Circuit and System Design for Mm-Wave Radio and Radar Applications
Total Page:16
File Type:pdf, Size:1020Kb
CIRCUIT AND SYSTEM DESIGN FOR MM-WAVE RADIO AND RADAR APPLICATIONS by IOANNIS SARKAS A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto c Ioannis Sarkas, 2013 Circuit and System Design for mm-wave Radio and Radar Applications Ioannis Sarkas Doctor of Philosophy, 2013 Graduate Department of Electrical and Computer Engineering University of Toronto Abstract Recent advancements in silicon technology have paved the way for the development of integrated transceivers operating well inside the mm-wave frequency range (30 - 300 GHz). This band offers opportunities for new applications such as remote sensing, short range radar, active imaging and multi-Gb/s radios. This thesis presents new ideas at the circuit and system level for a variety of such applications, up to 145 GHz and in both state-of-the-art nanoscale CMOS and SiGe BiCMOS technologies. After reviewing the theory of operation behind linear and power amplifiers, a purely dig- ital, scalable solution for power amplification that takes advantage of the significant fT/fmax improvement in pFETs as a result of strain engineering in nanoscale CMOS is presented. The proposed Class-D power amplifier, features a stacked, cascode CMOS inverter output stage, which facilitates high voltage operation while employing only thin-oxide devices in a 45 nm SOI CMOS process. Next, a single-chip, 70-80 GHz wireless transceiver for last-mile point-to-point links is described. The transceiver was fabricated in a 130 nm SiGe BiCMOS technology and can operate at data rates in excess of 18 Gb/s. The high bitrate is accomplished by taking advantage of the ample bandwidth available at the W-band frequency range, as well as by employing a direct QPSK modulator, which eliminates the need for separate upconversion iii iv and power amplification. Lastly, the system and circuit level implementation of a mm-wave precision distance and velocity sensor at 122 and 145 GHz is presented. Both systems feature a heterodyne architecture to mitigate the receiver 1/f noise, as well as self-test and calibration capabilities along with simple packaging techniques to reduce the overall system cost. Acknowledgements And Dedication I would like to thank Professor Sorin P. Voinigescu for his invaluable advice and ample guidance over all the years of my graduate studies. I am also grateful to all my colleagues from BA4182, especially Andreea Balteanu and Kenneth Yau. Without your help, the many long nights would have been impossible. Many thanks go to Juergen Hasch and Mekdes Girma of Robert Bosch for their great assistance with the mm-wave radar sensors. The aid of Pascal Chevalier and Gregory Avenier of STMicroelectronics with the SiGe BiCMOS process was also valuable. Finally, I would like to thank my parents, my brother and all my friends for their endless care and support. This work is dedicated to the memory of my grandmother, Andriana. v Table of Contents Abstract iii Acknowledgements And Dedication v List of Tables xi List of Figures xvii List of Abbreviations xviii 1 Introduction 1 1.1Motivation..................................... 1 1.2StateoftheArt.................................. 4 1.3ThesisOutline................................... 5 1.4Contributions................................... 5 2 Elements of High Frequency Integrated Circuit Design 7 2.1TransistorGainandSmall-SignalAmplifierDesign.............. 7 2.1.1 AmplifierDesignTheory......................... 9 2.1.2 DependenceofGainonTransistorParameters............. 14 2.1.3 Performance of 130 nm SiGe HBTs and 45 nm FETs . 16 2.2NoiseFigureandNoiseMeasure......................... 19 2.3PassiveComponents............................... 25 2.4 Routing of High Speed and Control Signals . 31 2.4.1 RoutingofHighSpeedSignals...................... 33 2.4.2 Routing of Bias and Control Signals . 35 2.5 Supply Distribution and Grounding . 36 2.6Summary..................................... 45 vi Table of Contents vii 3 Design of a 45 nm SOI CMOS Stacked-Cascode Power Amplifier 46 3.1 Power Amplifier Design Theory Synopsis and Motivation . 47 3.1.1 Output Power and Ropt .......................... 47 3.1.2 AmplifierClassofOperation....................... 50 3.2 Increasing the Ropt -PriorArt.......................... 56 3.2.1 PowerCombining............................. 56 3.2.2 Thick Oxide and Extended Drain Devices . 57 3.2.3 nFET-onlyStacked-Cascode....................... 58 3.3TheCMOSStackedCascodePowerAmplifier................. 61 3.4LossMechanisms................................. 67 3.4.1 Shoot-ThroughCurrent......................... 67 3.4.2 ResistiveLosses.............................. 68 3.4.3 CapacitiveLosses............................. 69 3.4.4 Non-IdealSwitching-Overlap...................... 70 3.5DesignConsiderations.............................. 72 3.6ImpactofProcessScaling............................ 76 3.7PowerAmplifierSystemDesign......................... 78 3.8MeasurementResults............................... 78 3.8.1 StackedCascodeCMOSBreakout.................... 80 3.8.2 DifferentialPowerAmplifier....................... 82 3.9Summary..................................... 82 4 Design of a SiGe BiCMOS Transceiver for Point-to-Point Links 86 4.1SystemDesignConsiderations.......................... 87 4.1.1 LinkMargin................................ 87 4.1.2 ModulationScheme............................ 89 4.2TransceiverArchitecture............................. 90 4.3CircuitDesign................................... 91 4.3.1 Transmitter................................ 91 4.3.2 LOdistributionandI-Qsplitting.................... 94 4.3.3 Quadrature Receiver . 95 4.4MeasurementResults............................... 98 4.4.1 QuadratureHybrid............................ 98 4.4.2 Receiver . 98 4.4.3 Transmitter................................ 102 4.4.4 Loop-back................................. 102 Table of Contents viii 4.5A60GHzDirectQPSKModulator....................... 106 4.6Summary..................................... 107 5 System Design for a mm-wave Distance Sensor 110 5.1ApplicationDescription............................. 110 5.2RadarPerformanceMetrics........................... 112 5.2.1 RangeResolution............................. 112 5.2.2 AngularResolution............................ 112 5.2.3 RangeandAccuracy........................... 114 5.3RadarWaveforms................................. 114 5.3.1 PulsedRadar............................... 114 5.3.2 Frequency Modulated - Continuous Wave Radar . 116 5.3.3 StepFrequencyRadar.......................... 118 5.3.3.1 Step Frequency Radar with Two Steps . 121 5.4 Selection of Frequency of Operation and Radar Waveform . 122 5.4.1 FrequencyofOperation......................... 122 5.4.2 RadarWaveform............................. 123 5.5TransceiverArchitecture............................. 124 5.5.1 MonostaticVersusBistatic........................ 125 5.5.2 HomodyneTransceiver.......................... 126 5.5.3 HeterodyneTransceiver.......................... 130 5.5.4 Homodyne Transceiver with Chopping . 134 5.5.5 ImpactofPhaseNoise.......................... 135 5.6Calibration.................................... 138 5.6.1 SourcesofError.............................. 138 5.6.2 ExternalCalibration........................... 139 5.6.3 Built-inCalibration............................ 140 5.7Summary..................................... 143 5.A Appendix: Estimation of Signals Under Noise . 143 5.A.1SingleVersusPairedMeasurements................... 143 5.A.2SNRCalculation............................. 144 5.A.3 DC Signal in the Presence of White Noise . 145 5.A.3.1Low-passfiltering........................ 145 5.A.3.2Integration........................... 146 5.A.3.3Averaging............................ 146 5.A.4DCSignalinthePresenceof1/fNoise................. 147 Table of Contents ix 5.A.4.1Low-passfiltering........................ 148 5.A.4.2Integration........................... 148 5.A.4.3Averaging............................ 148 5.A.5DCSignalinthePresenceofCombinedNoise............. 149 5.A.5.1Integration........................... 149 5.A.5.2Averaging............................ 149 5.A.61/fNoiseSingularity........................... 149 5.A.7SinusoidalSignals............................. 150 6 Implementation of 122 GHz and 145 GHz Distance Sensors 152 6.1122GHzSensorArchitecture........................... 153 6.2122GHzCircuitDesign.............................. 154 6.2.1 IQ Receiver . 155 6.2.2 I-QGenerationandCalibration..................... 157 6.2.3 Voltage Controlled Oscillator . 161 6.2.4 LODistribution.............................. 162 6.2.5 TransmitAmplifier............................ 163 6.2.6 6-dBCoupler............................... 166 6.2.7 PowerDissipation............................. 167 6.3122GHzAntennaDesign............................. 167 6.4Characterizationofthe122GHzSensor..................... 169 6.4.1 Breakouts................................. 170 6.4.1.1 VCO............................... 170 6.4.1.2 LNA............................... 170 6.4.1.3 Receiver . 172 6.4.2 Transceiver................................ 173 6.4.2.1 Receiver . 173 6.4.2.2 Transmitter...........................175 6.4.2.3 Antenna............................. 177 6.4.2.4 MeasurementofRotationSpeed................ 177 6.5 145 GHz Sensor Architecture and Circuit Design . 180 6.5.1 Architecture................................ 181 6.5.2 CircuitDesign............................... 183 6.6 Measurement Results for the