Bacteriophage Cocktail Significantly Reduces Escherichia Coli O157:H7 Contamination of Lettuce and Beef, but Does Not Protect Against Recontamination

Total Page:16

File Type:pdf, Size:1020Kb

Bacteriophage Cocktail Significantly Reduces Escherichia Coli O157:H7 Contamination of Lettuce and Beef, but Does Not Protect Against Recontamination RESEARCH PAPER Bacteriophage 2:3, 178–185; July/August/September 2012; © 2012 Landes Bioscience Bacteriophage cocktail significantly reduces Escherichia coli O157:H7 contamination of lettuce and beef, but does not protect against recontamination Chandi D. Carter,1,* Adam Parks,1 Tamar Abuladze,1,† Manrong Li,1,† Joelle Woolston,1 Joshua Magnone,2 Andre Senecal,2 Andrew M. Kropinski3 and Alexander Sulakvelidze1 1Intralytix, Inc.; Baltimore, MD USA; 2United States Army Natick Soldier Research Development and Engineering Center; Combat Feeding Directorate; Natick, MA USA; 3Public Health Agency of Canada; Laboratory for Foodborne Zoonoses; and Department of Molecular & Cellular Biology; University of Guelph; Guelph, ON Canada †These authors contributed equally to this work. Keywords: Escherichia coli O157:H7, bacteriophage, phage, EcoShield™, food safety, beef, ground beef, lettuce, genomics, phylogeny Abbreviations: SEM, Standard Error of the Mean; STEC, Shiga-like toxin producing E. coli; ca., approximately Foods contaminated with Escherichia coli O157:H7 cause more than 63,000 foodborne illnesses in the United States every year, resulting in a significant economic impact on medical costs and product liabilities. Efforts to reduce contamination with E. coli O157:H7 have largely focused on washing, application of various antibacterial chemicals, and gamma- irradiation, each of which has practical and environmental drawbacks. A relatively recent, environmentally-friendly approach proposed for eliminating or significantly reducing E. coli O157:H7 contamination of foods is the use of lytic bacteriophages as biocontrol agents. We found that EcoShield™, a commercially available preparation composed of three lytic bacteriophages specific for E. coli O157:H7, significantly (p < 0.05) reduced the levels of the bacterium in experimentally contaminated beef by ≥ 94% and in lettuce by 87% after a 5 min contact time. The reduced levels of bacteria were maintained for at least one week at refrigerated temperatures. However, the one-time application of EcoShield™ did not protect the foods from recontamination with E. coli O157:H7. Our results demonstrate that EcoShield™ is effective in significantly reducing contamination of beef and lettuce with E. coli O157:H7, but does not protect against potential later contamination due to, for example, unsanitary handling of the foods post processing. Introduction to $405 million in medical costs and lost productivity annually.6 Furthermore, substantive costs to manufacturers and growers may Escherichia coli (E. coli) O157:H7 is a Shiga toxin producing be incurred in the form of product loss and brand-damaging pub- member of enterohemorrhagic E. coli (STEC). It is a major food- licity associated with recalling products contaminated with this borne bacterial pathogen, which was first associated with human bacterium. These costs significantly increase (due to additional illness during an outbreak of hemorrhagic colitis in 1982, and has legal fees and settlement agreements) if the consumption of those been listed by the Centers for Disease Control and Prevention foods results in human illness or mortality, and may force the as a national notifiable disease since 1994.1,2 This bacterium company out of business.7–9 For example, a single E. coli O157:H7 has been estimated to cause > 63,000 foodborne illnesses and outbreak associated with contaminated spinach in 2006 cost the approximately 61 deaths annually in the United States.2,3 E. coli spinach industry between $37 and $74 million.10 Thus, there are O157:H7 infections are of particular concern in young children very strong public health and economic incentives to develop novel, and elderly persons because it is associated with hemolytic uremic environmentally-friendly, safe and effective approaches for manag- syndrome which may permanently damage the kidneys.4,5 ing E. coli O157:H7 contamination of a broad range of foods. In addition to being of significant importance to public health, A variety of treatment strategies are currently employed to the economic impact of E. coli O157:H7 contamination of foods is eliminate or significantly reduceE. coli O157:H7 contamination, substantial. It has been estimated that hospitalizations and deaths ranging from simple washing of foods to chemical or physical due to E. coli O157:H7 infections in the United States may lead decontamination of foods. These methods vary with regard to *Correspondence to: Chandi D. Carter; Email: [email protected] Submitted: 07/18/12; Revised: 11/07/12; Accepted: 11/07/12 http://dx.doi.org/10.4161/bact.22825 178 Bacteriophage Volume 2 Issue 3 RESEARCH PAPER RESEARCH PAPER approved for direct food applications in the United States and Europe; e.g., ListShield™, Listex P-100™ and EcoShield™.24 One of those FDA-cleared preparations, EcoShield™, is a bac- teriophage cocktail composed of three E. coli O157:H7-specific lytic bacteriophages, which has been previously reported to sig- nificantly reduce theE. coli O157:H7 contamination on surfaces and various foods.20 The studies presented in the current com- munication were performed to determine whether treatment with EcoShield™ can (1) safely and significantly reduce E. coli O157:H7 levels in lettuce and beef under conditions that mimic their usual storage conditions, and (2) protect the phage-treated foods from recontamination with E. coli O157: H7. Results and Discussion Figure 1. Effect of phage contact time on E. coli O157:H7 levels in beef. Effect of phage contact time on E. coli O157:H7 levels. In an White bars indicate PBS controls lacking EcoShield™, gray bars indicate earlier study in which the efficacy of EcoShield™ on the E. coli EcoShield™ treated test groups. Error bars represent the standard error of the mean (SEM) (n = 3). ** p < 0.05. O157:H7 levels on various foods and hard surfaces was evaluated, the standard incubation time between phage application and test- ing for the residual bacterial contamination levels (i.e., “contact their efficacy, cost and impact on the flavor and aesthetic integ- time”) was 5 min.20 To determine if longer contact times would rity of food. For example, gamma-irradiation is considered to be increase the efficacy of EcoShield™, a time-course experiment one of the most effective treatments, capable of reducing E. coli was performed in which artificially contaminated beef steaks 11 O157:H7, and various other bacteria, by 5 log10. However, were treated with EcoShield™ (or PBS control) and held for 5, the process is very expensive and more effective (high) levels of 15, 30, 60, 120 and 1440 min at 4°C. The levels of viable E. coli gamma irradiation may adversely affect the organoleptic quali- O157:H7 in the meat were measured immediately after sampling. ties of foods, including taste and appearance.12 Other strategies EcoShield™ application significantly (p < 0.05, unpaired t-test) involve the application of various antibacterial chemicals, such as reduced the concentration of viable E. coli O157:H7 on beef sam- calcium hypochlorite, which has been reported to reduce E. coli ples at all contact times examined (Fig. 1) compared with the contamination by 1.5 – 2.5 logs,13 but many of those chemicals PBS-treated control samples. The reductions were similar for all have a negative environmental impact. In addition to targeting of the contact times examined, ranging from 94% to 98%. The pathogenic bacteria, both gamma-irradiation and chemical anti- 5 min contact time is considerably shorter than the time required bacterials target beneficial bacteria, thus negatively impacting the for a full replication cycle of lytic bacteriophage (e.g., the rep- availability of beneficial bacteria in foods.14 A relatively new inter- lication cycle of a typical lytic phage such as T4 takes approxi- vention strategy that has the potential to alleviate those problems mately 20–40 min25), indicating our results support the idea that involves using lytic bacteriophages to target specific foodborne E. coli cells were infected within the first 5 min and there was bacterial pathogens in various foods. no additional significant killing during the storage conditions we Bacteriophages (or viruses that lyse bacteria) are the most examined (Fig. 1). This observation may have some important ubiquitous life form on Earth and they are part of the normal practical implications for designing proper treatment strategies microflora of all fresh foods.15,16 The concept of using lytic bac- with bacteriophages in industrial food processing facilities. teriophages to improve food safety relies on application of an Impact of food storage conditions on E. coli O157:H7 appropriate lytic phage preparation onto foods that may be con- post phage treatment. Most foods that are at high risk of con- taminated with foodborne bacterial pathogens that are suscep- tamination with E. coli O157:H7 (including ground beef) are tible to those phages. If the foods happen to be contaminated typically stored and transported refrigerated or frozen. E. coli with the targeted bacterial pathogen, the phages will eliminate O157:H7 typically does not grow or grows very slowly at refriger- or significantly reduce the contamination, thus making the foods ated (2–8°C) temperatures,26 and growth may also occur dur- safe to consume without deleterious effect on their normal, ben- ing cooling from room to refrigeration temperatures. Thus, we eficial microflora. This strategy is referred to as bacteriophage- were interested in determining if the decrease in bacterial load mediated biocontrol. as the result of EcoShield™ treatment was consistent through- Interest in bacteriophage-mediated biocontrol has recently out a storage period of up to one week at refrigerated tempera- gained increased momentum, as a variety of laboratories are tures. This time period is consistent with the time it takes for pursuing the development of applications that utilize bacterio- beef processing, transport and sales. Artificially contaminated phages for pathogen control.17–19 Several reports have detailed beef steaks were treated with EcoShield™ (or PBS control) then the successful use of bacteriophages in significantly reducing the ground after 24 h at 4°C.
Recommended publications
  • A Review of Topical Phage Therapy for Chronically Infected Wounds
    antibiotics Review A Review of Topical Phage Therapy for Chronically Infected Wounds and Preparations for a Randomized Adaptive Clinical Trial Evaluating Topical Phage Therapy in Chronically Infected Diabetic Foot Ulcers Christopher Anthony Duplessis * and Biswajit Biswas Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-240-778-7268 Received: 8 May 2020; Accepted: 24 June 2020; Published: 4 July 2020 Abstract: The advent and increasing prevalence of antimicrobial resistance commensurate with the absence of novel antibiotics on the horizon raises the specter of untreatable infections. Phages have been safely administered to thousands of patients exhibiting signals of efficacy in many experiencing infections refractory to antecedent antibiotics. Topical phage therapy may represent a convenient and efficacious treatment modality for chronic refractory infected cutaneous wounds spanning all classifications including venous stasis, burn-mediated, and diabetic ulcers. We will initially provide results from a systematic literature review of topical phage therapy used clinically in refractorily infected chronic wounds. We will then segue into a synopsis of the preparations for a forthcoming phase II a randomized placebo-controlled clinical trial assessing the therapeutic efficacy exploiting adjunctive personalized phage administration, delivered topically, intravenously (IV) and via a combination of both modalities (IV
    [Show full text]
  • Alexander Sulakvelidze. 3. Address: Intralytix, Inc., 701 East Pratt St, Balti
    1. Date: October 27, 2010 2. Name of submitter: Alexander Sulakvelidze. 3. Address: Intralytix, Inc., 701 East Pratt St, Baltimore, Maryland 21202 4. Description of the proposed action: The food contact substance is a product called EcoShield™, which is composed of three different strains of bacteriophages that have the ability to specifically and selectively kill the harmful E. coli strain O157:H7, which can cause a serious foodborne illness. The proposed use of the food additive is to act as an antimicrobial processing aid by reducing the level of surface contamination of red meat with E. coli O157:H7 prior to the meat grinding process. The product is (i) All natural (all component phages were isolated from the environment) and not genetically modified, (ii) Does not contain preservatives, (iii) Does not alter food flavor, aroma, or appearance, (iv) Does not contain any known, potentially allergenic substances, (v) Is certified both Kosher and Halal (with OMRI certification pending), and (vi) Is cost effective and cost competitive. EcoShield™ is sold as a concentrate that is diluted (with water) 1:10; the use level concentration is applied to the parts and trim of the red meat at a rate of approximately 1 mL per 250 cm2 of surface area. Need for proposal Foodborne illnesses are a substantial health burden in the United States. The Center for Disease Control estimates that each year, 76 million people get sick, 300,000 are hospitalized, and 5,000 die. In the U.S. alone, these illnesses are estimated to cause $37.1 billion annually in medical costs and lost productivity.
    [Show full text]
  • Agency Response Letter GRAS Notice No. GRN 000672
    . U.S. FOOD & DRUG ADMINISTRATION CENTER FOR FOOD SAFETY &APPLIED NUTRITION . Alexander Sulakvelidze, Ph.D. Intralytix, Inc. 701 E. Pratt Street Baltimore, MD 21202 Re: GRAS Notice No. GRN 000672 Dear Dr. Sulakvelidze: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000672. We received the notice, dated October 4, 2016, that you submitted under the format of the agency’s final rule (81 FR 54960; August 17, 2016; Substances Generally Recognized as Safe (GRAS)) on October 5, 2016, and filed it on October 13, 2016. We received amendments containing additional safety information on November 23, 2016, February 24, 2017, and March 07, 2017. The subject of the notice is a preparation containing five bacterial monophages specific to Shigella spp. (Shigella phage preparation) for use as an antimicrobial agent on ready-to-eat- meat and poultry, fish (including smoked fish), shellfish, fresh and processed fruits and vegetables, and dairy products including cheese at levels up to 1 x 108 plaque forming units (PFU)/g food. The notice informs us of the view of Intralytix, Inc. (Intralytix) that this use of Shigella phage preparation is GRAS through scientific procedures. Our use of the term, “Shigella phage preparation,” in this letter is not our recommendation of that term as an appropriate common or usual name for declaring the substance in accordance with FDA’s labeling requirements. Under 21 CFR 101.4, each ingredient must be declared by its common or usual name. In addition, 21 CFR 102.5 outlines general principles to use when establishing common or usual names for nonstandardized foods.
    [Show full text]
  • Phage Therapy's Latest Makeover
    DispatchDate: 17.04.2019 · ProofNo: 133, p.1 news feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Credit: Dr. Robert Pope, National Biodefense Analysis & Countermeasures Center 30 31 32 33 Phage therapy’s latest makeover 34 35 As issues of product consistency, standardization and specificity are being tackled, can phage therapeutics—long 36 oversold and overhyped—finally realize their antibacterial potential? Charles Schmidt investigates. 37 38 Charles Schmidt 39 40 41 n May of 2018, an international team of million grant from the UCSD chancellor, Still, previous experience, mostly in 42 researchers and clinicians reported they the new Center for Innovative Phage the context of compassionate-use phage 43 successfully treated a seriously ill teenager Applications and Therapeutics (IPATH) treatments, has shown the approach to 44 I with cystic fibrosis who had disseminated is applying “the same principles of clinical be hit-and-miss, time-consuming and 45 infection by Mycobacterium abscessus with evaluation and development to phage expensive. To turn bacteriophage from 46 a cocktail of genetically engineered phage1. therapy that would be applied to any other a laboratory tool into an efficacious 47 According to the University of Pittsburgh’s therapeutic entity,” says center co-director therapeutic for broader markets, companies 48 Graham Hatfull, who led the research team, Robert Schooley, a physician and infectious are seeking to scale up production and 49 this accomplishment represents a number disease specialist at UCSD. deliver potent phage products under good 50 of firsts: the first genetically engineered A worsening crisis of multi-drug- manufacturing practices (GMP) quickly 51 phage treatment—in this case, to convert resistant (MDR) infections, along with and reliably.
    [Show full text]
  • Mar 01, 2014 Discover Magazine March, 2014 Infections
    7447001372 3 Infections Infected In the face of antibiotic resistance, phage therapy may be coming to a pharmacy near you. BY LINDA MARSA ~ It was a guerrilla assault worthy -,of the takedown of Osama bin Laden. But in this case, the assassins A phage is a type of virus that attacks and infiltrates bacteria. In this digital rendering, were intrepid viral invaders. In Andrew T-bacteriophages are on the attack, injecting their genetic material into the bacteria. Camilli's molecular biology lab at Tufts University in Boston, researchers found Alexander Sulakvelidze, a phage expert tions worked, and sometimes they didn't. the telltale footprints of a startling at the Emerging Pathogens Institute at Also, people occasionally became sick attack against cholera, a deadly bacterial the University of Florida in Gainesville. after ingesting the tiny microbes because disease. They were analyzing the DNA Without a way to manage infections, the treatments weren't purified properly. sequences of tiny viruses called bacte­ surgeries ranging from simple procedures Western physicians discarded them once riophages (literally, "bacteria eaters") to complex organ transplants would the more reliable antibiotics became lurking in the stool samples of cholera become risky, he explains: "You have a widely available after World War II. patients. The phages' DNA contained very real and alarming possibility that However, Soviet scientists figured some of the genes from another patients will either die or will develop out how to make phages more effec­ bacteria's inunune system. Somehow, the complications. " Many researchers believe tive - advances in molecular biology tiny phages sneaked in and overpowered it's time to look beyond antibiotics.
    [Show full text]
  • Phage Biocontrol Applications in Food Production and Processing
    Curr. Issues Mol. Biol. (2021) 40: 267-302. caister.com/cimb Phage Biocontrol Applications in Food Production and Processing Amit Vikram*, Joelle Woolston and Alexander Sulakvelidze Intralytix, Inc., Columbia, Maryland 21046, U.S.A. *Corresponding author: [email protected] DOI: https://doi.org/10.21775/cimb.040.267 Abstract Bacteriophages, or phages, are one of the most – if not the most – ubiquitous organisms on Earth. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention (and most regulatory approvals) focused on their use to improve food safety. This approach, termed “phage biocontrol” or “bacteriophage biocontrol,” includes both pre- and post-harvest application of phages as well as decontamination of the food contact surfaces in food processing facilities. This review focuses on post-harvest applications of phage biocontrol, currently the most commonly used type of phage mediation. We also briefly describe various commercially available phage preparations and discuss the challenges still facing this novel yet promising approach. Phages are Ancient and Abundant in Nature Bacteriophages are the viruses that infect bacteria. They were discovered in 1917 by Félix d’Hérelle in 1917 (Salmond and Fineran, 2015; Sulakvelidze et al., 2001), who also coined the term “bacteriophage,” derived from "bacteria" and the Greek φαγεῖν (phagein) meaning “to eat” or "to devour" bacteria. Numerous studies, including recent metagenomic surveys, suggest that phages are (i) arguably the oldest microorganisms on this planet that likely originated approximately 3 billion years ago (Brüssow, 2007), and (ii) likely the most ubiquitous organisms on Earth, abundant in all life-supporting environments including all natural untreated foods.
    [Show full text]
  • BACTERIOPHAGES: a New Old Biomedical Technology
    POLICY BRIEF 10 August 2010 BACTERIOPHAGES: A New Old Biomedical Technology Antibiotic resistance is a challenge that calls for good Limited 2009). Bacterial counts and symptoms were science as well as ingenuity. Although we will always reduced. Encouraged, the company is moving on to a need new antibiotics, there are alternative therapeutic larger trial. In the United States, Intralytix successfully approaches worth considering. One example is concluded a preliminary safety trial of bacteriophage bacteriophage therapy. Bacteriophages—or ―phages‖— therapy of venous leg ulcers (Wolcott et al. 2009). Other exist in abundance in nature, including in and on the clinical trials (P. aeruginosa and S. aureus in burns and human body. Phages are viruses that infect bacteria genetically engineered bacteriophages) are under way and use the bacterial cell’s genetic apparatus to in the United Kingdom. produce more phages. In the process, they kill their host. By harnessing phages’ natural ability to destroy Bacteriophages have shown promise as tools for bacteria, infections can be cleared. infection control as well. Scientists from the University of Strathclyde have chemically bonded phages to nylon After Felix d’Herelle’s discovery and isolation of the first products such as strips, sutures and implantable beads bacteriophage in 1917, the long-sought cure for (The Medical News 2005), which they use during bacterial infections seemed to be at hand. But with the surgery. This preparation is effective against most dawn of the antibiotic era in 1941, when penicillin was major epidemic methicillin-resistant Staphylococcus discovered, the western medical establishment lost aureus (MRSA) strains. Bacteriophages on sutures can interest in phages.
    [Show full text]
  • Bacteriophage Felix O1: Genetic Characterization and Bioremedial Application
    BACTERIOPHAGE FELIX O1: GENETIC CHARACTERIZATION AND BIOREMEDIAL APPLICATION by Jean M. Whichard Dissertation submitted to the Faculty of Virginia Polytechnic Institute & State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Veterinary Medical Sciences Committee Members: Dr. F. William Pierson, Co-chairman Dr. Nammalwar Sriranganathan, Co-chairman Dr. James Claus Dr. William Hueston Dr. Timothy Larson October 16, 2000 Blacksburg, Virginia Keywords: bacteriophage, Felix O1, Salmonella, poultry BACTERIOPHAGE FELIX O1: GENETIC CHARACTERIZATION AND BIOREMEDIAL APPLICATION Jean M. Whichard Abstract Bacteriophage Felix O1 was studied for applicability as a Salmonella intervention. Felix O1 s potential as a Salmonella therapeutic was explored, as was its utility as a food application. Felix O1 is specific for and infects most serovars within the genus Salmonella. The entire 86.155-kb sequence of the phage’s linear, double-stranded chromosome was determined. 213 open reading frames (ORFs) were found, including 23 homologues of phage genes (e<0.008). Homology searches do not indicate genes that would be expected to increase virulence of Salmonella. Thirteen T4 homologues were found, including rIIA and rIIB, rapid lysis genes of T-even phages. Site-directed mutagenesis of the rIIB region was attempted by homologous recombination with plasmids containing luxAB of Vibrio harveyi. No ∆rIIB luxAB+ recombinants resulted from the methods tried. Serial in vivo passage was used to select for a longer-circulating Felix O1 mutant using the modified methods of Merril et al., (1996). No difference was found in the clearance of wild-type (WT) and Felix O1 following nine serial passages.
    [Show full text]
  • Bacteriophage Therapy: Stalin's Forgotten Cure
    N EWS F OCUS 65 64 63 Bacteriophage therapy, pioneered in Stalin-era Russia, is attracting renewed attention in the West as a 62 potential weapon against drug-resistant bugs and hard-to-treat infections 61 60 59 58 Stalin’s Forgotten Cure 57 56 TBILISI—Last December, three woodsmen in ten used as a last-ditch treatment. “The carpeted with them. “Mother nature gives 55 the mountains of Georgia stumbled upon a window of opportunity for new antibiotics you an endless source of phages,” says 54 pair of canisters that were, oddly, hot to the is rapidly closing,” asserts Janakiraman Sulakvelidze. And unlike most antibiotics, 53 touch. The men lugged the objects back to (“Ram”) Ramachandran, a former presi- they are very specific, Kutter says: “Phages 52 their campsite to warm themselves on a bit- dent of AstraZeneca India who 2 years ago can kill off a small fraction of the microbial 51 terly cold night. That turned out to be a ter- launched GangaGen Inc., a phage-therapy population and leave the rest intact.” 50 rible mistake: The canisters, Soviet relics start-up in Bangalore. Phages are like minuscule smart bombs 49 once used to power remote generators, were Although phages offer hope against drug- that home in on particular bacterial strains. 48 intensely radioactive and burned two of the resistant bacteria and could soon find a role Anecdotal evidence from decades of Soviet 47 men severely. The victims were rushed to as a treatment for burns, diabetic ulcers, and practice suggests that this results in far 46 the capital, Tbilisi, where doctors plied them other open wounds, experts concur that these fewer side effects than use of antibiotics.
    [Show full text]
  • Preparation Containing Bacterial Phages Specific to Shiga-Toxin
    FOOD & DRUG ADMINISTRATION CENTER FOR FOOD SAFETY & APPLIED NIITRITION Alexander Sulakvelidze, Ph.D. Intralytix, Inc. 701 E Pratt St. Baltimore, MD 21202 Re: GRAS Notice No. GRN 000834 Dear Dr. Sulakvelidze: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000834. We received Intralytix Inc.’s notice on December 20, 2018, and filed it on March 7, 2019. Intralytix submitted amendments to the notice on May 3, 2019, and August 27, 2019, providing additional information on safety and application. The subject of the notice is preparations containing three to eight bacteriophages (phage) specific to Shiga toxin-producing Escherichia coli (STEC; E. coli phage preparation) for use as antimicrobial treatments on meat, poultry, fruits, vegetables, dairy products (including cheese), fish, and other seafood at a level of no greater than 108 plaque-forming units (PFU)/g of food. The notice informs us of Intralytix’s view that these uses of E. coli phage preparation are GRAS through scientific procedures. Intralytix describes the identity of three of the phages, designated ECML-117, ECML- 359 and ECML-363, as double-stranded DNA lytic phages specific to STEC, which are individually prepared and purified.1 Intralytix states that for application, the preparation is diluted with water, yielding a working solution 109 PFU/mL as applied. The application process ensures that the final concentration on food is no greater than 108 PFU/g of food. Intralytix describes the method of manufacture for E. coli phage preparation. Each phage is produced by aerobic fermentation of a E. coli inoculated with the appropriate starter virion.
    [Show full text]
  • Low-Temperature Virus Vb Ecom VR26 Shows Potential in Biocontrol of STEC O26:H11
    foods Communication Low-Temperature Virus vB_EcoM_VR26 Shows Potential in Biocontrol of STEC O26:H11 Aurelija Zajanˇckauskaite,˙ Algirdas Noreika, Rasa Rutkiene,˙ Rolandas Meškys and Laura Kaliniene * Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; [email protected] (A.Z.); [email protected] (A.N.); [email protected] (R.R.); [email protected] (R.M.) * Correspondence: [email protected]; Tel.: +370-5-2234384 Abstract: Shiga toxin-producing Escherichia coli (STEC) O26:H11 is an emerging foodborne pathogen of growing concern. Since current strategies to control microbial contamination in foodstuffs do not guarantee the elimination of O26:H11, novel approaches are needed. Bacteriophages present an alternative to traditional biocontrol methods used in the food industry. Here, a previously isolated bacteriophage vB_EcoM_VR26 (VR26), adapted to grow at common refrigeration temperatures (4 and 8 ◦C), has been evaluated for its potential as a biocontrol agent against O26:H11. After 2 h of ◦ treatment in broth, VR26 reduced O26:H11 numbers (p < 0.01) by > 2 log10 at 22 C, and ~3 log10 at 4 ◦C. No bacterial regrowth was observed after 24 h of treatment at both temperatures. When VR26 was introduced to O26:H11-inoculated lettuce, ~2.0 log10 CFU/piece reduction was observed at 4, 8, and 22 ◦C. No survivors were detected after 4 and 6 h at 8 and 4 ◦C, respectively. Although at 22 ◦C, bacterial regrowth was observed after 6 h of treatment, O26:H11 counts on non-treated samples were >2 log10 CFU/piece higher than on phage-treated ones (p < 0.02).
    [Show full text]
  • Bacteriophage Preparation Lytic for Shigella Significantly Reduces Shigella Sonnei Contamination in Various Foods
    RESEARCH ARTICLE Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods Nitzan Soffer*, Joelle Woolston, Manrong Li, Chythanya Das, Alexander Sulakvelidze Intralytix, Inc., Baltimore, Maryland, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 ShigaShield™ is a phage preparation composed of five lytic bacteriophages that specifically target pathogenic Shigella species found in contaminated waters and foods. In this study, we examined the efficacy of various doses (9x105-9x107 PFU/g) of ShigaShield™ in remov- ing experimentally added Shigella on deli meat, smoked salmon, pre-cooked chicken, let- 7 7 OPEN ACCESS tuce, melon and yogurt. The highest dose (2x10 or 9x10 PFU/g) of ShigaShield™ applied to each food type resulted in at least 1 log (90%) reduction of Shigella in all the food types. Citation: Soffer N, Woolston J, Li M, Das C, Sulakvelidze A (2017) Bacteriophage preparation There was significant (P<0.01) reduction in the Shigella levels in all phage treated foods lytic for Shigella significantly reduces Shigella compared to controls, except for the lowest phage dose (9x105 PFU/g) on melon where sonnei contamination in various foods. PLoS ONE reduction was only ca. 45% (0.25 log). The genomes of each component phage in the cock- 12(3): e0175256. https://doi.org/10.1371/journal. tail were fully sequenced and analyzed, and they were found not to contain any ªundesirable pone.0175256 genesº including those listed in the US Code for Federal Regulations (40 CFR Ch1). Our Editor: Mikael Skurnik, University of Helsinki, data suggest that ShigaShield™ (and similar phage preparations with potent lytic activity FINLAND against Shigella spp.) may offer a safe and effective approach for reducing the levels of Shi- Received: January 16, 2017 gella in various foods that may be contaminated with the bacterium.
    [Show full text]