Bacteriophage Therapy: Stalin's Forgotten Cure

Total Page:16

File Type:pdf, Size:1020Kb

Bacteriophage Therapy: Stalin's Forgotten Cure N EWS F OCUS 65 64 63 Bacteriophage therapy, pioneered in Stalin-era Russia, is attracting renewed attention in the West as a 62 potential weapon against drug-resistant bugs and hard-to-treat infections 61 60 59 58 Stalin’s Forgotten Cure 57 56 TBILISI—Last December, three woodsmen in ten used as a last-ditch treatment. “The carpeted with them. “Mother nature gives 55 the mountains of Georgia stumbled upon a window of opportunity for new antibiotics you an endless source of phages,” says 54 pair of canisters that were, oddly, hot to the is rapidly closing,” asserts Janakiraman Sulakvelidze. And unlike most antibiotics, 53 touch. The men lugged the objects back to (“Ram”) Ramachandran, a former presi- they are very specific, Kutter says: “Phages 52 their campsite to warm themselves on a bit- dent of AstraZeneca India who 2 years ago can kill off a small fraction of the microbial 51 terly cold night. That turned out to be a ter- launched GangaGen Inc., a phage-therapy population and leave the rest intact.” 50 rible mistake: The canisters, Soviet relics start-up in Bangalore. Phages are like minuscule smart bombs 49 once used to power remote generators, were Although phages offer hope against drug- that home in on particular bacterial strains. 48 intensely radioactive and burned two of the resistant bacteria and could soon find a role Anecdotal evidence from decades of Soviet 47 men severely. The victims were rushed to as a treatment for burns, diabetic ulcers, and practice suggests that this results in far 46 the capital, Tbilisi, where doctors plied them other open wounds, experts concur that these fewer side effects than use of antibiotics. 45 with antibiotics but failed to prevent viral breeds are unlikely to knock antibiotics And whereas drugs lose effectiveness as 44 staphylococcus bacteria from invading the off their pedestal for most infections. “Phages they are metabolized, phages replicate in 43 deep wounds. Septic shock seemed just are certainly not going to replace chemicals,” their hosts, gaining strength in numbers and 42 around the corner. Then a kinder legacy of says Alexander Sulakvelidze of Intralytix, a thus increasing potency. 41 the Soviet Union came to the rescue. company in Baltimore, Maryland, that’s ex- EBI, the fastest company off the blocks, 40 Georgian doctors turned to a has completed safety testing in 39 therapy virtually unknown in the healthy volunteers of a phage 38 West: They unleashed the bacte- against vancomycin-resistant 37 ria’s natural predators. The doc- enterococci and plans to launch a 36 tors covered the open wounds clinical trial in patients with VRE 35 with novel biodegradable patch- in the middle of next year. “We 34 es impregnated with bacterio- really are living in a brave new 33 phages, viruses that infect bacte- world,” says Toney Ilenchuk, vice 32 ria. The business card–sized president of Biophage Pharma in 31 PhageBioDerm patches, recent- Montreal, Canada. He and others 30 ly licensed for sale in Georgia, are watching EBI closely, be- 29 eliminated the infection, and cause its experiences could deter- 28 within a few weeks the woods- mine how quickly the first phage 27 men were stable enough to go therapies against human diseases 26 abroad for treatment to replace reach the market—or whether the 25 the lost skin. approach slips back into obscu- 24 The episode shows that a rity in the Western world. 23 unique brand of medicine from Many are rooting for a 22 the Stalin era is alive and well in Irradiated. Georgian doctors covered this man’s radiation burns with patches comeback. “We need to do 21 this remote corner of the world. that released bacteriophages into the wound as they degraded. something, have some alterna- 20 More surprisingly, phage thera- tive to antibiotics,” says Diane 19 py might be about to stage a comeback in the ploring a potential market for PhageBioDerm Schaak of the Rowland Institute for Science 18 West. After a brief fling with phages before or similar products in the United States. Nor at Harvard University. “Phage therapy could 17 World War II, when the use of penicillin be- is it evident how the U.S. Food and Drug Ad- be a wonderful way to go.” 16 came widespread, Western physicians ignored ministration will regulate phage products, or 15 the therapy for more than half a century. if it will be permissible to alter phage strains A checkered past 14 “Phages were relegated to the dustbin of his- after FDA approval to counter bacterial resis- The first whiff of the microscopic predators 13 tory,” says Richard Carlton, president of Ex- tance. For these reasons, many experts expect came in 1896, when British chemist E. H. 12 ponential Biotherapies Inc. (EBI), a firm that phage concoctions for livestock and Hankin reported that water straight from the 11 based in Port Washington, New York, that is food-borne pathogens will find their way to sewage-ridden Ganges and Jumma rivers 10 one of more than two dozen racing to re- market first (see sidebar, p. 730). could kill the cholera pathogen. It wasn’t until 9 claim phages from that dustbin. Despite the uncertainties, proponents say 2 decades later that a pair of scientists, work- 8 Driving phage therapy’s potential rehabil- that as a medicine, bacteriophages have a lot ing independently, concluded that the bacteria 7 itation is the accelerating crisis of antibiotic going for them. “They are the most abun- slayers must be microbes themselves. In 6 resistance. Some cases are particularly chill- dant life forms on Earth,” notes phage biolo- 1915, British bacteriologist Frederick W. 5 ing: Last July, for example, U.S. health au- gist Elizabeth Kutter of Evergreen State Twort described an “ultramicroscopic virus” 4 thorities reported the first instance in which College in Olympia, Washington. A drop of that somehow killed bacteria in solution. But 3 a stalker of hospital wards, methicillin- seawater or sewage teems with millions of it was noted biologist Félix d’Herelle of the 2 resistant Staphylococcus aureus, had also phages; any exposed surface of our bodies, Pasteur Institute in Paris who made the critters 1 acquired full resistance to vancomycin, of- not to mention our digestive tracts, is famous: He and his wife coined the term bac- CREDIT: JIKIA DAVID 728 25 OCTOBER 2002 VOL 298 SCIENCE www.sciencemag.org N EWS F OCUS 65 teriophage in 1916 after d’Herelle isolated an by bacteria in the suspensions used to culti- tinued its pioneering work, including the de- 64 “anti-Shiga” microbe from the feces of pa- vate phages, and they were rarely tested be- velopment in the 1940s of phages against 63 tients with dysentery and grew it in the bac- fore use to see if the phages were viable. anaerobic infections such as gangrene. Soviet 62 terium that causes the disease. But whereas Western physicians abandoned authorities placed a high value on the Eliava 61 D’Herelle was also the first to compre- the fickle medicine, Soviet scientists kept Institute’s work. When it came to ordering 60 hend the promise that phages held as a dis- the faith. new equipment and supplies of enzymes, 59 ease treatment. In 1919, he and his col- says microbiologist Mzia Kutateladze, who 58 leagues made a phage preparation for a 12- Stalin’s antibiotic alternative joined the institute in the late 1980s, “we got 57 year-old boy with severe dysentery. After Sunlight streams through a picture window whatever we wanted.” 56 guzzling 100 times the intended dose to into an office suffused with the yeasty smell The Soviet military was perhaps the 55 check its safety—“the first clinical safety of agar as Amiran Meipariani removes a log- biggest consumer of phage preparations, 54 trial,” jokes Sulakvelidze—they gave the di- book from a desk drawer. The silver-haired many of which were produced in Russia— 53 luted preparation to the boy, who recovered and -moustached bacteriologist scrolls down and still are—according to Georgian tech- 52 fully within a few days. a record in cramped Cyrillic 51 Over the next several years, d’Herelle handwriting of the last batches 50 helped set up phage-therapy trials across the of medicinal bacteriophages 49 globe. “He would go to villages and observe shipped abroad by the Eliava 48 who was recovering on their own from an ill- Institute here in Tbilisi. On the 47 ness, isolate phages from these people, and wall behind him is a 1930s 46 grow them in the lab,” says Ramachandran. photograph of the man who 45 Phage therapy was off to a flying start, and it started it all in Georgia, a dash- 44 gained in popularity after the 1925 publication ing young scientist with oiled 43 of Arrowsmith, a novel by Sinclair Lewis in black hair and deep-set eyes. 42 which a doctor deploys phages against an out- Under Giorgi Eliava’s intense 41 break of bubonic plague in the West Indies. gaze, Meipariani, who has 40 Back then, “phages seemed like a miracle worked here for 45 years, puts 39 answer to many devastating infectious dis- a finger on the most recent en- 38 eases,” says Kutter. The drug giant Eli Lilly tries in his log: 88,600 phage 37 and a plethora of entrepreneurs piled into the tablets for intestinal illnesses 36 phage business, but their record was spotty. and 497,000 tablets for prophy- Heady days. Félix d’Herelle (seated) and Giorgi Eliava (right) 35 In some patients the concoctions worked laxis against Salmonella, both in Tbilisi shortly before Eliava was shot.
Recommended publications
  • A Review of Topical Phage Therapy for Chronically Infected Wounds
    antibiotics Review A Review of Topical Phage Therapy for Chronically Infected Wounds and Preparations for a Randomized Adaptive Clinical Trial Evaluating Topical Phage Therapy in Chronically Infected Diabetic Foot Ulcers Christopher Anthony Duplessis * and Biswajit Biswas Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-240-778-7268 Received: 8 May 2020; Accepted: 24 June 2020; Published: 4 July 2020 Abstract: The advent and increasing prevalence of antimicrobial resistance commensurate with the absence of novel antibiotics on the horizon raises the specter of untreatable infections. Phages have been safely administered to thousands of patients exhibiting signals of efficacy in many experiencing infections refractory to antecedent antibiotics. Topical phage therapy may represent a convenient and efficacious treatment modality for chronic refractory infected cutaneous wounds spanning all classifications including venous stasis, burn-mediated, and diabetic ulcers. We will initially provide results from a systematic literature review of topical phage therapy used clinically in refractorily infected chronic wounds. We will then segue into a synopsis of the preparations for a forthcoming phase II a randomized placebo-controlled clinical trial assessing the therapeutic efficacy exploiting adjunctive personalized phage administration, delivered topically, intravenously (IV) and via a combination of both modalities (IV
    [Show full text]
  • Alexander Sulakvelidze. 3. Address: Intralytix, Inc., 701 East Pratt St, Balti
    1. Date: October 27, 2010 2. Name of submitter: Alexander Sulakvelidze. 3. Address: Intralytix, Inc., 701 East Pratt St, Baltimore, Maryland 21202 4. Description of the proposed action: The food contact substance is a product called EcoShield™, which is composed of three different strains of bacteriophages that have the ability to specifically and selectively kill the harmful E. coli strain O157:H7, which can cause a serious foodborne illness. The proposed use of the food additive is to act as an antimicrobial processing aid by reducing the level of surface contamination of red meat with E. coli O157:H7 prior to the meat grinding process. The product is (i) All natural (all component phages were isolated from the environment) and not genetically modified, (ii) Does not contain preservatives, (iii) Does not alter food flavor, aroma, or appearance, (iv) Does not contain any known, potentially allergenic substances, (v) Is certified both Kosher and Halal (with OMRI certification pending), and (vi) Is cost effective and cost competitive. EcoShield™ is sold as a concentrate that is diluted (with water) 1:10; the use level concentration is applied to the parts and trim of the red meat at a rate of approximately 1 mL per 250 cm2 of surface area. Need for proposal Foodborne illnesses are a substantial health burden in the United States. The Center for Disease Control estimates that each year, 76 million people get sick, 300,000 are hospitalized, and 5,000 die. In the U.S. alone, these illnesses are estimated to cause $37.1 billion annually in medical costs and lost productivity.
    [Show full text]
  • Agency Response Letter GRAS Notice No. GRN 000672
    . U.S. FOOD & DRUG ADMINISTRATION CENTER FOR FOOD SAFETY &APPLIED NUTRITION . Alexander Sulakvelidze, Ph.D. Intralytix, Inc. 701 E. Pratt Street Baltimore, MD 21202 Re: GRAS Notice No. GRN 000672 Dear Dr. Sulakvelidze: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000672. We received the notice, dated October 4, 2016, that you submitted under the format of the agency’s final rule (81 FR 54960; August 17, 2016; Substances Generally Recognized as Safe (GRAS)) on October 5, 2016, and filed it on October 13, 2016. We received amendments containing additional safety information on November 23, 2016, February 24, 2017, and March 07, 2017. The subject of the notice is a preparation containing five bacterial monophages specific to Shigella spp. (Shigella phage preparation) for use as an antimicrobial agent on ready-to-eat- meat and poultry, fish (including smoked fish), shellfish, fresh and processed fruits and vegetables, and dairy products including cheese at levels up to 1 x 108 plaque forming units (PFU)/g food. The notice informs us of the view of Intralytix, Inc. (Intralytix) that this use of Shigella phage preparation is GRAS through scientific procedures. Our use of the term, “Shigella phage preparation,” in this letter is not our recommendation of that term as an appropriate common or usual name for declaring the substance in accordance with FDA’s labeling requirements. Under 21 CFR 101.4, each ingredient must be declared by its common or usual name. In addition, 21 CFR 102.5 outlines general principles to use when establishing common or usual names for nonstandardized foods.
    [Show full text]
  • Phage Therapy's Latest Makeover
    DispatchDate: 17.04.2019 · ProofNo: 133, p.1 news feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Credit: Dr. Robert Pope, National Biodefense Analysis & Countermeasures Center 30 31 32 33 Phage therapy’s latest makeover 34 35 As issues of product consistency, standardization and specificity are being tackled, can phage therapeutics—long 36 oversold and overhyped—finally realize their antibacterial potential? Charles Schmidt investigates. 37 38 Charles Schmidt 39 40 41 n May of 2018, an international team of million grant from the UCSD chancellor, Still, previous experience, mostly in 42 researchers and clinicians reported they the new Center for Innovative Phage the context of compassionate-use phage 43 successfully treated a seriously ill teenager Applications and Therapeutics (IPATH) treatments, has shown the approach to 44 I with cystic fibrosis who had disseminated is applying “the same principles of clinical be hit-and-miss, time-consuming and 45 infection by Mycobacterium abscessus with evaluation and development to phage expensive. To turn bacteriophage from 46 a cocktail of genetically engineered phage1. therapy that would be applied to any other a laboratory tool into an efficacious 47 According to the University of Pittsburgh’s therapeutic entity,” says center co-director therapeutic for broader markets, companies 48 Graham Hatfull, who led the research team, Robert Schooley, a physician and infectious are seeking to scale up production and 49 this accomplishment represents a number disease specialist at UCSD. deliver potent phage products under good 50 of firsts: the first genetically engineered A worsening crisis of multi-drug- manufacturing practices (GMP) quickly 51 phage treatment—in this case, to convert resistant (MDR) infections, along with and reliably.
    [Show full text]
  • Mar 01, 2014 Discover Magazine March, 2014 Infections
    7447001372 3 Infections Infected In the face of antibiotic resistance, phage therapy may be coming to a pharmacy near you. BY LINDA MARSA ~ It was a guerrilla assault worthy -,of the takedown of Osama bin Laden. But in this case, the assassins A phage is a type of virus that attacks and infiltrates bacteria. In this digital rendering, were intrepid viral invaders. In Andrew T-bacteriophages are on the attack, injecting their genetic material into the bacteria. Camilli's molecular biology lab at Tufts University in Boston, researchers found Alexander Sulakvelidze, a phage expert tions worked, and sometimes they didn't. the telltale footprints of a startling at the Emerging Pathogens Institute at Also, people occasionally became sick attack against cholera, a deadly bacterial the University of Florida in Gainesville. after ingesting the tiny microbes because disease. They were analyzing the DNA Without a way to manage infections, the treatments weren't purified properly. sequences of tiny viruses called bacte­ surgeries ranging from simple procedures Western physicians discarded them once riophages (literally, "bacteria eaters") to complex organ transplants would the more reliable antibiotics became lurking in the stool samples of cholera become risky, he explains: "You have a widely available after World War II. patients. The phages' DNA contained very real and alarming possibility that However, Soviet scientists figured some of the genes from another patients will either die or will develop out how to make phages more effec­ bacteria's inunune system. Somehow, the complications. " Many researchers believe tive - advances in molecular biology tiny phages sneaked in and overpowered it's time to look beyond antibiotics.
    [Show full text]
  • Phage Biocontrol Applications in Food Production and Processing
    Curr. Issues Mol. Biol. (2021) 40: 267-302. caister.com/cimb Phage Biocontrol Applications in Food Production and Processing Amit Vikram*, Joelle Woolston and Alexander Sulakvelidze Intralytix, Inc., Columbia, Maryland 21046, U.S.A. *Corresponding author: [email protected] DOI: https://doi.org/10.21775/cimb.040.267 Abstract Bacteriophages, or phages, are one of the most – if not the most – ubiquitous organisms on Earth. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention (and most regulatory approvals) focused on their use to improve food safety. This approach, termed “phage biocontrol” or “bacteriophage biocontrol,” includes both pre- and post-harvest application of phages as well as decontamination of the food contact surfaces in food processing facilities. This review focuses on post-harvest applications of phage biocontrol, currently the most commonly used type of phage mediation. We also briefly describe various commercially available phage preparations and discuss the challenges still facing this novel yet promising approach. Phages are Ancient and Abundant in Nature Bacteriophages are the viruses that infect bacteria. They were discovered in 1917 by Félix d’Hérelle in 1917 (Salmond and Fineran, 2015; Sulakvelidze et al., 2001), who also coined the term “bacteriophage,” derived from "bacteria" and the Greek φαγεῖν (phagein) meaning “to eat” or "to devour" bacteria. Numerous studies, including recent metagenomic surveys, suggest that phages are (i) arguably the oldest microorganisms on this planet that likely originated approximately 3 billion years ago (Brüssow, 2007), and (ii) likely the most ubiquitous organisms on Earth, abundant in all life-supporting environments including all natural untreated foods.
    [Show full text]
  • BACTERIOPHAGES: a New Old Biomedical Technology
    POLICY BRIEF 10 August 2010 BACTERIOPHAGES: A New Old Biomedical Technology Antibiotic resistance is a challenge that calls for good Limited 2009). Bacterial counts and symptoms were science as well as ingenuity. Although we will always reduced. Encouraged, the company is moving on to a need new antibiotics, there are alternative therapeutic larger trial. In the United States, Intralytix successfully approaches worth considering. One example is concluded a preliminary safety trial of bacteriophage bacteriophage therapy. Bacteriophages—or ―phages‖— therapy of venous leg ulcers (Wolcott et al. 2009). Other exist in abundance in nature, including in and on the clinical trials (P. aeruginosa and S. aureus in burns and human body. Phages are viruses that infect bacteria genetically engineered bacteriophages) are under way and use the bacterial cell’s genetic apparatus to in the United Kingdom. produce more phages. In the process, they kill their host. By harnessing phages’ natural ability to destroy Bacteriophages have shown promise as tools for bacteria, infections can be cleared. infection control as well. Scientists from the University of Strathclyde have chemically bonded phages to nylon After Felix d’Herelle’s discovery and isolation of the first products such as strips, sutures and implantable beads bacteriophage in 1917, the long-sought cure for (The Medical News 2005), which they use during bacterial infections seemed to be at hand. But with the surgery. This preparation is effective against most dawn of the antibiotic era in 1941, when penicillin was major epidemic methicillin-resistant Staphylococcus discovered, the western medical establishment lost aureus (MRSA) strains. Bacteriophages on sutures can interest in phages.
    [Show full text]
  • Bacteriophage Felix O1: Genetic Characterization and Bioremedial Application
    BACTERIOPHAGE FELIX O1: GENETIC CHARACTERIZATION AND BIOREMEDIAL APPLICATION by Jean M. Whichard Dissertation submitted to the Faculty of Virginia Polytechnic Institute & State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Veterinary Medical Sciences Committee Members: Dr. F. William Pierson, Co-chairman Dr. Nammalwar Sriranganathan, Co-chairman Dr. James Claus Dr. William Hueston Dr. Timothy Larson October 16, 2000 Blacksburg, Virginia Keywords: bacteriophage, Felix O1, Salmonella, poultry BACTERIOPHAGE FELIX O1: GENETIC CHARACTERIZATION AND BIOREMEDIAL APPLICATION Jean M. Whichard Abstract Bacteriophage Felix O1 was studied for applicability as a Salmonella intervention. Felix O1 s potential as a Salmonella therapeutic was explored, as was its utility as a food application. Felix O1 is specific for and infects most serovars within the genus Salmonella. The entire 86.155-kb sequence of the phage’s linear, double-stranded chromosome was determined. 213 open reading frames (ORFs) were found, including 23 homologues of phage genes (e<0.008). Homology searches do not indicate genes that would be expected to increase virulence of Salmonella. Thirteen T4 homologues were found, including rIIA and rIIB, rapid lysis genes of T-even phages. Site-directed mutagenesis of the rIIB region was attempted by homologous recombination with plasmids containing luxAB of Vibrio harveyi. No ∆rIIB luxAB+ recombinants resulted from the methods tried. Serial in vivo passage was used to select for a longer-circulating Felix O1 mutant using the modified methods of Merril et al., (1996). No difference was found in the clearance of wild-type (WT) and Felix O1 following nine serial passages.
    [Show full text]
  • Preparation Containing Bacterial Phages Specific to Shiga-Toxin
    FOOD & DRUG ADMINISTRATION CENTER FOR FOOD SAFETY & APPLIED NIITRITION Alexander Sulakvelidze, Ph.D. Intralytix, Inc. 701 E Pratt St. Baltimore, MD 21202 Re: GRAS Notice No. GRN 000834 Dear Dr. Sulakvelidze: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000834. We received Intralytix Inc.’s notice on December 20, 2018, and filed it on March 7, 2019. Intralytix submitted amendments to the notice on May 3, 2019, and August 27, 2019, providing additional information on safety and application. The subject of the notice is preparations containing three to eight bacteriophages (phage) specific to Shiga toxin-producing Escherichia coli (STEC; E. coli phage preparation) for use as antimicrobial treatments on meat, poultry, fruits, vegetables, dairy products (including cheese), fish, and other seafood at a level of no greater than 108 plaque-forming units (PFU)/g of food. The notice informs us of Intralytix’s view that these uses of E. coli phage preparation are GRAS through scientific procedures. Intralytix describes the identity of three of the phages, designated ECML-117, ECML- 359 and ECML-363, as double-stranded DNA lytic phages specific to STEC, which are individually prepared and purified.1 Intralytix states that for application, the preparation is diluted with water, yielding a working solution 109 PFU/mL as applied. The application process ensures that the final concentration on food is no greater than 108 PFU/g of food. Intralytix describes the method of manufacture for E. coli phage preparation. Each phage is produced by aerobic fermentation of a E. coli inoculated with the appropriate starter virion.
    [Show full text]
  • Low-Temperature Virus Vb Ecom VR26 Shows Potential in Biocontrol of STEC O26:H11
    foods Communication Low-Temperature Virus vB_EcoM_VR26 Shows Potential in Biocontrol of STEC O26:H11 Aurelija Zajanˇckauskaite,˙ Algirdas Noreika, Rasa Rutkiene,˙ Rolandas Meškys and Laura Kaliniene * Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; [email protected] (A.Z.); [email protected] (A.N.); [email protected] (R.R.); [email protected] (R.M.) * Correspondence: [email protected]; Tel.: +370-5-2234384 Abstract: Shiga toxin-producing Escherichia coli (STEC) O26:H11 is an emerging foodborne pathogen of growing concern. Since current strategies to control microbial contamination in foodstuffs do not guarantee the elimination of O26:H11, novel approaches are needed. Bacteriophages present an alternative to traditional biocontrol methods used in the food industry. Here, a previously isolated bacteriophage vB_EcoM_VR26 (VR26), adapted to grow at common refrigeration temperatures (4 and 8 ◦C), has been evaluated for its potential as a biocontrol agent against O26:H11. After 2 h of ◦ treatment in broth, VR26 reduced O26:H11 numbers (p < 0.01) by > 2 log10 at 22 C, and ~3 log10 at 4 ◦C. No bacterial regrowth was observed after 24 h of treatment at both temperatures. When VR26 was introduced to O26:H11-inoculated lettuce, ~2.0 log10 CFU/piece reduction was observed at 4, 8, and 22 ◦C. No survivors were detected after 4 and 6 h at 8 and 4 ◦C, respectively. Although at 22 ◦C, bacterial regrowth was observed after 6 h of treatment, O26:H11 counts on non-treated samples were >2 log10 CFU/piece higher than on phage-treated ones (p < 0.02).
    [Show full text]
  • Bacteriophage Preparation Lytic for Shigella Significantly Reduces Shigella Sonnei Contamination in Various Foods
    RESEARCH ARTICLE Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods Nitzan Soffer*, Joelle Woolston, Manrong Li, Chythanya Das, Alexander Sulakvelidze Intralytix, Inc., Baltimore, Maryland, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 ShigaShield™ is a phage preparation composed of five lytic bacteriophages that specifically target pathogenic Shigella species found in contaminated waters and foods. In this study, we examined the efficacy of various doses (9x105-9x107 PFU/g) of ShigaShield™ in remov- ing experimentally added Shigella on deli meat, smoked salmon, pre-cooked chicken, let- 7 7 OPEN ACCESS tuce, melon and yogurt. The highest dose (2x10 or 9x10 PFU/g) of ShigaShield™ applied to each food type resulted in at least 1 log (90%) reduction of Shigella in all the food types. Citation: Soffer N, Woolston J, Li M, Das C, Sulakvelidze A (2017) Bacteriophage preparation There was significant (P<0.01) reduction in the Shigella levels in all phage treated foods lytic for Shigella significantly reduces Shigella compared to controls, except for the lowest phage dose (9x105 PFU/g) on melon where sonnei contamination in various foods. PLoS ONE reduction was only ca. 45% (0.25 log). The genomes of each component phage in the cock- 12(3): e0175256. https://doi.org/10.1371/journal. tail were fully sequenced and analyzed, and they were found not to contain any ªundesirable pone.0175256 genesº including those listed in the US Code for Federal Regulations (40 CFR Ch1). Our Editor: Mikael Skurnik, University of Helsinki, data suggest that ShigaShield™ (and similar phage preparations with potent lytic activity FINLAND against Shigella spp.) may offer a safe and effective approach for reducing the levels of Shi- Received: January 16, 2017 gella in various foods that may be contaminated with the bacterium.
    [Show full text]
  • Bacteriophage-Based Technology
    Greg Strang Bacteriophage-based Director Food Safety Technology Intralytix Inc. 1 • Intralytix • Basics on Bacteriophages • Food Safety Products, regulations, certifications • Product and Segment Fit AGENDA • Application • General Capabilities and Benefits • Questions 2 3 Viruses that attack bacteria From the Greek “phago” meaning “to eat” and “bacteria” Estimated 3 billion years old Discovered in 1915-1917 Bacteriophages Most ubiquitous organisms in nature Play a key role in maintaining balanced bacterial populations in all ecosystems where bacteria exist Highly specific for bacterial host 4 All things compared... 5 Most ubiquitous organisms on earth • Total number of phages on Earth is estimated to be 1x1030 – 1x1032 • Outweigh world’s population of elephants • More than 100 million phage species • In 1mL non-polluted water, ~2x108 PFU of phages • Common in human mouth and GI tract • 1015 phages in human gut 6 Phages are common in foods • Fresh ground beef • Levels ranged: • Canned corned beef • 4x1010 PFU/100g fresh chicken and pork • Fresh pork sausage • 3x1010 PFU/100g roast turkey • Fresh chicken meat breast • Delicatessen meat • Up to 109 PFU/mL of yogurt and cheese whey • Farmed freshwater fish • 67-83% of all animal feed, • Oil sardines ingredients, & diets examined • Cheese and raw milk 7 8 9 Food safety regulatory approvals Date Agency Phage preparation Target application 2006, August FDA, 21 CFR 172.785 ListShield RTE meats 2006, October FDA, GRN 198 Listex Cheese 2007, January USDA, FSIS Directive 7120.1 E.coli O157:H7 targeted
    [Show full text]