Phage Biocontrol Applications in Food Production and Processing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applications of Phage Therapy in Veterinary Medicine
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Archive for Student Projects Faculty of Veterinary Medicine and Animal Science Department of Biomedical Sciences and Veterinary Public Health Applications of Phage Therapy in Veterinary Medicine Sergey Gazeev Uppsala 2018 Veterinärprogrammet, examensarbete för kandidatexamen, 15 hp Delnummer i serien 2018:28 Applications of Phage Therapy in Veterinary Medicine Fagterapi och dess Tillämpning inom Veterinärmedicin Sergey Gazeev Handledare: Associate professor Lars Frykberg, Department of Biomedical Sciences and Veterinary Public Health Examinator: Maria Löfgren, Department of Biomedical Sciences and Veterinary Public Health Extent: 15 university credits Level and Depth: Basic level, G2E Course name: Independent course work in veterinary medicine Course code : EX0700 Programme/education: Veterinary programme Place of publication: Uppsala Year of publication: 2018 Serial name: Veterinärprogrammet, examensarbete för kandidatexamen Partial number in the series: 2018:28 Elektronic publication: https://stud.epsilon.slu.se Keywords: Phages, phage therapy, bacterial infections, aquaculture Nyckelord: Fager, fagterapi, bakteriella infektioner, akvakultur Swedish University of Agricultural Sciences Sveriges lantbruksuniversitet Faculty of Veterinary Medicine and Animal Science Department of Biomedical Sciences and Veterinary Public Health TABLE OF CONTENTS Summary………………………………………………………………………………………………………………………………………….0 Sammanfattning………………………………………………………………………………………………………………………………1 -
Phage Display and Its Application in Vaccine Design
Ann Microbiol (2010) 60:13–19 DOI 10.1007/s13213-009-0014-7 REVIEW ARTICLE Phage display and its application in vaccine design Jianming Gao & Yanlin Wang & Zhaoqi Liu & Zhiqiang Wang Received: 8 October 2009 /Accepted: 17 December 2009 /Published online: 22 January 2010 # Springer-Verlag and the University of Milan 2010 Abstract This review focuses on phage display and its Introduction application in vaccine design. Four kinds of phage display systems and their characteristics are highlighted. Whole Bacteriophages (phages) are viruses of bacteria consisting phage particles can be used to deliver vaccines by fusing of a DNA or RNA genome contained within a protein coat. immunogenic peptides to modified coat proteins (phage- Their growth and proliferation require a suitable prokary- display vaccination), or by incorporating a eukaryotic otic host. They either incorporate viral DNA into the host promoter-driven vaccine gene within the phage genome genome, replicating as part of the host (lysogenic), or (phage DNA vaccination). Hybrid phage vaccination results propagate inside the host cell before releasing phage from a combination of phage-display and phage DNA particles either by extruding from the membrane (as with vaccination strategies, indicating the potential for evolution filamentous phages) or by lysing the cell (lytic phages; of phage vaccines. Phage vaccines could provide a key to Clark and March 2006; Petty et al. 2007). Phages do not unlock new approaches in combating bacterial and viral replicate in eukaryotic hosts and act as inert particulate pathogens, and cancer diseases. New phage display systems antigens metabolically. Being particulate antigens, bacter- will certainly emerge because of the global abundance of iophages are processed by antigen-presenting cells (APC), phage and our increasing ability to exploit them. -
A Review of Topical Phage Therapy for Chronically Infected Wounds
antibiotics Review A Review of Topical Phage Therapy for Chronically Infected Wounds and Preparations for a Randomized Adaptive Clinical Trial Evaluating Topical Phage Therapy in Chronically Infected Diabetic Foot Ulcers Christopher Anthony Duplessis * and Biswajit Biswas Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-240-778-7268 Received: 8 May 2020; Accepted: 24 June 2020; Published: 4 July 2020 Abstract: The advent and increasing prevalence of antimicrobial resistance commensurate with the absence of novel antibiotics on the horizon raises the specter of untreatable infections. Phages have been safely administered to thousands of patients exhibiting signals of efficacy in many experiencing infections refractory to antecedent antibiotics. Topical phage therapy may represent a convenient and efficacious treatment modality for chronic refractory infected cutaneous wounds spanning all classifications including venous stasis, burn-mediated, and diabetic ulcers. We will initially provide results from a systematic literature review of topical phage therapy used clinically in refractorily infected chronic wounds. We will then segue into a synopsis of the preparations for a forthcoming phase II a randomized placebo-controlled clinical trial assessing the therapeutic efficacy exploiting adjunctive personalized phage administration, delivered topically, intravenously (IV) and via a combination of both modalities (IV -
Alexander Sulakvelidze. 3. Address: Intralytix, Inc., 701 East Pratt St, Balti
1. Date: October 27, 2010 2. Name of submitter: Alexander Sulakvelidze. 3. Address: Intralytix, Inc., 701 East Pratt St, Baltimore, Maryland 21202 4. Description of the proposed action: The food contact substance is a product called EcoShield™, which is composed of three different strains of bacteriophages that have the ability to specifically and selectively kill the harmful E. coli strain O157:H7, which can cause a serious foodborne illness. The proposed use of the food additive is to act as an antimicrobial processing aid by reducing the level of surface contamination of red meat with E. coli O157:H7 prior to the meat grinding process. The product is (i) All natural (all component phages were isolated from the environment) and not genetically modified, (ii) Does not contain preservatives, (iii) Does not alter food flavor, aroma, or appearance, (iv) Does not contain any known, potentially allergenic substances, (v) Is certified both Kosher and Halal (with OMRI certification pending), and (vi) Is cost effective and cost competitive. EcoShield™ is sold as a concentrate that is diluted (with water) 1:10; the use level concentration is applied to the parts and trim of the red meat at a rate of approximately 1 mL per 250 cm2 of surface area. Need for proposal Foodborne illnesses are a substantial health burden in the United States. The Center for Disease Control estimates that each year, 76 million people get sick, 300,000 are hospitalized, and 5,000 die. In the U.S. alone, these illnesses are estimated to cause $37.1 billion annually in medical costs and lost productivity. -
Agency Response Letter GRAS Notice No. GRN 000672
. U.S. FOOD & DRUG ADMINISTRATION CENTER FOR FOOD SAFETY &APPLIED NUTRITION . Alexander Sulakvelidze, Ph.D. Intralytix, Inc. 701 E. Pratt Street Baltimore, MD 21202 Re: GRAS Notice No. GRN 000672 Dear Dr. Sulakvelidze: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000672. We received the notice, dated October 4, 2016, that you submitted under the format of the agency’s final rule (81 FR 54960; August 17, 2016; Substances Generally Recognized as Safe (GRAS)) on October 5, 2016, and filed it on October 13, 2016. We received amendments containing additional safety information on November 23, 2016, February 24, 2017, and March 07, 2017. The subject of the notice is a preparation containing five bacterial monophages specific to Shigella spp. (Shigella phage preparation) for use as an antimicrobial agent on ready-to-eat- meat and poultry, fish (including smoked fish), shellfish, fresh and processed fruits and vegetables, and dairy products including cheese at levels up to 1 x 108 plaque forming units (PFU)/g food. The notice informs us of the view of Intralytix, Inc. (Intralytix) that this use of Shigella phage preparation is GRAS through scientific procedures. Our use of the term, “Shigella phage preparation,” in this letter is not our recommendation of that term as an appropriate common or usual name for declaring the substance in accordance with FDA’s labeling requirements. Under 21 CFR 101.4, each ingredient must be declared by its common or usual name. In addition, 21 CFR 102.5 outlines general principles to use when establishing common or usual names for nonstandardized foods. -
Targeting the Burkholderia Cepacia Complex
viruses Review Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex Philip Lauman and Jonathan J. Dennis * Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-2529 Abstract: The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy—the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy. Keywords: Burkholderia cepacia complex (Bcc); bacteria; pathogenesis; antibiotic resistance; bacterio- phages; phages; phage therapy; phage therapy treatment strategies; Bcc phage therapy Citation: Lauman, P.; Dennis, J.J. -
Arxiv:1911.07233V1 [Q-Bio.PE] 17 Nov 2019
Temperate and chronic virus competition leads to low lysogen frequency Sara M. Clifton∗ Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, Minnesota 55057, USA Rachel J. Whitaker Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA Zoi Rapti Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA Abstract The canonical bacteriophage is obligately lytic: the virus infects a bacterium and hijacks cell functions to produce large numbers of new viruses which burst from the cell. These viruses are well-studied, but there exist a wide range of coexisting virus lifestyles that are less understood. Temperate viruses exhibit both a lytic cycle and a latent (lysogenic) cycle, in which viral genomes are integrated into the bacterial host. Meanwhile, chronic (persistent) viruses use cell functions to produce more viruses without killing the cell; chronic viruses may also exhibit a latent stage in addition to the productive stage. Here, we study the ecology of these competing viral strategies. We demonstrate the conditions under which each strategy is dominant, which aids in control of human bacterial infections using viruses. We find that low lysogen frequencies provide competitive advantages for both virus types; however, chronic viruses maximize steady state density by elimi- nating lysogeny entirely, while temperate viruses exhibit a non-zero `sweet spot' lysogen frequency. Viral steady state density maximization leads to coexistence of temperate and chronic viruses, explaining the presence of multiple viral strategies in natural environments. -
Learning from Mistakes: the Role of Phages in Pandemics
PERSPECTIVE published: 17 March 2021 doi: 10.3389/fmicb.2021.653107 Learning From Mistakes: The Role of Phages in Pandemics Ahlam Alsaadi 1, Beatriz Beamud 2,3, Maheswaran Easwaran 4, Fatma Abdelrahman 5, Ayman El-Shibiny 5, Majed F. Alghoribi 6,7* and Pilar Domingo-Calap 2,8* 1 Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark, 2 Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, Paterna, Spain, 3 FISABIO-Salud Pública, Generalitat Valenciana, Valencia, Spain, 4 Department of Biomedical Engineering, Sethu Institute of Technology, Rajapalayam, India, 5 Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt, 6 Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, 7 King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, 8 Department of Genetics, Universitat de València, Paterna, Spain Edited by: Ana Rita Costa, The misuse of antibiotics is leading to the emergence of multidrug-resistant (MDR) bacteria, Delft University of Technology, and in the absence of available treatments, this has become a major global threat. In the Netherlands middle of the recent severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic, Reviewed by: which has challenged the whole world, the emergence of MDR bacteria is increasing due Eleanor Jameson, University of Warwick, to prophylactic administration of antibiotics to intensive care unit patients to prevent United Kingdom secondary bacterial infections. This is just an example underscoring the need to seek Jean-Paul Pirnay, Queen Astrid Military Hospital, alternative treatments against MDR bacteria. To this end, phage therapy has been Belgium proposed as a promising tool. -
Phage Therapy: a Magic Pill in the Fight Against Different COVID-19 Variants
International Journal of Clinical & Medical Informatics ISSN: 2582-2268 Blog | Vol 4 Iss 2 Phage Therapy: A Magic Pill in the Fight against Different COVID-19 Variants Anza Abbas1 and Yasir Hameed2* 1Department of Industrial Biotechnology, National University of Sciences and Technology, Islamabad, Pakistan 2Department of Biotechnology, The Islamia University of Bahawalpur, Pakistan Correspondence should be addressed to Yasir Hameed, [email protected] BLOG The coronavirus pandemic has caused the death of Recent studies have shown that phages (Viruses that more than 3,293,120 people, as reported by 10th May infect bacteria) possess antibacterial as well as 2021 by the World Health Organization (WHO). Due antiviral potential. This has ignited the use of phage to the emergence of different COVID-19 variants, therapy to treat multi-drug resistant bacteria and viral there is a dire need of effective treatments to combat infections. Phages act by inhibiting the adsorption of this pandemic. COVID-19 patients become virus to human epithelial cells and protect the susceptible to secondary infections such as caused by eukaryotic cells from virus induced apoptosis. bacteria. Around 70% of hospitalized COVID-19 Phages also regulate the expression of protective patients worldwide receive antibiotics as part of their cellular chaperones and inhibit viral replication treatment. Extensive use of antibiotics results in the inside the cells. Alongside, phages can downregulate emergence of multidrug-resistant bacteria. Use of the production of NF kappa B transcription factor drugs may also cause significant side effects and reactive oxygen species associated with the limiting their clinical efficacy in the COVID-19 inflammatory reactions. -
Phage Therapy in Veterinary Medicine
antibiotics Review Phage Therapy in Veterinary Medicine Rosa Loponte, Ugo Pagnini, Giuseppe Iovane and Giuseppe Pisanelli * Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Federico Delpino, 1, 80137 Naples, Italy; [email protected] (R.L.); [email protected] (U.P.); [email protected] (G.I.) * Correspondence: [email protected]; Tel.: +39-081-2536363 Abstract: To overcome the obstacle of antimicrobial resistance, researchers are investigating the use of phage therapy as an alternative and/or supplementation to antibiotics to treat and prevent infections both in humans and in animals. In the first part of this review, we describe the unique biological characteristics of bacteriophages and the crucial aspects influencing the success of phage therapy. However, despite their efficacy and safety, there is still no specific legislation that regulates their use. In the second part of this review, we describe the comprehensive research done in the past and recent years to address the use of phage therapy for the treatment and prevention of bacterial disease affecting domestic animals as an alternative to antibiotic treatments. While in farm animals, phage therapy efficacy perspectives have been widely studied in vitro and in vivo, especially for zoonoses and diseases linked to economic losses (such as mastitis), in pets, studies are still few and rather recent. Keywords: alternative to antibiotics; bacteriophages; phage therapy; veterinary medicine; pets Citation: Loponte, R.; Pagnini, U.; 1. Introduction and History Notes Iovane, G.; Pisanelli, G. Phage Therapy in Veterinary Medicine. Bacteriophages are viruses that parasitize bacteria. This attribute can be used to treat Antibiotics 2021, 10, 421. -
Phage Therapy's Latest Makeover
DispatchDate: 17.04.2019 · ProofNo: 133, p.1 news feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Credit: Dr. Robert Pope, National Biodefense Analysis & Countermeasures Center 30 31 32 33 Phage therapy’s latest makeover 34 35 As issues of product consistency, standardization and specificity are being tackled, can phage therapeutics—long 36 oversold and overhyped—finally realize their antibacterial potential? Charles Schmidt investigates. 37 38 Charles Schmidt 39 40 41 n May of 2018, an international team of million grant from the UCSD chancellor, Still, previous experience, mostly in 42 researchers and clinicians reported they the new Center for Innovative Phage the context of compassionate-use phage 43 successfully treated a seriously ill teenager Applications and Therapeutics (IPATH) treatments, has shown the approach to 44 I with cystic fibrosis who had disseminated is applying “the same principles of clinical be hit-and-miss, time-consuming and 45 infection by Mycobacterium abscessus with evaluation and development to phage expensive. To turn bacteriophage from 46 a cocktail of genetically engineered phage1. therapy that would be applied to any other a laboratory tool into an efficacious 47 According to the University of Pittsburgh’s therapeutic entity,” says center co-director therapeutic for broader markets, companies 48 Graham Hatfull, who led the research team, Robert Schooley, a physician and infectious are seeking to scale up production and 49 this accomplishment represents a number disease specialist at UCSD. deliver potent phage products under good 50 of firsts: the first genetically engineered A worsening crisis of multi-drug- manufacturing practices (GMP) quickly 51 phage treatment—in this case, to convert resistant (MDR) infections, along with and reliably. -
Bacteriophages As Potential Tools for Use in Antimicrobial Therapy and Vaccine Development
pharmaceuticals Review Bacteriophages as Potential Tools for Use in Antimicrobial Therapy and Vaccine Development Beata Zalewska-Pi ˛atek 1,* and Rafał Pi ˛atek 1,2 1 Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gda´nskUniversity of Technology, Narutowicza 11/12, 80-233 Gda´nsk,Poland; [email protected] 2 BioTechMed Center, Gda´nskUniversity of Technology, Narutowicza 11/12, 80-233 Gda´nsk,Poland * Correspondence: [email protected]; Tel.: +58-347-1862; Fax: +58-347-1822 Abstract: The constantly growing number of people suffering from bacterial, viral, or fungal infec- tions, parasitic diseases, and cancers prompts the search for innovative methods of disease prevention and treatment, especially based on vaccines and targeted therapy. An additional problem is the global threat to humanity resulting from the increasing resistance of bacteria to commonly used antibiotics. Conventional vaccines based on bacteria or viruses are common and are generally effective in pre- venting and controlling various infectious diseases in humans. However, there are problems with the stability of these vaccines, their transport, targeted delivery, safe use, and side effects. In this context, experimental phage therapy based on viruses replicating in bacterial cells currently offers a chance for a breakthrough in the treatment of bacterial infections. Phages are not infectious and pathogenic to eukaryotic cells and do not cause diseases in human body. Furthermore, bacterial viruses are sufficient immuno-stimulators with potential adjuvant abilities, easy to transport, and store. They can also be produced on a large scale with cost reduction. In recent years, they have also provided an ideal platform for the design and production of phage-based vaccines to induce protective host immune responses.