The Research, Development, and Acquisition Process for the Beidou Navigation Satellite Programs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GLONASS System As a Tool for Space Weather Monitoring
GLONASS System as a tool for space weather monitoring V.V. Alpatov, S.N. Karutin, А.Yu. Repin Institute of Applied Geophysics, Roshydromet TSNIIMASH, Roscosmos BAKU-2018 PLAN OF PRESENTATION General information about GLONASS Goals Organization and Management Technical information about GLONASS Space Weather Effects On Space Systems On Ground based Systems Possible Opportunities of GLONASS for Monitoring Space Weather Effects Russian Monitoring System for Monitoring Space Weather Effects with Use Opportunities of GLONASS 2 GENERAL INFORMATION ABOUT GLONASS NATIONAL SATELLITE NAVIGATION POLICY AND ORGANIZATION Presidential Decree of May 17, 2007 No. 638 On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation Federal Program on GLONASS Sustainment, Development and Use for 2012-2020 – planning and budgeting instrument for GLONASS development and use Budget planning for the forthcoming decade – up to 2030 GLONASS Program governance: Roscosmos State Space Corporation Government Contracting Authority – Program Coordinator Government Contracting Authorities Program Scientific and Coordination Board GLONASS Program Goals: Improving GLONASS performance – its accuracy and integrity Ensuring positioning, navigation and timing solutions in restricted visibility of satellites, interference and jamming conditions Enhancing current application efficiency and broadening application domains 3 CHARACTERISTICS IMPROVEMENT PLAN Accuracy Improvement by means of: . Ground Segment -
50 Satellite Formation-Flying and Rendezvous
Parkinson, et al.: Global Positioning System: Theory and Applications — Chap. 50 — 2017/11/26 — 19:03 — page 1 1 50 Satellite Formation-Flying and Rendezvous Simone D’Amico1) and J. Russell Carpenter2) 50.1 Introduction to Relative Navigation GNSS has come to play an increasingly important role in satellite formation-flying and rendezvous applications. In the last decades, the use of GNSS measurements has provided the primary method for determining the relative position of cooperative satellites in low Earth orbit. More recently, GNSS data have been successfully used to perform formation-flying in highly elliptical orbits with apogees at tens of Earth radii well above the GNSS constellations. Current research aims at dis- tributed precise relative navigation between tens of swarming nano- and micro-satellites based on GNSS. Similar to terrestrial applications, GNSS relative navigation benefits from a high level of common error cancellation. Furthermore, the integer nature of carrier phase ambiguities can be exploited in carrier phase differential GNSS (CDGNSS). Both aspects enable a substantially higher accuracy in the estimation of the relative motion than can be achieved in single-spacecraft navigation. Following historical remarks and an overview of the state-of-the-art, this chapter addresses the technology and main techniques used for spaceborne relative navigation both for real-time and offline applications. Flight results from missions such as the Space Shuttle, PRISMA, TanDEM-X, and MMS are pre- sented to demonstrate the versatility and broad range of applicability of GNSS relative navigation, from precise baseline determination on-ground (mm-level accuracy), to coarse real-time estimation on-board (m- to cm-level accuracy). -
China Science and Technology Newsletter No. 14
CHINA SCIENCE AND TECHNOLOGY NEWSLETTER Department of International Cooperation No.14 Ministry of Science and Technology(MOST), P.R.China July 25 2014 Special Issue: China’s Space Development Achievements and Prospects of China’s Space Development The 64th IAC Held in Beijing Shenzhou 10 Misson Successfully Accomplished Chang’e 3 Achieved Soft Landing on the Moon GF-1 Satellite - The First Satellite of CHEOS Achievements and Prospects of China’s Space Development Mr. Xu Dazhe, Chairman of China Aerospace Science in 1970 marked the start of China entering into space and and Technology Corporation (CASC) delivered a speech exploring the universe. Due to substantial governmental at the 64th International Astronautical Congress (IAC) on support and promotion, China’s space industry developed September 23, 2013, sharing experiences gained in the quite fast and has made world-known achievements. development of China’s space industry with international As the leader in China’s space sector, CASC is colleagues. assigned to develop, manufacture and test launch OUTSTANDING ACHIEVEMENTS MADE BY vehicles, manned spaceships, various satellites and CHINA’S SPACE INDUSTRY other spacecraft for major national space programs such as China’s Manned Space Program, China’s Lunar China’s space programs have had 57 years of Exploration Program, BeiDou Navigation Satellite development since the 1950s. The successful launch of System, and China’s High-Resolution Earth Observation China’s first artificial satellite Dongfanghong 1 (DFH-1) Monthly-Editorial Board:Building A8 West, Liulinguan Nanli, Haidian District, Beijing 100036, China Contact: Prof.Zhang Ning E-mail: [email protected] [email protected] http://www.caistc.com System. -
Enhanced Orbit Determination for Beidou Satellites with Fengyun-3C Onboard GNSS Data
GPS Solut DOI 10.1007/s10291-017-0604-y ORIGINAL ARTICLE Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard GNSS data 1,2 1 1 3 3 Qile Zhao • Chen Wang • Jing Guo • Guanglin Yang • Mi Liao • 1 1,2 Hongyang Ma • Jingnan Liu Received: 3 September 2016 / Accepted: 27 January 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract A key limitation for precise orbit determination (Root Mean Square) of overlapping orbit differences of BeiDou satellites, particularly for satellites in geosta- (OODs) is 2.3 cm for GPS-only solution. The 3D RMS of tionary orbit (GEO), is the relative weak geometry of orbit differences between BeiDou-only and GPS-only ground stations. Fortunately, data from a low earth orbiting solutions is 15.8 cm. Also, precise orbits and clocks for satellite with an onboard GNSS receiver can improve the BeiDou satellites were determined based on 97 global geometry of GNSS orbit determination compared to using (termed GN) or 15 regional (termed RN) ground stations. only ground data. The Chinese FengYun-3C (FY3C) Furthermore, also using FY3C onboard BeiDou data, two satellite carries the GNSS Occultation Sounder equipment additional sets of BeiDou orbit and clock products are with both dual-frequency GPS (L1 and L2) and BeiDou determined with the data from global (termed GW) or (B1 and B2) tracking capacity. The satellite-induced vari- regional (termed RW) stations. In general, the OODs ations in pseudoranges have been estimated from multipath decrease for BeiDou satellites, particularly for GEO observables using an elevation-dependent piece-wise linear satellites, when the FY3C onboard BeiDou data are added. -
Galileo FOC-M7 SAT 19-20-21-22
LAUNCH KIT December 2017 VA240 Galileo FOC-M7 SAT 19-20-21-22 VA240 Galileo FOC-M7 SAT 19-20-21-22 ARIANESPACE’S SECOND ARIANE 5 LAUNCH FOR THE GALILEO CONSTELLATION AND EUROPE For its 11th launch of the year, and the sixth Ariane 5 liftoff from the Guiana Space Center (CSG) in French Guiana during 2017, Arianespace will orbit four more satellites for the Galileo constellation. This mission is being performed on behalf of the European Commission under a contract with the European Space Agency (ESA). For the second time, an Ariane 5 ES version will be used to orbit satellites in Europe’s own satellite navigation system. At the completion of this flight, designated Flight VA240 in Arianespace’s launcher family numbering system, 22 Galileo spacecraft will have been launched by Arianespace. Arianespace is proud to deploy its entire family of launch vehicles to address Europe’s needs and guarantee its independent access to space. Galileo, an iconic European program Galileo is Europe’s own global navigation satellite system. Under civilian control, Galileo offers guaranteed high-precision positioning around the world. Its initial services began in December CONTENTS 2016, allowing users equipped with Galileo-enabled devices to combine Galileo and GPS data for better positioning accuracy. The complete Galileo constellation will comprise a total of 24 operational satellites (along with > THE LAUNCH spares); 18 of these satellites already have been orbited by Arianespace. ESA transferred formal responsibility for oversight of Galileo in-orbit operations to the GSA VA240 mission (European GNSS Agency) in July 2017. Page 3 Therefore, as of this launch, the GSA will be in charge of the operation of the Galileo satellite Galileo FOC-M7 satellites navigation systems on behalf of the European Union. -
AVL Systems for Bus Transit
T R A N S I T C O O P E R A T I V E R E S E A R C H P R O G R A M SPONSORED BY The Federal Transit Administration TCRP Synthesis 24 AVL Systems for Bus Transit A Synthesis of Transit Practice Transportation Research Board National Research Council TCRP OVERSIGHT AND PROJECT TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 1997 SELECTION COMMITTEE CHAIRMAN OFFICERS MICHAEL S. TOWNES Peninsula Transportation District Chair: DAVID N. WORMLEY, Dean of Engineering, Pennsylvania State University Commission Vice Chair: SHARON D. BANKS, General Manager, AC Transit Executive Director: ROBERT E. SKINNER, JR., Transportation Research Board, National Research Council MEMBERS SHARON D. BANKS MEMBERS AC Transit LEE BARNES BRIAN J. L. BERRY, Lloyd Viel Berkner Regental Professor, Bruton Center for Development Studies, Barwood, Inc University of Texas at Dallas GERALD L. BLAIR LILLIAN C. BORRONE, Director, Port Department, The Port Authority of New York and New Jersey (Past Indiana County Transit Authority Chair, 1995) SHIRLEY A. DELIBERO DAVID BURWELL, President, Rails-to-Trails Conservancy New Jersey Transit Corporation E. DEAN CARLSON, Secretary, Kansas Department of Transportation ROD J. DIRIDON JAMES N. DENN, Commissioner, Minnesota Department of Transportation International Institute for Surface JOHN W. FISHER, Director, ATLSS Engineering Research Center, Lehigh University Transportation Policy Study DENNIS J. FITZGERALD, Executive Director, Capital District Transportation Authority SANDRA DRAGGOO DAVID R. GOODE, Chairman, President, and CEO, Norfolk Southern Corporation CATA DELON HAMPTON, Chairman & CEO, Delon Hampton & Associates LOUIS J. GAMBACCINI LESTER A. HOEL, Hamilton Professor, University of Virginia. Department of Civil Engineering SEPTA JAMES L. -
The Navy Navigation Satellite System (Transit)
ROBERT J. DANCHIK THE NAVY NAVIGATION SATELLITE SYSTEM (TRANSIT) This article provides an update on the status of the Navy Navigation Satellite System (TRANSIT). Some insights are provided on the evolution of the system into its current configuration, as well as a discussion of future plans. BACKGROUND sign goal was never achieved for long in those early In 1958, research scientists at APL solved the orbit days because the satellites had short operational life of the first Russian satellite, Sputnik-I, by analysis of times. The failures largely resulted from inadequate the observed Doppler shift of its transmitted signal. component quality and the large number of wiring in This led immediately to the concept of satellite navi terconnections. However, after OSCAR 2 10 and OS gation and the development of the U.S. Navy Navi CAR 12 were launched in 1966 and 1967, respectively, gation Satellite System (TRANSIT) by APL, under the enough data on the failure mechanisms became avail sponsorship of the Navy's Special Projects Office, to able to APL to achieve the desired advances in reli provide position fixes for the Fleet Ballistic Missile ability. The integrated circuit introduced in OSCAR Weapon System submarines. (The articles in Ref. 1, 10 significantly extended the satellite lifetime by im a previous issue of the fohns Hopkins APL Techni proving component reliability and reducing the num cal Digest devoted to TRANSIT, give the principles ber of interconnections. Subsequently, the last major of operation and early history of the system.) Now, design change made to the solar cell interconnections, 26 years after its conception, the system is mature. -
The Fengyun-3C Radio Occultation Sounder GNOS: a Review of the Mission and Its Early Results and Science Applications
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-385 Manuscript under review for journal Atmos. Meas. Tech. Discussion started: 15 January 2018 c Author(s) 2018. CC BY 4.0 License. The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications Yueqiang Sun1,2,3, Weihua Bai1,2,3, Congliang Liu1,2, Yan Liu4, Qifei Du1,2,3, Xianyi Wang1,2, Guanglin Yang5, Mi Liao5, Zhongdong Yang5, Xiaoxin Zhang5, 1,2 1,2 1,2 1,2 5 Xiangguang Meng , Danyang Zhao , Junming Xia , Yuerong Cai , and Gottfried Kirchengast6,2,1 [1] National Space Science Center, Chinese Academy of Sciences (NSSC, CAS) and Beijing Key Laboratory of Space Environment Exploration, Beijing, China [2] Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC, CAS, 10 Beijing, China, and University of Graz, Graz, Austria [3] School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing, China [4] National Meteorological Center, Chinese Meteorological Administration, Beijing, China [5] National Satellite Meteorological Center, Chinese Meteorological Administration, Beijing, 15 China [6] Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, Austria Correspondence to: Congliang Liu (Email:[email protected]); Wehuai Bai (Email: [email protected]) 20 1 Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-385 Manuscript under review for journal Atmos. Meas. Tech. Discussion started: 15 January 2018 c Author(s) 2018. CC BY 4.0 License. Abstract The Global Navigation Satellite System (GNSS) occultation sounder (GNOS) is one of the new generation payloads onboard the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth’s neutral atmosphere and ionosphere. -
ABAS), Satellite-Based Augmentation System (SBAS), Or Ground-Based Augmentation System (GBAS
Current Status and Future Navigation Requirements for Mexico City New Airport New Mexico City Airport in figures: • 120 million passengers per year; • 1.2 million tons of shipping cargo per year; • 4,430 Ha. (6 times bigger tan the current airport); • 6 runways operating simultaneously; • 1st airport outside Europe with a neutral carbon footprint; • Largest airport in Latin America; • 11.3 billion USD investment (aprox.); • Operational in 2020 (expected). “State-of-the-art navigation systems are as important –or more- than having world class civil engineering and a stunning arquitecture” Air Navigation Systems: A. In-land deployed systems - Are the most common, based on ground stations emitting radiofrequency signals received by on-board equipments to calculate flight position. B. Satellite navigation systems – First stablished by U.S. in 1959 called TRANSIT (by the time Russia developed TSIKADA); in 1967 was open to civil navigation; 1973 GPS was developed by U.S., then GLONASS, then GALILEO. C. Inertial navigation systems – Autonomous navigation systems based on inertial forces, providing constant information on the position of the flight and parameters of speed and direction (e.g. when flying above the ocean and there are no ground segments to provide support). Requirements for performance of Navigation Systems: According to the International Civil Aviation Organization (ICAO) there are four main requirements: • The accuracy means the level of concordance between the estimated position of an aircraft and its real position. • The availability is the portion of time during which the system complies with the performance requirements under certain conditions. • The integrity is the function of a system that warns the users in an opportune way when the system should not be used. -
Application of Fengyun 3-C GNSS Occulation Sounder for Assessing Global Ionospheric Response to Magnetic Storm Event” by Weihua Bai Et Al
Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-291-AC1, 2017 AMTD © Author(s) 2017. CC-BY 3.0 License. Interactive comment Interactive comment on “Application of Fengyun 3-C GNSS occulation sounder for assessing global ionospheric response to magnetic storm event” by Weihua Bai et al. Weihua Bai et al. [email protected] Received and published: 3 January 2017 Dear Editor and Referee #1, Thank you for your comments concerning our manuscript entitled “Application of Fengyun 3-C GNSS occulation sounder for assessing global ionospheric response to magnetic storm event” (Manuscript Number: doi:10.5194/amt-2016-291-RC1). Those comments are all valuable and very helpful for revising and improving our paper, as well Printer-friendly version as the important guiding significance to our researches. We have studied comments carefully and have made correction which we hope meet with approval. The responds Discussion paper to the comments are as flowing: C1 Referee #1: AMTD General comments: 1, Figure 4 compares NmF2 measurements from the GNOS GPS occultation and Fig- ure 5 shows those produced by GNOS BDS occultation. The comparison between Interactive these two figures is the only thing I find in this paper that could be called a “new find- comment ing.” Response: We would like to explain our purposes and meanings in this paper: (1) It’s a first demonstration for the application of the FY3-C GNSS occulation sounder (GNOS) for assessing global ionospheric response to magnetic storm events. These results coincide with previous studies (e. g. Habarulema et al. 2014, 2016and refer- ences therein), which just right proves the reliability of FY3-C GNOS radio occultation measurements for analyzing statistical and event-specific physical characteristics of the ionosphere. -
Supporting the Sustainable Development Goals
UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Cover photo: ©ESA/ATG medialab. Adapted by the European GNSS Agency, contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Vienna, 2018 ST/SPACE/71 © United Nations, January 2018. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concern- ing the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Information on uniform resource locators and links to Internet sites contained in the present pub- lication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Foreword by the Director of the Office for Outer Space Affairs The 2030 Agenda for Sustainable Development came into effect on 1 January 2016. The Agenda is anchored around 17 Sustainable Development Goals (SDGs), which set the targets to be fulfilled by all governments by 2030. -
GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists.