Climate Science: Is It Currently Designed to Answer Questions?1

Total Page:16

File Type:pdf, Size:1020Kb

Climate Science: Is It Currently Designed to Answer Questions?1 Climate Science: Is it currently designed to answer questions?1 Richard S. Lindzen Program in Atmospheres, Oceans and Climate Massachusetts Institute of Technology November 29, 2008 Abstract For a variety of inter-related cultural, organizational, and political reasons, progress in climate science and the actual solution of scientific problems in this field have moved at a much slower rate than would normally be possible. Not all these factors are unique to climate science, but the heavy influence of politics has served to amplify the role of the other factors. By cultural factors, I primarily refer to the change in the scientific paradigm from a dialectic opposition between theory and observation to an emphasis on simulation and observational programs. The latter serves to almost eliminate the dialectical focus of the former. Whereas the former had the potential for convergence, the latter is much less effective. The institutional factor has many components. One is the inordinate growth of administration in universities and the consequent increase in importance of grant overhead. This leads to an emphasis on large programs that never end. Another is the hierarchical nature of formal scientific organizations whereby a small executive council can speak on behalf of thousands of scientists as well as govern the distribution of ‘carrots and sticks’ whereby reputations are made and broken. The above factors are all amplified by the need for government funding. When an issue becomes a vital part of a political agenda, as is the case with climate, then the politically desired position becomes a goal rather than a consequence of scientific research. This paper will deal with the origin of the cultural changes and with specific examples of the operation and interaction of these factors. In particular, we will show how political bodies act to control scientific institutions, how scientists adjust both data and even theory to accommodate politically correct positions, and how opposition to these positions is disposed of. 1 This paper was prepared for a meeting sponsored by Euresis (Associazone per la promozione e la diffusione della cultura e del lavoro scientifico) and the Templeton Foundation on Creativity and Creative Inspiration in Mathematics, Science, and Engineering: Developing a Vision for the Future. The meeting was held in San Marino from 29-31 August 2008. Its Proceedings are expected to be published in 2009. 1 1. Introduction. Although the focus of this paper is on climate science, some of the problems pertain to science more generally. Science has traditionally been held to involve the creative opposition of theory and observation wherein each tests the other in such a manner as to converge on a better understanding of the natural world. Success was rewarded by recognition, though the degree of recognition was weighted according to both the practical consequences of the success and the philosophical and aesthetic power of the success. As science undertook more ambitious problems, and the cost and scale of operations increased, the need for funds undoubtedly shifted emphasis to practical relevance though numerous examples from the past assured a strong base level of confidence in the utility of science. Moreover, the many success stories established ‘science’ as a source of authority and integrity. Thus, almost all modern movements claimed scientific foundations for their aims. Early on, this fostered a profound misuse of science, since science is primarily a successful mode of inquiry rather than a source of authority. Until the post World War II period, little in the way of structure existed for the formal support of science by government (at least in the US which is where my own observations are most relevant). In the aftermath of the Second World War, the major contributions of science to the war effort (radar, the A-bomb), to health (penicillin), etc. were evident. Vannevar Bush (in his report, Science: The Endless Frontier, 1945) noted the many practical roles that validated the importance of science to the nation, and argued that the government need only adequately support basic science in order for further benefits to emerge. The scientific community felt this paradigm to be an entirely appropriate response by a grateful nation. The next 20 years witnessed truly impressive scientific productivity which firmly established the United States as the creative center of the scientific world. The Bush paradigm seemed amply justified. (This period and its follow-up are also discussed by Miller, 2007, with special but not total emphasis on the NIH (National Institutes of Health).) However, something changed in the late 60’s. In a variety of fields it has been suggested that the rate of new discoveries and achievements slowed appreciably (despite increasing publications)2, and it is being suggested that either the Bush paradigm ceased to be valid or that it may never have been valid in the first place. I believe that the former is correct. What then happened in the 1960’s to produce this change? It is my impression that by the end of the 60’s scientists, themselves, came to feel that the real basis for support was not gratitude (and the associated trust that support would bring further benefit) but fear: fear of the Soviet Union, fear of cancer, etc. Many will conclude that this was 2 At some level, this is obvious. Theoretical physics is still dealing with the standard model though there is an active search for something better. Molecular biology is still working off of the discovery of DNA. Many of the basic laws of physics resulted from individual efforts in the 17th-19th Centuries. The profound advances in technology should not disguise the fact that the bulk of the underlying science is more than 40 years old. This is certainly the case in the atmospheric and oceanic sciences. That said, it should not be forgotten that sometimes progress slows because the problem is difficult. Sometimes, it slows because the existing results are simply correct as is the case with DNA. Structural problems are not always the only factor involved. 2 Climate Science: Is it currently designed to answer questions? merely an awakening of a naive scientific community to reality, and they may well be right. However, between the perceptions of gratitude and fear as the basis for support lies a world of difference in incentive structure. If one thinks the basis is gratitude, then one obviously will respond by contributions that will elicit more gratitude. The perpetuation of fear, on the other hand, militates against solving problems. This change in perception proceeded largely without comment. However, the end of the cold war, by eliminating a large part of the fear-base forced a reassessment of the situation. Most thinking has been devoted to the emphasis of other sources of fear: competitiveness, health, resource depletion and the environment. What may have caused this change in perception is unclear, because so many separate but potentially relevant things occurred almost simultaneously. The space race reinstituted the model of large scale focused efforts such as the moon landing program. For another, the 60’s saw the first major postwar funding cuts for science in the US. The budgetary pressures of the Vietnam War may have demanded savings someplace, but the fact that science was regarded as, to some extent, dispensable, came as a shock to many scientists. So did the massive increase in management structures and bureaucracy which took control of science out of the hands of working scientists. All of this may be related to the demographic pressures resulting from the baby boomers entering the workforce and the post-sputnik emphasis on science. Sorting this out goes well beyond my present aim which is merely to consider the consequences of fear as a perceived basis of support. Fear has several advantages over gratitude. Gratitude is intrinsically limited, if only by the finite creative capacity of the scientific community. Moreover, as pointed out by a colleague at MIT, appealing to people’s gratitude and trust is usually less effective than pulling a gun. In other words, fear can motivate greater generosity. Sputnik provided a notable example in this regard; though it did not immediately alter the perceptions of most scientists, it did lead to a great increase in the number of scientists, which contributed to the previously mentioned demographic pressure. Science since the sixties has been characterized by the large programs that this generosity encourages. Moreover, the fact that fear provides little incentive for scientists to do anything more than perpetuate problems, significantly reduces the dependence of the scientific enterprise on unique skills and talents. The combination of increased scale and diminished emphasis on unique talent is, from a certain point of view, a devastating combination which greatly increases the potential for the political direction of science, and the creation of dependent constituencies. With these new constituencies, such obvious controls as peer review and detailed accountability, begin to fail and even serve to perpetuate the defects of the system. Miller (2007) specifically addresses how the system especially favors dogmatism and conformity. The creation of the government bureaucracy, and the increasing body of regulations accompanying government funding, called, in turn, for a massive increase in the administrative staff at universities and research centers. The support for this staff comes from the overhead on government grants, and, in turn, produces an active pressure for the solicitation of more and larger grants3. 3 It is sometimes thought that government involvement automatically implies large 3 Climate Science: Is it currently designed to answer questions? One result of the above appears to have been the deemphasis of theory because of its intrinsic difficulty and small scale, the encouragement of simulation instead (with its call for large capital investment in computation), and the encouragement of large programs unconstrained by specific goals4.
Recommended publications
  • Issues in Physics & Astronomy
    Issues in Physics & Astronomy Board on Physics and Astronomy · The National Academies · Washington, D.C. · 202-334-3520 · nationalacademies.org/bpa · Winter 2010 Unveiling the Black Hole and its Environs at the Center of the Milky Way A. Ghez, UCLA he proximity of our galaxy’s center presence of a million solar masses (Mo) • How do stars interact with super- presents us with a unique oppor- of dark matter and confined it to within a massive black holes? tunity to study a galactic nucleus radius of 0.1 pc—to a probability—when • What is the nature of the matter Twith orders of magnitude higher spatial proper motion velocity dispersion mea- flows induced by the black hole in its resolution than can be brought to bear on surements increased the inferred dark neighborhood? any other galaxy. After more than a decade mass density by 3 orders of magnitude It has been known for some time that 12 3 of diffraction-limited imaging with the to 10 Mo/pc and eliminated a cluster there is a population of young stars around rudimentary technique of speckle imag- of dark objects as a possible explana- the center of the Milky Way. The presence ing at Keck and NTT/VLT, the case for tion of the galaxy’s central dark mass of these young stars was used initially to a supermassive black hole at the galactic concentration—and finally to a certainty— argue that there could not be a black hole; center has improved dramatically. The case when individual stellar orbits confined this argument went as follows.
    [Show full text]
  • Michael Oppenheimer, Princeton University SEMINAR SERIES
    Addressing Cross-Disciplinary Challenges and Solutions SEMINAR SERIES Michael Oppenheimer, Princeton University “The Scientific Challenges of Climate Change” February 9, 12:00—1:30 PM Dickinson School of Law Lewis Katz Building—Room 118 (New building— corner of Bigler Rd. and Services Rd., University Park Parking in East Deck on Bigler Rd., Special Shuttle service*, or use Campus Shuttle) Michael Oppenheimer is the Albert G. Milbank Professor of Geosciences and International Affairs in the Woodrow Wilson School and the Department of Geosciences at Princeton University. He is also Director of the Program in Science, Technology and Environmental Policy (STEP) at the Woodrow Wil- son School and Faculty Associate of the Atmospheric and Ocean Sciences Program, Princeton Environmental Institute, and the Princeton Institute for International and Regional Studies. Oppenheimer is a long-time participant in the Intergovernmental Panel on Climate Change (IPCC) which shared the Nobel Peace Prize in 2007, serving most recently as a lead author of the IPCC’s Fourth Assessment Report. His interests include science and policy of the atmosphere, particularly climate change and its impacts. Much of his research aims to understand the potential for “dangerous” outcomes of increasing levels of greenhouse gases by exploring the effects of global warming on ecosystems such as coral reefs, on the ice sheets, and on sea level,. He also studies the role played by nongovernmental organizations in the policy arena, the role of scientific learning and scientific assessment in decisions on problems of global change, and the potential value of precau- tionary frameworks. In the late 1980's, Dr. Oppenheimer and a handful of other scientists organized two workshops under the auspices of the United Nations that helped precipitate the negotiations that resulted in the United Nations Framework Convention on Climate Change (signed at the 1992 Earth Summit) and the Kyoto Protocol.
    [Show full text]
  • MICHAEL OPPENHEIMER Albert G. Milbank Professor of Geosciences
    (Michael Oppenheimer) CURRICULUM VITA (May 2017) MICHAEL OPPENHEIMER Albert G. Milbank Professor of Geosciences and International Affairs, Department of Geosciences and the Woodrow Wilson School of Public & International Affairs, Princeton University Director, Center for Science, Technology, and Environmental Policy of the Woodrow Wilson School, Princeton University Associated Faculty of: Princeton Environmental Institute Atmosphere and Ocean Sciences Program Princeton Institute for International and Regional Studies Andlinger Center for Energy and the Environment Contact Information Robertson Hall 448 Princeton University Princeton, N.J. 08544 609-258-2338 Email: [email protected] Website: http://www.princeton.edu/step/people/faculty/michael-oppenheimer/ Other Professional Affiliations Visiting Professor, NYU School of Law Editor in Chief, Climatic Change Letters Co-editor in Chief, Climatic Change Science Advisor, Environmental Defense Fund Coordinating Lead Author, Intergovernmental Panel on Climate Change Fields of Specialization Physics and chemistry of the atmosphere; climate change, ozone depletion, acid deposition and air pollution: their effects on natural systems and society, and public policy responses. Education S.B. (Chemistry) M.I.T., 1966 Ph.D. (Chemical Physics) University of Chicago, 1970 Positions 1966-67 Teaching Assistant, University of Chicago 1971-73 Research Fellow, Harvard College Observatory 1 (Michael Oppenheimer) 1971-81 Astrophysicist, Harvard-Smithsonian Center for Astrophysics 1978-79 Visiting Astronomer,
    [Show full text]
  • Tropical Climate
    UGAMP: A network of excellence in climate modelling and research Issue 27 October 2003 UGAMP Coordinator: Prof. Julia Slingo [email protected] Newsletter Editor: Dr. Glenn Carver [email protected] Newsletter website: acmsu.nerc.ac.uk/newsletter.html Contents NCAS News . 2 NCAS Websites . 3 NCAS Centres and Facilities . 3 UGAMP Coordinator . 4 CGAM Director . 4 ACMSU Director . 4 HPC Facilities . 5 New areas of UGAMP science 7 Chemistry-climate interactions . 19 Climate variability and predictability . 32 Atmospheric Composition . 48 Tropospheric chemistry and aerosols . 58 Climate Dynamics . 64 Model development . 72 Group News . 78 (for full contents see listing on the inside back cover) NERC Centres for Atmospheric Science, NCAS Alan Thorpe ([email protected]): Director NCAS Since the last UGAMP Newsletter there have been a significant number of NCAS developments relevant to the UK atmospheric science community. These include the following, which are particularly pertinent to the UGAMP community: • NERC have agreed to fund a new directed (new name for thematic) programme called “Surface Ocean – Lower Atmosphere Study” or SOLAS for short. • NERC have agreed to fund a “pump-priming” activity for a proposed new directed programme called Flood Risk from Extreme Events, FREE. The full proposal for FREE will be considered by NERC early in 2004. •NCAS is supporting a project to develop a new chemistry module for the HadGEM model. This is called UK-CHEM and Olaf Morgenstern at ACMSU is collaborating closely with the Hadley Centre on the project. •NCAS is supporting a project to develop the science for a new aerosol module for HadGEM.
    [Show full text]
  • U S Energy & Climate Roadmap
    The Energy Policy Institute at the University of Chicago (EPIC) USEnergy&ClimateRoadmap produces data-driven research that advances society’s USEnergy& understanding of the global energy challenge: ensuring that markets supply the energy needed for human development ClimateRoadmap without risking human health or climate change. It translates research insights into real-world impacts through strategic Evidence-based Policies for Eff ective Action outreach and training for the next generation of global energy leaders. With support from Saieh Hall for Economics 5757 S. University Avenue The Kenneth C. Grin Chicago IL 60637 Applied Economics Incubator Online epic.uchicago.edu On Twitter @UChiEnergy On Facebook www.facebook.com/uchicagoenergy/ EPIC produces data-driven research that advances society’s U.S.understanding Energy of the global energy & challenge and translates research insights into real-world impacts through strategic outreach and Climatetraining for the next generation Roadmap of global energy leaders. Evidence-based Policies for Effective Action Confronting the Global Energy Challenge The Climate Impact Lab is a fi rst-of-its-kind, Energy powers the modern world, fueling innovation multidisciplinary eff ort working to measure the real-world and improving people’s lives. But humanity’s energy costs of climate change at a local level. It is also developing usage is also generating levels of pollution that are the world’s fi rst empirically-derived estimate of the global substantially shortening people’s lives and causing social cost of carbon, which can be used by governments disruptive climate change. Finding a way to supply the around the world to set climate policy. energy needed for human development without risking The Air Quality Life Index (AQLI) is an air quality metric health or the environment is one of the most important that converts particulate air pollution measurements challenges the world faces: the global energy challenge.
    [Show full text]
  • Ralph J. Cicerone 1943–2016
    Ralph J. Cicerone 1943–2016 A Biographical Memoir by Barbara J. Finlayson-Pitts, Diane E. Griffin, V. Ramanathan, Barbara Schaal, and Susan E. Trumbore ©2020 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. RALPH JOHN CICERONE May 2, 1943–November 5, 2016 Elected to the NAS, 1990 Baseball afficinado; scientific visionary; natural leader; statesman of great integrity; convincer par excellence; half of an incredible team…this is the human treasure that was Ralph J. Cicerone. It is an enormous challenge to capture adequately Ralph’s essence and the many ways he left the world a better place. We hope in the following we have some small measure of success in this endeavor. Ralph Cicerone’s is a very American story. His grandparents were immigrants from Italy and he was born in New Castle, Pennsylvania on May 2, 1943. His father, Salvatore, was an insurance salesman who, when working in the evenings, left math problems for Ralph to solve. Ralph, who had a natural affinity for sports, became the first in his family to attend college. At MIT, he was captain of the baseball team By Barbara J. Finlayson-Pitts, while majoring in electrical engineering. Graduating with Diane E. Griffin, V. Ramanathan, a B.S. in 1965, he moved to the University of Illinois for his Barbara Schaal, Master’s (1967) and Ph.D. (1970) degrees in electrical engi- and Susan E. Trumbore neering (minoring in physics). Ralph’s start at Illinois proved to be life-changing; while standing in line to register for the class Theory of Complex Variables, he met his future life partner, Carol, and they married in 1967.
    [Show full text]
  • The Disclosure of Climate Data from the Climatic Research Unit at the University of East Anglia
    House of Commons Science and Technology Committee The disclosure of climate data from the Climatic Research Unit at the University of East Anglia Eighth Report of Session 2009–10 Volume II Oral and written evidence Ordered by The House of Commons to be printed 24 March 2010 HC 387-II Published on 31 March 2010 by authority of the House of Commons London: The Stationery Office Limited £0.00 The Science and Technology Committee The Science and Technology Committee is appointed by the House of Commons to examine the expenditure, administration and policy of the Government Office for Science. Under arrangements agreed by the House on 25 June 2009 the Science and Technology Committee was established on 1 October 2009 with the same membership and Chairman as the former Innovation, Universities, Science and Skills Committee and its proceedings were deemed to have been in respect of the Science and Technology Committee. Current membership Mr Phil Willis (Liberal Democrat, Harrogate and Knaresborough)(Chair) Dr Roberta Blackman-Woods (Labour, City of Durham) Mr Tim Boswell (Conservative, Daventry) Mr Ian Cawsey (Labour, Brigg & Goole) Mrs Nadine Dorries (Conservative, Mid Bedfordshire) Dr Evan Harris (Liberal Democrat, Oxford West & Abingdon) Dr Brian Iddon (Labour, Bolton South East) Mr Gordon Marsden (Labour, Blackpool South) Dr Doug Naysmith (Labour, Bristol North West) Dr Bob Spink (Independent, Castle Point) Ian Stewart (Labour, Eccles) Graham Stringer (Labour, Manchester, Blackley) Dr Desmond Turner (Labour, Brighton Kemptown) Mr Rob Wilson (Conservative, Reading East) Powers The Committee is one of the departmental Select Committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No.152.
    [Show full text]
  • Climate Change Scepticism: a Transnational Ecocritical Analysis
    Garrard, Greg. "Climate Scepticism in the UK." Climate Change Scepticism: A Transnational Ecocritical Analysis. By Greg GarrardAxel GoodbodyGeorge HandleyStephanie Posthumus. London,: Bloomsbury Academic, 2019. 41–90. Bloomsbury Collections. Web. 26 Sep. 2021. <http://dx.doi.org/10.5040/9781350057050.ch-002>. Downloaded from Bloomsbury Collections, www.bloomsburycollections.com, 26 September 2021, 23:43 UTC. Copyright © Greg Garrard, George Handley, Axel Goodbody and Stephanie Posthumus 2019. You may share this work for non-commercial purposes only, provided you give attribution to the copyright holder and the publisher, and provide a link to the Creative Commons licence. 2 Climate Scepticism in the UK Greg Garrard Before embarking on a detailed analysis of sceptical British texts, I will provide some historical and scholarly context. There have been many studies of anti- environmentalism in the United States (Helvarg; Brick; Ehrlich and Ehrlich; Switzer) and one on the global ‘backlash’ (Rowell), but none focuses exclusively on the UK. The sole treatment of anti-environmentalism within ecocriticism comes from the United States (Buell), just like the various exposés of climate scepticism discussed in the Introduction. As this chapter will show, British climate scepticism is possessed of a prehistory and some distinctive local features that reward closer inspection. Nevertheless, the Anglo-American axis of organized anti-environmentalism is obvious: British climate sceptics such as Christopher Monckton, James Delingpole and Nigel Lawson are darlings of the American conservative think tanks (CTTs) that promulgate sceptical perspectives, while Martin Durkin’s The Great Global Warming Swindle (2007), a British documentary shown on Channel 4, includes interviews with Richard Lindzen, Patrick Michaels and Fred Singer, all prominent American sceptics.
    [Show full text]
  • Volume 3: Process Issues Raised by Petitioners
    EPA’s Response to the Petitions to Reconsider the Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act Volume 3: Process Issues Raised by Petitioners U.S. Environmental Protection Agency Office of Atmospheric Programs Climate Change Division Washington, D.C. 1 TABLE OF CONTENTS Page 3.0 Process Issues Raised by Petitioners............................................................................................5 3.1 Approaches and Processes Used to Develop the Scientific Support for the Findings............................................................................................................................5 3.1.1 Overview..............................................................................................................5 3.1.2 Issues Regarding Consideration of the CRU E-mails..........................................6 3.1.3 Assessment of Issues Raised in Public Comments and Re-Raised in Petitions for Reconsideration...............................................................................7 3.1.4 Summary............................................................................................................19 3.2 Response to Claims That the Assessments by the USGCRP and NRC Are Not Separate and Independent Assessments.........................................................................20 3.2.1 Overview............................................................................................................20 3.2.2 EPA’s Response to Petitioners’
    [Show full text]
  • Executive Summary)
    Ensuring the Integrity, Accessibility, and Stewardship of Research Data in the Digital Age (Free Executive Summary) http://www.nap.edu/catalog/12615.html Free Executive Summary Ensuring the Integrity, Accessibility, and Stewardship of Research Data in the Digital Age Committee on Ensuring the Utility and Integrity of Research Data in a Digital Age; National Academy of Sciences ISBN: 978-0-309-13684-6, 188 pages, 6 x 9, paperback (2009) This free executive summary is provided by the National Academies as part of our mission to educate the world on issues of science, engineering, and health. If you are interested in reading the full book, please visit us online at http://www.nap.edu/catalog/12615.html . You may browse and search the full, authoritative version for free; you may also purchase a print or electronic version of the book. If you have questions or just want more information about the books published by the National Academies Press, please contact our customer service department toll-free at 888-624-8373. As digital technologies are expanding the power and reach of research, they are also raising complex issues. These include complications in ensuring the validity of research data; standards that do not keep pace with the high rate of innovation; restrictions on data sharing that reduce the ability of researchers to verify results and build on previous research; and huge increases in the amount of data being generated, creating severe challenges in preserving that data for long-term use. Ensuring the Integrity, Accessibility, and Stewardship of Research Data in the Digital Age examines the consequences of the changes affecting research data with respect to three issues - integrity, accessibility, and stewardship-and finds a need for a new approach to the design and the management of research projects.
    [Show full text]
  • CURRICULUM VITAE (June 2020)
    (Michael Oppenheimer) CURRICULUM VITAE (June 2020) MICHAEL OPPENHEIMER Albert G. Milbank Professor of Geosciences and International Affairs, Department of Geosciences and the Woodrow Wilson School of Public & International Affairs, Princeton University Director, Center for Policy Research on Energy and the Environment of the Woodrow Wilson School, Princeton University Associated Faculty of: Princeton Environmental Institute Atmosphere and Ocean Sciences Program Princeton Institute for International and Regional Studies Andlinger Center for Energy and the Environment Contact Information Green Hall 3C13 Princeton University Princeton, N.J. 08544 609-258-2338 Email: [email protected] Website: https://cpree.princeton.edu/people/michael-oppenheimer Other Professional Affiliations Visiting Professor, NYU School of Law Editor in Chief, Climatic Change Letters Co-editor in Chief, Climatic Change Science Advisor, Environmental Defense Fund Coordinating Lead Author and Review Editor, Intergovernmental Panel on Climate Change Fields of Specialization Physics and chemistry of the atmosphere; climate change, ozone depletion, acid deposition and air pollution: their effects on natural systems and society, and public policy responses. Education S.B. (Chemistry) M.I.T., 1966 Ph.D. (Chemical Physics) University of Chicago, 1970 1 (Michael Oppenheimer) Positions 1966-67 Teaching Assistant, University of Chicago 1971-73 Research Fellow, Harvard College Observatory 1971-81 Astrophysicist, Harvard-Smithsonian Center for Astrophysics 1978-79 Visiting
    [Show full text]
  • Chris Church Matters TRINITY Term 2013 Issue 31 Editorial Contents
    Chris Church Matters TRINITY TERM 2013 ISSUE 31 Editorial Contents Only a life lived in the service to others is worth living. DEAn’S DIARy 1 albert einstein CATHEDRAl nEWS: The Office for the Royal Maundy 2 The idea of service permeates much that appears in this edition of Christ CARDInAl SInS – Notes from the archives 4 Church Matters. Christopher Lewis celebrates his tenth year as Dean this year, and he writes about our Visitor in his Diary. There can surely CHRIST CHURCH CATHEDRAl CHoIR 6 be nobody in the country who better personifies the ideals of duty and CHRIST CHURCH CATHEDRAl SCHool 7 service than Queen Elizabeth II: “I have in sincerity pledged myself to your service, as so many of you are pledged to mine. Throughout all my life CHRIST CHURCH CollEGE CHoIR 8 and with all my heart I shall strive to be worthy of your trust.” THE nEWS fRoM EvEREST, 1953 10 Many of our thirteen Prime Ministers whom the Archivist writes about also stressed the ideal. W. E. Gladstone, whom another member JoSEPH BAnkS 12 of the House, Lord (Nigel) Lawson, called “the greatest Chancellor of all EnGRAvED GEMS AnD THE UPPER lIBRARy 14 time”, stated that “selfishness is the greatest curse of the human race” A PRICElESS CollECTIon of THEATRICAl EPHEMERA 16 (and Churchill is alleged to have said “They told me how Mr. Gladstone read Homer for fun, which I thought served him right.”) ASSoCIATIon nEWS & EvEnTS 17-27 Service, to the House, is also epitomised by the authors of the next PoETRy 28 two articles, Stephen Darlington and the Cathedral School headmaster, Martin Bruce, as it is by the choristers in the both the Cathedral and the ovAlHoUSE AT 50 30 College choirs.
    [Show full text]