Human Γδt-Cell Subsets and Their Involvement in Tumor Immunity

Total Page:16

File Type:pdf, Size:1020Kb

Human Γδt-Cell Subsets and Their Involvement in Tumor Immunity OPEN Cellular & Molecular Immunology (2017) 14, 245–253 www.nature.com/cmi REVIEW Human γδT-cell subsets and their involvement in tumor immunity Dang Wu1,2,6, Pin Wu2,3,6, Fuming Qiu2,4, Qichun Wei1,2 and Jian Huang2,5 γδT cells are a conserved population of innate lymphocytes with diverse structural and functional heterogeneity that participate in various immune responses during tumor progression. γδT cells perform potent immunosurveillance by exerting direct cytotoxicity, strong cytokine production and indirect antitumor immune responses. However, certain γδT-cell subsets also contribute to tumor progression by facilitating cancer-related inflammation and immunosuppression. Here, we review recent observations regarding the antitumor and protumor roles of major structural and functional subsets of human γδT cells, describing how these subsets are activated and polarized, and how these events relate to subsequent function in tumor immunity. These studies provide insights into the manipulation of γδT-cell function to facilitate more targeted approaches for tumor therapy. Cellular & Molecular Immunology (2017) 14, 245–253; doi:10.1038/cmi.2016.55; published online 28 November 2016 Keywords: antitumor; γδT cells; protumor; subsets; tumor immunity INTRODUCTION γδT cells in adoptive cell therapy.7 However, human γδT cells γδT cells, which are innate-like T lymphocytes characterized by have diverse physiological roles in tumor immunity, owing to T-cell receptors (TCRs) composed of γ and δ chains, are widely their wide-ranging structural subsets, which are defined distributed in the peripheral blood (PB) and mucosal tissues.1 by their TCR repertoire and functional heterogeneity driven γδT cells rapidly recognize exogenous pathogens and endo- by differential environmental stimulation.8,9 Recent reports genous stress-induced ligands in a major histocompatibility have described the diverse responses of human γδTcellsto complex (MHC)-unrestricted manner and initiate adaptive tumors.10 For example, γδT cells exert cytotoxicity toward immunity, acting as a first line of immune defense.2 Activated tumor cells via the NKG2D pathway;11 however, they also γδT cells exhibit multiple effector functions, including cyto- develop a regulatory profile by expressing interleukin-10 toxicity against infected or tumor cells, cytokine and chemo- (IL-10) and tumor growth factor (TGF)-β, thereby exerting kine production, antigen-presenting functions and regulatory suppressive effects on antitumor responses.12 Moreover, our abilities,3 thus allowing them to participate in an array of previous studies have indicated that human PB Vδ1Tcells diseases, including infection, allergy, autoimmunity and demonstrate favorable cytotoxicity against colon cancer,13 cancer.4–6 whereas γδT17 cells with Vδ1 TCR usage in colon cancer Human γδT cells contribute to the immune response against tissue promote tumor progression.14 a subset of tumors of hematological and epithelial origin, and Therefore, understanding γδT-cell subset-specific responses many clinical trials have been conducted to test the use of during tumor immunity is vital to rationally exploit the 1Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; 2Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; 3Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; 4Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China and 5Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China 6These authors contributed equally to this work. Correspondence: Professor J Huang, MD, PhD, Department of Surgical Oncology, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Jiefang Road No. 88, Hangzhou 310009, China. E-mail: [email protected] or Professor QC Wei, MD, PhD, Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Jiefang Road No. 88, Hangzhou 310009, China. E-mail: [email protected] Received: 15 June 2016; Revised: 22 August 2016; Accepted: 23 August 2016 TheresponseofγδT-cell subsets to tumors DWuet al 246 antitumor activity of γδT cells while avoiding their tumor- cytotoxic effects.31 Vγ9Vδ2 T cells also respond to super- promoting effects during tumor therapy. In this review, we antigens such as staphylococcal enterotoxins (SEs) and toxic summarize research progress regarding the major structural shock syndrome toxin (TSST)-1.32,33 The above evidence has and functional subsets of human γδT cells and their effects on demonstrated that Vγ9Vδ2 T cells respond to a variety of tumor immunity, and we describe the clinical implications for ligands, although these represent only a few defined antigens; tumor therapy involving the manipulation of γδT-cell function. these responses suggest implications for the clinical manage- ment of these cells. STRUCTURAL SUBSETS AND γδT-CELL ACTIVATION Generally, human γδT cells are divided into two major Vδ1 γδTCELLS structural subsets according to their TCR δ chain usage: Vδ1 Vδ1 TCR gene rearrangement occurs 4–6 months after birth and Vδ2Tcells.15 In terms of TCR γ chain usage, Vδ1Tcells and involves the joining of Vδ1toDδ1orDδ2 and the joining are predominantly associated with the VγI gene family (Vγ2/3/ of upstream Vγ gene segments, including Vγ2, 3, 5 and 8, to 4/5/8), whereas the majority of Vδ2 T cells coexpress VγII Jγ2.19 Unlike Vγ9Vδ2 T cells, human Vδ1Tcellsprimarily (Vγ9).16 γδT subsets exhibit distinct developmental properties, reside in the gut epithelia, dermis, spleen and liver, and are tissue localization and activation modes.1,17,18 involved in maintaining epithelial tissue integrity.1 Vδ1 T cells constitute less than 30% of γδT cells in PB and contain diverse Vγ9Vδ2 γδT CELLS paired Vγ chains.15,16 During HIV infection, Vδ1 T-cell γδT-cell development primarily occurs in the fetal thymus, and numbers are increased, and the normal ratio of Vδ2/Vδ1 subsets arise through rearrangements at distinct phases of T cells is inverted, thus suggesting the potential involvement of thymic ontogeny.19 Vδ2 subsets are generated in the thymi at Vδ1 T cells in antiviral immunity.34 Ligand recognition by Vδ1 8.5–15 weeks in human embryos, with gene rearrangements of T cells remains largely uncharacterized, although CD1 family Vδ2toDδ3 and of Vγ1.8 or Vγ9toJγ1.19 Human Vδ2 T cells, proteins are recognized by Vδ1 T cells. Both PB and tissue Vδ1 which are almost exclusively paired with the Vγ9 chain (also T cells recognize CD1c35–37 and the lipid-presenting MHC-like termed Vγ9Vδ2 γδT cells), are predominant in the PB molecule CD1d via the TCR.38 Two recent studies have (470%),15 and are uniquely activated by phosphoantigens explored the structural basis of the recognition of lipid antigens produced by microbes and transformed cells. Exposure to (E)- by the Vδ1 TCR via CD1d-presenting molecules.39,40 In 4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an addition to the CD1 family, human intestinal epithelial Vδ1 intermediate metabolite of microbial isoprenoid biosynthesis20 T cells respond to stress-induced MICA/B through the and Isopentenyl pyrophosphate (IPP), which is generated by synergistic actions of TCR and NKG2D.41,42 Specifically, in a transformed mammalian cells via the the mevalonate pathway, manner analogous to Vγ9Vδ2Tcells,Vδ1 T cells respond to leads to TCR-dependent activation of Vγ9Vδ2 T cells,21 thus tumor cells by overexpressing MICA/B and ULBPs via enabling them to rapidly respond to exogenous infection or NKG2D.43,44 Moreover, Vδ1Tcellsareactivatedbythe endogenous transformed cells. Moreover, aminobisphospho- superantigen SE but respond exclusively to SEB rather than nates such as zoledronic acid combined with low-dose IL-2 SEA.45 A unique feature of Vδ1 T-cell activation is the selectively activate and expand Vγ9Vδ2 T cells in vitro.22 recognition of B7-H6, a B7 family member exclusively Phosphoantigens interact with specific proteins rather than expressed on tumor cells, by NKp30, thereby exerting anti- being directly recognized by the TCR.23 F1-ATPase expressed tumor effects.46,47 on tumor cells has been defined as an antigen-recognition molecule for phosphoantigen-mediated stimulation of human NON-Vδ1 AND NON-Vγ9Vδ2 γδTCELLS Vγ9Vδ2 T cells.24 Butyrophilin3A1 is another essential phos- Human Vδ3 T cells compose the majority of non-Vδ1and phorylated antigen-presenting modality of Vγ9Vδ2T-cell non-Vγ9Vδ2 γδT cells and are found in healthy PB, the liver48 – activation.25 27 In addition to phosphoantigens, human MutS and in patients with cytomegalovirus (CMV) infection,49 HIV homolog 2, a DNA repair-related protein ectopically expressed infection50 and B-cell leukemia.51 Vδ3 T cells, paired with on tumor cells, is recognized by Vγ9Vδ2 T cells via the TCR.28 Vγ2orVγ3,50 respond to CD1d and express the degranulation Toll-like receptors (TLRs) and natural killer receptors marker CD107a.52 AVγ4Vδ5+ T-cell clone has been reported (NKRs) have been reported to co-stimulate human
Recommended publications
  • Focus on Γδ T and NK Cells
    cells Review Engineering the Bridge between Innate and Adaptive Immunity for Cancer Immunotherapy: Focus on γδ T and NK Cells 1, 2, 1 2, , Fabio Morandi y , Mahboubeh Yazdanifar y , Claudia Cocco , Alice Bertaina * z and 1, , Irma Airoldi * z 1 Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 516147 Genova, Italy; [email protected] (F.M.); [email protected] (C.C.) 2 Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA; [email protected] * Correspondence: [email protected] (A.B.); [email protected] (I.A.) These authors have contributed equally to this work as first author. y These authors have contributed equally to this work as last author. z Received: 1 June 2020; Accepted: 21 July 2020; Published: 22 July 2020 Abstract: Most studies on genetic engineering technologies for cancer immunotherapy based on allogeneic donors have focused on adaptive immunity. However, the main limitation of such approaches is that they can lead to severe graft-versus-host disease (GvHD). An alternative approach would bolster innate immunity by relying on the natural tropism of some subsets of the innate immune system, such as γδ T and natural killer (NK) cells, for the tumor microenvironment and their ability to kill in a major histocompatibility complex (MHC)-independent manner. γδ T and NK cells have the unique ability to bridge innate and adaptive immunity while responding to a broad range of tumors. Considering these properties, γδ T and NK cells represent ideal sources for developing allogeneic cell therapies.
    [Show full text]
  • Predominant Activation and Expansion of V Gamma 9-Bearing Gamma Delta T Cells in Vivo As Well As in Vitro in Salmonella Infection
    Predominant activation and expansion of V gamma 9-bearing gamma delta T cells in vivo as well as in vitro in Salmonella infection. T Hara, … , G Matsuzaki, Y Yoshikai J Clin Invest. 1992;90(1):204-210. https://doi.org/10.1172/JCI115837. Research Article Gamma delta T cell receptor-positive cells (gamma delta T cells) have recently been implicated to play a role in the protection against infectious pathogens. Serial studies on gamma delta T cells in 14 patients with salmonella infection have revealed that the proportions of gamma delta T cells (mean +/- SD: 17.9 +/- 13.2%) in salmonella infection were significantly increased (P less than 0.01) compared with 35 normal controls (5.0 +/- 2.6%) and 13 patients with other bacterial infections (4.0 +/- 1.4%). Expansion of gamma delta T cells was more prominent in the systemic form (28.9 +/- 10.8%) than in the gastroenteritis form (10.5 +/- 7.9%) of salmonella infection (P less than 0.01). Most in vivo-expanded gamma delta T cells expressed V gamma 9 gene product. Increased activated (HLA-DR+) T cells were observed in all the six patients with the systemic form and four of the seven with gastroenteritis form. Especially in the six with systemic form, gamma delta T cell activation was significantly higher than alpha beta T cell activation at the early stage of illness (P less than 0.01). When peripheral blood lymphocytes from normal individuals were cultured with live salmonella, gamma delta T cells were preferentially activated and expanded and most of them expressed V gamma 9.
    [Show full text]
  • T Cells Via IL-2 Production Δγ Human
    B7−CD28 Costimulatory Signals Control the Survival and Proliferation of Murine and Human δγ T Cells via IL-2 Production This information is current as Julie C. Ribot, Ana deBarros, Liliana Mancio-Silva, Ana of September 24, 2021. Pamplona and Bruno Silva-Santos J Immunol 2012; 189:1202-1208; Prepublished online 25 June 2012; doi: 10.4049/jimmunol.1200268 http://www.jimmunol.org/content/189/3/1202 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/06/25/jimmunol.120026 Material 8.DC1 http://www.jimmunol.org/ References This article cites 49 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/189/3/1202.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology B7–CD28 Costimulatory Signals Control the Survival and Proliferation of Murine and Human gd T Cells via IL-2 Production Julie C.
    [Show full text]
  • Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature
    cells Article Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature 1, 2, 1, 1, Sónia Fonseca y, Vanessa Pereira y, Catarina Lau z, Maria dos Anjos Teixeira z, Marika Bini-Antunes 3 and Margarida Lima 1,* 1 Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), 4099-001 Porto Porto, Portugal; [email protected] (S.F.); [email protected] (C.L.); [email protected] (M.d.A.T.) 2 Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), 4434-502 Vila Nova de Gaia, Portugal; [email protected] 3 Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), 4099-001Porto, Portugal; [email protected] * Correspondence: [email protected]; Tel.: + 351-22-20-77-500 These authors contributed equally to this work. y These authors contributed equally to this work. z Received: 10 February 2020; Accepted: 13 March 2020; Published: 16 March 2020 Abstract: Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1.
    [Show full text]
  • Natural Killer Cell Lymphoma Shares Strikingly Similar Molecular Features
    Leukemia (2011) 25, 348–358 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11 www.nature.com/leu ORIGINAL ARTICLE Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic cd T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro J Iqbal1, DD Weisenburger1, A Chowdhury2, MY Tsai2, G Srivastava3, TC Greiner1, C Kucuk1, K Deffenbacher1, J Vose4, L Smith5, WY Au3, S Nakamura6, M Seto6, J Delabie7, F Berger8, F Loong3, Y-H Ko9, I Sng10, X Liu11, TP Loughran11, J Armitage4 and WC Chan1, for the International Peripheral T-cell Lymphoma Project 1Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; 2Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; 3Departments of Pathology and Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China; 4Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; 5College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA; 6Departments of Pathology and Cancer Genetics, Aichi Cancer Center Research Institute, Nagoya University, Nagoya, Japan; 7Department of Pathology, University of Oslo, Norwegian Radium Hospital, Oslo, Norway; 8Department of Pathology, Centre Hospitalier Lyon-Sud, Lyon, France; 9Department of Pathology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea; 10Department of Pathology, Singapore General Hospital, Singapore and 11Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA Natural killer (NK) cell lymphomas/leukemias are rare neo- Introduction plasms with an aggressive clinical behavior.
    [Show full text]
  • The Role of Tissue-Resident Γδ T Cells in Stress Surveillance and Tissue Maintenance
    cells Review The Role of Tissue-resident γδ T Cells in Stress Surveillance and Tissue Maintenance Margarete D. Johnson, Deborah A. Witherden * and Wendy L. Havran y Department of Immunology and Microbiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA; [email protected] (M.D.J.); [email protected] (W.L.H.) * Correspondence: [email protected]; Tel.: +1-858-784-8619 Deceased 20 January 2020. y Received: 14 February 2020; Accepted: 6 March 2020; Published: 11 March 2020 Abstract: While forming a minor population in the blood and lymphoid compartments, γδ T cells are significantly enriched within barrier tissues. In addition to providing protection against infection, these tissue-resident γδ T cells play critical roles in tissue homeostasis and repair. γδ T cells in the epidermis and intestinal epithelium produce growth factors and cytokines that are important for the normal turnover and maintenance of surrounding epithelial cells and are additionally required for the efficient recognition of, and response to, tissue damage. A role for tissue-resident γδ T cells is emerging outside of the traditional barrier tissues as well, with recent research indicating that adipose tissue-resident γδ T cells are required for the normal maintenance and function of the adipose tissue compartment. Here we review the functions of tissue-resident γδ T cells in the epidermis, intestinal epithelium, and adipose tissue, and compare the mechanisms of their activation between these sites. Keywords: γδ T cell; tissue-resident; wound healing; damage repair; epithelial; adipose 1. Introduction Very shortly after their initial identification, γδ T cells were described to have a unique distribution compared to αβ T cells.
    [Show full text]
  • Characterizing the Role of the T Cell Receptor Repertoire in T Cell Development and Function Benjamin David Solomon Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2018 Characterizing the Role of the T Cell Receptor Repertoire in T Cell Development and Function Benjamin David Solomon Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Solomon, Benjamin David, "Characterizing the Role of the T Cell Receptor Repertoire in T Cell Development and Function" (2018). Arts & Sciences Electronic Theses and Dissertations. 1584. https://openscholarship.wustl.edu/art_sci_etds/1584 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Immunology Dissertation Examination Committee: Chyi-Song Hsieh, Chair Paul Allen Takeshi Egawa Kenneth Murphy Wayne Yokoyama Characterizing the Role of the T Cell Receptor Repertoire in T Cell Development and Function By Benjamin Solomon A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements
    [Show full text]
  • Investigating Immunological Responses of WC1+ Gamma Delta T
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Investigating immunological responses of WC1+ gamma delta T cells in cattle an turally infected with mycobacterium avium subspecies paratuberculosis (MAP) Saleh Mohammed Albarrak Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Albarrak, Saleh Mohammed, "Investigating immunological responses of WC1+ gamma delta T cells in cattle an turally infected with mycobacterium avium subspecies paratuberculosis (MAP)" (2018). Graduate Theses and Dissertations. 16305. https://lib.dr.iastate.edu/etd/16305 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Investigating immunological responses of WC1+ gamma delta T cells in cattle naturally infected with mycobacterium avium subspecies paratuberculosis (MAP) by Saleh M. Albarrak A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Immunobiology Program of Study Committee: Jesse M. Hostetter, Co-Major Professor Ray W. Waters, Co-Major Professor Douglas E. Jones Judith R. Stabel Brett A. Sponseller The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred.
    [Show full text]
  • γδ T Cells Control Humoral Immune Response by Inducing T Follicular
    ARTICLE DOI: 10.1038/s41467-018-05487-9 OPEN γδ T cells control humoral immune response by inducing T follicular helper cell differentiation Rafael M. Rezende1, Amanda J. Lanser1, Stephen Rubino1, Chantal Kuhn1, Nathaniel Skillin1, Thais G. Moreira1, Shirong Liu1, Galina Gabriely1, Bruna A. David2, Gustavo B. Menezes2 & Howard L. Weiner1 γδ T cells have many known functions, including the regulation of antibody responses. However, how γδ T cells control humoral immunity remains elusive. Here we show that 1234567890():,; complete Freund’s adjuvant (CFA), but not alum, immunization induces a subpopulation of CXCR5-expressing γδ T cells in the draining lymph nodes. TCRγδ+CXCR5+ cells present antigens to, and induce CXCR5 on, CD4 T cells by releasing Wnt ligands to initiate the T follicular helper (Tfh) cell program. Accordingly, TCRδ−/− mice have impaired germinal center formation, inefficient Tfh cell differentiation, and reduced serum levels of chicken ovalbumin (OVA)-specific antibodies after CFA/OVA immunization. In a mouse model of lupus, TCRδ−/− mice develop milder glomerulonephritis, consistent with decreased serum levels of lupus-related autoantibodies, when compared with wild type mice. Thus, modulation of the γδ T cell-dependent humoral immune response may provide a novel therapy approach for the treatment of antibody-mediated autoimmunity. 1 Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA. 2 Center for Gastrointestinal Biology, Federal University of Minas Gerais,
    [Show full text]
  • Antigen Specificity of Human TCR Γδ Cells
    The Open Immunology Journal, 2009, 2, 119-126 119 Open Access Antigen Specificity of Human TCR Cells Gennaro De Libero* Department of Biomedicine, University Hospital, Basel University, Basel, Switzerland Abstract: T cells expressing the TCR constitute a small fraction of T cells in circulating blood whereas they are abundant in some peripheral lymphoid organs and mucosal sites. The TCR V9/V2 heterodimer is expressed on a large fraction of human TCR cells. This receptor is activated by endogenous and bacterial phosphorylated metabolites, which accumulate in tumour transformed cells and in bacteria-infected cells. While the nature of the stimulatory ligands is known, it remains to be discovered how these novel antigens are handled within tumour and infected cells, how they are displayed on the surface of antigen presenting cells and whether a dedicated antigen-presenting molecule is involved. This review discusses the published data on the nature and structure of the human TCR , the evidence of recognition of self and bacterial antigens, the events leading to accumulation of these metabolites and regulating their antigenicity. A hypothesis is presented on the possible mechanisms of antigen presentation to the TCR V9/V2 and the physiological role of TCR cells in the immune response. INTRODUCTION function of this T cell population is the direct consequence of antigen recognition, special emphasis is given to the The TCR is the second type of TCR, and was structure of the TCR , to known stimulatory antigens, and identified on a population of T cells after the discovery of to the possible mechanisms of antigen presentation. TCR -expressing cells.
    [Show full text]
  • Immunotherapy for Viral and Fungal Infections
    Bone Marrow Transplantation (2015) 50, S51–S54 © 2015 Macmillan Publishers Limited All rights reserved 0268-3369/15 www.nature.com/bmt ORIGINAL ARTICLE Immunotherapy for viral and fungal infections H Einsele, J Löffler, M Kapp, L Rasche, S Mielke and UG Grigoleit Allogenic stem cell transplantation (allo-SCT) represents the only curative option for several hematological malignancies. Due to a delayed and dysfunctional immunological recovery infectious complications and residual tumor cells following allo-SCT are still major causes of failure of this procedure. Here we discuss the most common infectious complications of allo-SCT and describe current and future strategies to prophylaxe or treat these complications using novel immunotherapeutic strategies. Bone Marrow Transplantation (2015) 50, S51–S54; doi:10.1038/bmt.2015.96 INTRODUCTION Suitable combination of antigens/T-cell epitopes will allow for Allogeneic hematopoietic stem cell transplantation (allo-SCT) optimal stimulation and selection of multiple pathogen-specific represents the only curative option for several hematological T cell lines and a characterization of pathogen specificity and malignancies. Although several improvements in conditioning alloreactivity for safety and quality control of the generated regimens and SCT procedures (especially in vivo/ex vivo T-cell T cell lines. depletion) allow to achieve a fast and long-lasting regeneration of Furthermore, for the high-risk patients who are seropositive and hematopoiesis, patients are still suffering from major complica- receive a transplant from a seronegative donor, T-cell priming or tions due to a delayed and dysfunctional immunological recovery. redirection of donor T cells have to be used as well as the transfer of antigen-specific cells from seropositive third party donors.
    [Show full text]
  • Γδ-T Cells: an Unpolished Sword in Human Anti-Infection Immunity
    Cellular & Molecular Immunology (2013) 10, 50–57 ß 2013 CSI and USTC. All rights reserved 1672-7681/13 $32.00 www.nature.com/cmi REVIEW cd-T cells: an unpolished sword in human anti-infection immunity Jian Zheng, Yinping Liu, Yu-Lung Lau and Wenwei Tu cd-T cells represent a small population of immune cells, but play an indispensable role in host defenses against exogenous pathogens, immune surveillance of endogenous pathogenesis and even homeostasis of the immune system. Activation and expansion of cd-T cells are generally observed in diverse human infectious diseases and correlate with their progression and prognosis. cd-T cells have both ‘innate’ and ‘adaptive’ characteristics in the immune response, and their anti-infection activities are mediated by multiple pathways that are under elaborate regulation by other immune components. In this review, we summarize the current state of the literature and the recent advancements in cd-T cell-mediated immune responses against common human infectious pathogens. Although further investigation is needed to improve our understanding of the characteristics of different cd-T cell subpopulations under specific conditions, cd-T cell-based therapy has great potential for the treatment of infectious diseases. Cellular & Molecular Immunology (2013) 10, 50–57; doi:10.1038/cmi.2012.43; published online 15 October 2012 Keywords: cd-T cells; infection; immunity; human INTRODUCTION skin cd-T cells promote tissue repair by producing keratinocyte growth Infectious disease is one of the major threats to human health and causes factor.8 On the other hand, some cd-T cells, especially IL-17-producing substantial global morbidity and mortality.
    [Show full text]