category? 3. In recent years, a state has issued license plates using a combination of two letters of the alphabet followed by three digits, followed by another two letters of the alphabet. How many di↵erent license plates can be issued using this configuration? 12 Fall 2017, Maya Johnson 4. Complete the following. (a) How many seven-digit telephone numbers are possible if the first digit must be nonzero? (b) How many international direct-dialing numbers for calls within the United States and Canada are possible if each number consists of a 1 plus a three-digit area code (the first digit of which must be nonzero) and a number of the type described in part (a)? 5.
Recommended publications
  • VENN DIAGRAM Is a Graphic Organizer That Compares and Contrasts Two (Or More) Ideas
    InformationVenn Technology Diagram Solutions ABOUT THE STRATEGY A VENN DIAGRAM is a graphic organizer that compares and contrasts two (or more) ideas. Overlapping circles represent how ideas are similar (the inner circle) and different (the outer circles). It is used after reading a text(s) where two (or more) ideas are being compared and contrasted. This strategy helps students identify Wisconsin similarities and differences between ideas. State Standards Reading:INTERNET SECURITYLiterature IMPLEMENTATION OF THE STRATEGY •Sit Integration amet, consec tetuer of Establish the purpose of the Venn Diagram. adipiscingKnowledge elit, sed diam and Discuss two (or more) ideas / texts, brainstorming characteristics of each of the nonummy nibh euismod tincidunt Ideas ideas / texts. ut laoreet dolore magna aliquam. Provide students with a Venn diagram and model how to use it, using two (or more) ideas / class texts and a think aloud to illustrate your thinking; scaffold as NETWORKGrade PROTECTION Level needed. Ut wisi enim adK- minim5 veniam, After students have examined two (or more) ideas or read two (or more) texts, quis nostrud exerci tation have them complete the Venn diagram. Ask students leading questions for each ullamcorper.Et iusto odio idea: What two (or more) ideas are we comparing and contrasting? How are the dignissimPurpose qui blandit ideas similar? How are the ideas different? Usepraeseptatum with studentszzril delenit Have students synthesize their analysis of the two (or more) ideas / texts, toaugue support duis dolore te feugait summarizing the differences and similarities. comprehension:nulla adipiscing elit, sed diam identifynonummy nibh. similarities MEASURING PROGRESS and differences Teacher observation betweenPERSONAL ideas FIREWALLS Conferring Tincidunt ut laoreet dolore Student journaling magnaWhen aliquam toerat volutUse pat.
    [Show full text]
  • The Probability Set-Up.Pdf
    CHAPTER 2 The probability set-up 2.1. Basic theory of probability We will have a sample space, denoted by S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample space would be all possible pairs made up of the numbers one through six. An event is a subset of S. Another example is to toss a coin 2 times, and let S = fHH;HT;TH;TT g; or to let S be the possible orders in which 5 horses nish in a horse race; or S the possible prices of some stock at closing time today; or S = [0; 1); the age at which someone dies; or S the points in a circle, the possible places a dart can hit. We should also keep in mind that the same setting can be described using dierent sample set. For example, in two solutions in Example 1.30 we used two dierent sample sets. 2.1.1. Sets. We start by describing elementary operations on sets. By a set we mean a collection of distinct objects called elements of the set, and we consider a set as an object in its own right. Set operations Suppose S is a set. We say that A ⊂ S, that is, A is a subset of S if every element in A is contained in S; A [ B is the union of sets A ⊂ S and B ⊂ S and denotes the points of S that are in A or B or both; A \ B is the intersection of sets A ⊂ S and B ⊂ S and is the set of points that are in both A and B; ; denotes the empty set; Ac is the complement of A, that is, the points in S that are not in A.
    [Show full text]
  • Basic Structures: Sets, Functions, Sequences, and Sums 2-2
    CHAPTER Basic Structures: Sets, Functions, 2 Sequences, and Sums 2.1 Sets uch of discrete mathematics is devoted to the study of discrete structures, used to represent discrete objects. Many important discrete structures are built using sets, which 2.2 Set Operations M are collections of objects. Among the discrete structures built from sets are combinations, 2.3 Functions unordered collections of objects used extensively in counting; relations, sets of ordered pairs that represent relationships between objects; graphs, sets of vertices and edges that connect 2.4 Sequences and vertices; and finite state machines, used to model computing machines. These are some of the Summations topics we will study in later chapters. The concept of a function is extremely important in discrete mathematics. A function assigns to each element of a set exactly one element of a set. Functions play important roles throughout discrete mathematics. They are used to represent the computational complexity of algorithms, to study the size of sets, to count objects, and in a myriad of other ways. Useful structures such as sequences and strings are special types of functions. In this chapter, we will introduce the notion of a sequence, which represents ordered lists of elements. We will introduce some important types of sequences, and we will address the problem of identifying a pattern for the terms of a sequence from its first few terms. Using the notion of a sequence, we will define what it means for a set to be countable, namely, that we can list all the elements of the set in a sequence.
    [Show full text]
  • A Diagrammatic Inference System with Euler Circles ∗
    A Diagrammatic Inference System with Euler Circles ∗ Koji Mineshima, Mitsuhiro Okada, and Ryo Takemura Department of Philosophy, Keio University, Japan. fminesima,mitsu,[email protected] Abstract Proof-theory has traditionally been developed based on linguistic (symbolic) represen- tations of logical proofs. Recently, however, logical reasoning based on diagrammatic or graphical representations has been investigated by logicians. Euler diagrams were intro- duced in the 18th century by Euler [1768]. But it is quite recent (more precisely, in the 1990s) that logicians started to study them from a formal logical viewpoint. We propose a novel approach to the formalization of Euler diagrammatic reasoning, in which diagrams are defined not in terms of regions as in the standard approach, but in terms of topo- logical relations between diagrammatic objects. We formalize the unification rule, which plays a central role in Euler diagrammatic reasoning, in a style of natural deduction. We prove the soundness and completeness theorems with respect to a formal set-theoretical semantics. We also investigate structure of diagrammatic proofs and prove a normal form theorem. 1 Introduction Euler diagrams were introduced by Euler [3] to illustrate syllogistic reasoning. In Euler dia- grams, logical relations among the terms of a syllogism are simply represented by topological relations among circles. For example, the universal categorical statements of the forms All A are B and No A are B are represented by the inclusion and the exclusion relations between circles, respectively, as seen in Fig. 1. Given two Euler diagrams which represent the premises of a syllogism, the syllogistic inference can be naturally replaced by the task of manipulating the diagrams, in particular of unifying the diagrams and extracting information from them.
    [Show full text]
  • Sets, Functions
    Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: • real numbers, • complex numbers, C • integers, • All students in our class Defining Sets Sets can be defined directly: e.g. {1,2,4,8,16,32,…}, {CSC1130,CSC2110,…} Order, number of occurence are not important. e.g. {A,B,C} = {C,B,A} = {A,A,B,C,B} A set can be an element of another set. {1,{2},{3,{4}}} Defining Sets by Predicates The set of elements, x, in A such that P(x) is true. {}x APx| ( ) The set of prime numbers: Commonly Used Sets • N = {0, 1, 2, 3, …}, the set of natural numbers • Z = {…, -2, -1, 0, 1, 2, …}, the set of integers • Z+ = {1, 2, 3, …}, the set of positive integers • Q = {p/q | p Z, q Z, and q ≠ 0}, the set of rational numbers • R, the set of real numbers Special Sets • Empty Set (null set): a set that has no elements, denoted by ф or {}. • Example: The set of all positive integers that are greater than their squares is an empty set. • Singleton set: a set with one element • Compare: ф and {ф} – Ф: an empty set. Think of this as an empty folder – {ф}: a set with one element. The element is an empty set. Think of this as an folder with an empty folder in it. Venn Diagrams • Represent sets graphically • The universal set U, which contains all the objects under consideration, is represented by a rectangle.
    [Show full text]
  • Fast and Private Computation of Cardinality of Set Intersection and Union
    Fast and Private Computation of Cardinality of Set Intersection and Union Emiliano De Cristofaroy, Paolo Gastiz, and Gene Tsudikz yPARC zUC Irvine Abstract. With massive amounts of electronic information stored, trans- ferred, and shared every day, legitimate needs for sensitive information must be reconciled with natural privacy concerns. This motivates var- ious cryptographic techniques for privacy-preserving information shar- ing, such as Private Set Intersection (PSI) and Private Set Union (PSU). Such techniques involve two parties { client and server { each with a private input set. At the end, client learns the intersection (or union) of the two respective sets, while server learns nothing. However, if desired functionality is private computation of cardinality rather than contents, of set intersection, PSI and PSU protocols are not appropriate, as they yield too much information. In this paper, we design an efficient crypto- graphic protocol for Private Set Intersection Cardinality (PSI-CA) that yields only the size of set intersection, with security in the presence of both semi-honest and malicious adversaries. To the best of our knowl- edge, it is the first protocol that achieves complexities linear in the size of input sets. We then show how the same protocol can be used to pri- vately compute set union cardinality. We also design an extension that supports authorization of client input. 1 Introduction Proliferation of, and growing reliance on, electronic information trigger the increase in the amount of sensitive data stored and processed in cyberspace. Consequently, there is a strong need for efficient cryptographic techniques that allow sharing information with privacy. Among these, Private Set Intersection (PSI) [11, 24, 14, 21, 15, 22, 9, 8, 18], and Private Set Union (PSU) [24, 15, 17, 12, 32] have attracted a lot of attention from the research community.
    [Show full text]
  • 1 Measurable Sets
    Math 4351, Fall 2018 Chapter 11 in Goldberg 1 Measurable Sets Our goal is to define what is meant by a measurable set E ⊆ [a; b] ⊂ R and a measurable function f :[a; b] ! R. We defined the length of an open set and a closed set, denoted as jGj and jF j, e.g., j[a; b]j = b − a: We will use another notation for complement and the notation in the Goldberg text. Let Ec = [a; b] n E = [a; b] − E. Also, E1 n E2 = E1 − E2: Definitions: Let E ⊆ [a; b]. Outer measure of a set E: m(E) = inffjGj : for all G open and E ⊆ Gg. Inner measure of a set E: m(E) = supfjF j : for all F closed and F ⊆ Eg: 0 ≤ m(E) ≤ m(E). A set E is a measurable set if m(E) = m(E) and the measure of E is denoted as m(E). The symmetric difference of two sets E1 and E2 is defined as E1∆E2 = (E1 − E2) [ (E2 − E1): A set is called an Fσ set (F-sigma set) if it is a union of a countable number of closed sets. A set is called a Gδ set (G-delta set) if it is a countable intersection of open sets. Properties of Measurable Sets on [a; b]: 1. If E1 and E2 are subsets of [a; b] and E1 ⊆ E2, then m(E1) ≤ m(E2) and m(E1) ≤ m(E2). In addition, if E1 and E2 are measurable subsets of [a; b] and E1 ⊆ E2, then m(E1) ≤ m(E2).
    [Show full text]
  • The Universal Finite Set 3
    THE UNIVERSAL FINITE SET JOEL DAVID HAMKINS AND W. HUGH WOODIN Abstract. We define a certain finite set in set theory { x | ϕ(x) } and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition ϕ has complexity Σ2, so that any affirmative instance of it ϕ(x) is verified in any sufficiently large rank-initial segment of the universe Vθ ; the set is empty in any transitive model and others; and if ϕ defines the set y in some countable model M of ZFC and y ⊆ z for some finite set z in M, then there is a top-extension of M to a model N in which ϕ defines the new set z. Thus, the set shows that no model of set theory can realize a maximal Σ2 theory with its natural number parameters, although this is possible without parameters. Using the universal finite set, we prove that the validities of top-extensional set-theoretic potentialism, the modal principles valid in the Kripke model of all countable models of set theory, each accessing its top-extensions, are precisely the assertions of S4. Furthermore, if ZFC is consistent, then there are models of ZFC realizing the top-extensional maximality principle. 1. Introduction The second author [Woo11] established the universal algorithm phenomenon, showing that there is a Turing machine program with a certain universal top- extension property in models of arithmetic.
    [Show full text]
  • Julia's Efficient Algorithm for Subtyping Unions and Covariant
    Julia’s Efficient Algorithm for Subtyping Unions and Covariant Tuples Benjamin Chung Northeastern University, Boston, MA, USA [email protected] Francesco Zappa Nardelli Inria of Paris, Paris, France [email protected] Jan Vitek Northeastern University, Boston, MA, USA Czech Technical University in Prague, Czech Republic [email protected] Abstract The Julia programming language supports multiple dispatch and provides a rich type annotation language to specify method applicability. When multiple methods are applicable for a given call, Julia relies on subtyping between method signatures to pick the correct method to invoke. Julia’s subtyping algorithm is surprisingly complex, and determining whether it is correct remains an open question. In this paper, we focus on one piece of this problem: the interaction between union types and covariant tuples. Previous work normalized unions inside tuples to disjunctive normal form. However, this strategy has two drawbacks: complex type signatures induce space explosion, and interference between normalization and other features of Julia’s type system. In this paper, we describe the algorithm that Julia uses to compute subtyping between tuples and unions – an algorithm that is immune to space explosion and plays well with other features of the language. We prove this algorithm correct and complete against a semantic-subtyping denotational model in Coq. 2012 ACM Subject Classification Theory of computation → Type theory Keywords and phrases Type systems, Subtyping, Union types Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.24 Category Pearl Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at https://dx.doi.org/10.4230/DARTS.5.2.8 Acknowledgements The authors thank Jiahao Chen for starting us down the path of understanding Julia, and Jeff Bezanson for coming up with Julia’s subtyping algorithm.
    [Show full text]
  • Chapter I Set Theory
    Chapter I Set Theory There is surely a piece of divinity in us, something that was before the elements, and owes no homage unto the sun. Sir Thomas Browne One of the benefits of mathematics comes from its ability to express a lot of information in very few symbols. Take a moment to consider the expression d sin( θ). dθ It encapsulates a large amount of information. The notation sin( θ) represents, for a right triangle with angle θ, the ratio of the opposite side to the hypotenuse. The differential operator d/dθ represents a limit, corresponding to a tangent line, and so forth. Similarly, sets are a convenient way to express a large amount of information. They give us a language we will find convenient in which to do mathematics. This is no accident, as much of modern mathematics can be expressed in terms of sets. 1 2 CHAPTER I. SET THEORY 1 Sets, subsets, and set operations 1.A What is a set? A set is simply a collection of objects. The objects in the set are called the elements . We often write down a set by listing its elements. For instance, the set S = 1, 2, 3 has three elements. Those elements are 1, 2, and 3. There is a special symbol,{ }, that we use to express the idea that an element belongs to a set. For instance, we∈ write 1 S to mean that “1 is an element of S.” For∈ the set S = 1, 2, 3 , we have 1 S, 2 S, and 3 S.
    [Show full text]
  • Elements of Set Theory
    Elements of set theory April 1, 2014 ii Contents 1 Zermelo{Fraenkel axiomatization 1 1.1 Historical context . 1 1.2 The language of the theory . 3 1.3 The most basic axioms . 4 1.4 Axiom of Infinity . 4 1.5 Axiom schema of Comprehension . 5 1.6 Functions . 6 1.7 Axiom of Choice . 7 1.8 Axiom schema of Replacement . 9 1.9 Axiom of Regularity . 9 2 Basic notions 11 2.1 Transitive sets . 11 2.2 Von Neumann's natural numbers . 11 2.3 Finite and infinite sets . 15 2.4 Cardinality . 17 2.5 Countable and uncountable sets . 19 3 Ordinals 21 3.1 Basic definitions . 21 3.2 Transfinite induction and recursion . 25 3.3 Applications with choice . 26 3.4 Applications without choice . 29 3.5 Cardinal numbers . 31 4 Descriptive set theory 35 4.1 Rational and real numbers . 35 4.2 Topological spaces . 37 4.3 Polish spaces . 39 4.4 Borel sets . 43 4.5 Analytic sets . 46 4.6 Lebesgue's mistake . 48 iii iv CONTENTS 5 Formal logic 51 5.1 Propositional logic . 51 5.1.1 Propositional logic: syntax . 51 5.1.2 Propositional logic: semantics . 52 5.1.3 Propositional logic: completeness . 53 5.2 First order logic . 56 5.2.1 First order logic: syntax . 56 5.2.2 First order logic: semantics . 59 5.2.3 Completeness theorem . 60 6 Model theory 67 6.1 Basic notions . 67 6.2 Ultraproducts and nonstandard analysis . 68 6.3 Quantifier elimination and the real closed fields .
    [Show full text]
  • Sets and Functions
    Unit SF Sets and Functions Section 1: Sets The basic concepts of sets and functions are topics covered in high school math courses and are thus familiar to most university students. We take the intuitive point of view that sets are unordered collections of objects. We first recall some standard terminology and notation associated with sets. When we speak about sets, we usually have a “universal set” U in mind, to which the various sets of our discourse belong. Definition 1 (Set notation) A set is an unordered collection of distinct objects. We use the notation x ∈ S to mean “x is an element of S” and x∈ / S to mean “x is not an element of S.” Given two subsets (subcollections) of U, X and Y , we say “X is a subset of Y ,” written X ⊆ Y , if x ∈ X implies that x ∈ Y . Alternatively, we may say that “Y is a superset of X.” X ⊆ Y and Y ⊇ X mean the same thing. We say that two subsets X and Y of U are equal if X ⊆ Y and Y ⊆ X. We use braces to designate sets when we wish to specify or describe them in terms of their elements: A = {a, b, c}, B = {2, 4, 6,...}. A set with k elements is called a k-set or set with cardinality k. The cardinality of a set A is denoted by |A|. Since a set is an unordered collection of distinct objects, the following all describe the same 3-element set {a, b, c} = {b, a, c} = {c, b, a} = {a, b, b, c, b}.
    [Show full text]