Įtaka Patogenezei Ir Fenotipinei Išraiškai Lietuvos Populiacijoje

Total Page:16

File Type:pdf, Size:1020Kb

Įtaka Patogenezei Ir Fenotipinei Išraiškai Lietuvos Populiacijoje VILNIAUS UNIVERSITETAS VIOLETA MIKŠTIENĖ ĮGIMTO / PAVELDIMO KLAUSOS SUTRIKIMO GENOMIKA: ĮTAKA PATOGENEZEI IR FENOTIPINEI IŠRAIŠKAI LIETUVOS POPULIACIJOJE Daktaro disertacija Biomedicinos mokslai, Medicina (06 B) Vilnius, 2017 metai 1 Disertacija rengta 2013–2017 metais Vilniaus universitete Mokslinis vadovas – prof. dr. Algirdas Utkus (Vilniaus universitetas, biomedicinos mokslai, medicina – 06 B) Mokslinė konsultantė – prof. dr. Loreta Cimbalistienė (Vilniaus universitetas, biomedicinos mokslai, medicina – 06 B) 2 TURINYS SANTRUMPOS ..................................................................................................... 6 I. ĮVADAS ............................................................................................................ 21 I.1.Tiriamoji problema, jos aktualumas .............................................................. 21 I.2.Tyrimo tikslas ................................................................................................ 23 I.3.Tyrimo uždaviniai .......................................................................................... 23 I.4.Darbo naujumas ir reikšmė ............................................................................ 23 I.5.Ginamieji teiginiai .......................................................................................... 24 I.6.Darbo aprobacija ............................................................................................ 24 II. TYRIMŲ APŽVALGA ................................................................................... 28 II.1. Klausos sutrikimo apibrėžtis ........................................................................ 28 II.2. Klausos sutrikimo klasifikacija .................................................................... 28 II.3. Klausos jutimo organų sistemos ir jos ligų tyrimų istoriniai aspektai ......... 29 II.4. Modernieji klausos sutrikimo genetiniai tyrimai ......................................... 31 II.5. Klausos jutimo organų sistemos vystymasis ............................................... 37 II.6. Garso suvokimo procesas klausos jutimo organų sistemoje........................ 40 II.7. Įgimto / ankstyvo klausos sutrikimo etiologija ............................................ 42 II.8. Paveldimo klausos sutrikimo mechanizmai ................................................. 43 II.9. Klinikiniai paveldimo klausos sutrikimo aspektai ....................................... 56 II.10. Paveldimo klausos sutrikimo genetinė diagnostika ................................... 64 II.11. Klausos sutrikimo gydymo perspektyvos .................................................. 66 II.12. Klausos sutrikimo genomikos reikšmė ...................................................... 69 III. METODAI ..................................................................................................... 70 III.1. Mokslinio tyrimo plano sudarymas ........................................................... 70 3 III.1.1. Tiriamųjų asmenų atrankos kriterijų pasirinkimas ............................... 71 III.1.2. Tiriamųjų asmenų duomenų rinkimas .................................................. 72 III.1.3. Tiriamųjų genetinio tyrimo plano sudarymas ...................................... 72 III.1.4. Duomenų analizės plano ruošimas ....................................................... 74 III.1.5. Genetinės klausos sutrikimo diagnostikos rekomendacijų rengimas ... 74 III.1.6. Mokslinė rezultatų sklaida ................................................................... 75 III.2. Empirinis tyrimas....................................................................................... 75 III.2.1. DEAFGEN biomedicininio tyrimo grupės klinikinių duomenų rinkimas .............................................................................................................. 75 III.2.2. Genetiniai tyrimai DEAFGEN tiriamųjų asmenų grupėje ................... 76 III.2.3. LITGEN tiriamųjų asmenų grupės genetinių tyrimų duomenų rinkimas .............................................................................................................. 84 III.3. Duomenų analizė ....................................................................................... 85 IV. REZULTATAI IR JŲ APTARIMAS .......................................................... 87 Lietuvos populiacijos tiriamųjų asmenų, turinčių klausos sutrikimą, grupė ....... 87 IV.1. Izoliuotą (nesindrominį) klausos sutrikimą turinčių tiriamųjų asmenų pogrupio duomenų analizės rezultatai ................................................................. 88 IV.1.1. Klinikinio ištyrimo rezultatai ............................................................... 88 IV.1.2. Genetinio tyrimo rezultatai ................................................................... 89 IV.1.3. Klausos sutrikimo etiologinė struktūra .............................................. 123 IV.1.4. Nustatytų genetinių pokyčių koreliacijos su tiriamųjų fenotipu tyrimo rezultatai ........................................................................................................ 128 IV.2. Sindrominio klausos sutrikimo pogrupio charakterizavimas .................. 135 IV.2.1. Klinikinio ištyrimo rezultatai ............................................................. 135 IV.2.2. Klausos sutrikimo etiologinė struktūra .............................................. 136 4 IV.2.3. Retas (pirmas Lietuvoje) sindrominio klausos sutrikimo atvejis ....... 141 IV.3. Genetinio tyrimo rezultatai sveikų lietuvių populiacijos asmenų grupėje (LITGEN) .......................................................................................................... 149 IV.3.1. AR paveldėjimo KS genų tyrimo rezultatai ....................................... 149 IV.3.2. XR paveldėjimo KS genų tyrimo rezultatai ....................................... 152 IV.3.3. AR paveldėjimo klausos sutrikimo dažnis lietuvių populiacijoje ...... 156 IV.4. Įgimto / paveldimo klausos sutrikimo genetinio ištyrimo gairės ............ 158 V. IŠVADOS ....................................................................................................... 166 LITERATŪRA ................................................................................................... 168 PRIEDAI ............................................................................................................. 202 5 SANTRUMPOS 1000genomes_all – 1000 genomų projekto visų tirtų populiacijų duomenys A – adeninas AAV – su adenovirusu susijęs virusas (angl. adeno-associated virus) ABR – klausos sukeltų smegenų kamieno potencialų tyrimas (angl. auditory brainstem response) ACMG – Amerikos medicinos genetikos ir genomikos kolegija (angl. American College of Medical Genetics and Genomics) ACTG1 – gama aktino genas 1 (angl. actin, gamma 1) AD – autosominis dominantinis paveldėjimas Ala – alaninas AntiGAD65 – antikūnai prieš kasos beta ląstelių glutamino rūgšties dekarboksilazę (angl. anti glutamic acid decarboxylase) Anti-IA2 – antikūnai prieš kasos beta ląstelių tirozino fosfatazę (angl. anti tyrosine phosphatase) AR – autosominis recesyvus paveldėjimas Arg – argininas Asn – asparaginas Asp – aspartatas ASSR – stabilios būsenos sukeltųjų potencialų tyrimas (angl. Auditory steady state response) Atoh1 – transkripcijos veiksnį koduojantis genas pelių genome (angl. atonal, drosophila, homolog of, 1) ATOH1 – transkripicijos veiksnys žmogaus ląstelėse (angl. atonal, drosophila, homolog of, 1) ATP – adenozino trifosfatas AUNA1 – autosominio dominantinio paveldėjimo klausos neuropatija 1 (angl. Auditory neuropathy, autosomal dominant, 1) BAM – binarinio sekoskaitos duomenų formato failas (angl. binary file format) 6 BTD – biotinidazės genas BMP – kaulų morfogenetinis baltymas (angl. bone morphogenetic protein) BOR – branchiootorenalinis sindromas Bp – bazių poros C – citozinas CATSPER2 – spermatozoidų katijonų kanalo genas 2 (angl. Cation channel, sperm-associated, 2) CCDC50 – baltymo, turinčio susisukusią spiralę, genas 50 (angl. Coiled-coil domain-containing protein 50) CDH23 – kadherinų šeimos baltymo 23 genas (angl. Cadherin-related family, member 23) CEBPE – transkripcijos veiksnys (angl. CCAAT/enhancer-binding protein, epsilon) CEACAM16 – su karcinogeniniu antigenu susijusios 16-os ląstelės adhezijos molekulės genas (angl. Carcinoembryonic antigen-related cell adhesion molecule 16) CHARGE sindromas – akies koloboma, širdies ydos, choanų atrezija, raidos atsilikimas, genitalijų anomalijos, ausų anomalijos ir (ar) kurtumas (angl. CHARGE association: coloboma of the eye; heart anomaly; atresia, choanal; retardation of mental and somatic development; microphallus; ear abnormalities and/or deafness) CHD7 – transkripcijos veiksnio genas (angl. Chromodomain helicase DNA- binding protein 7) Chr – chromosoma CHREBP (MLX) – transkripcijos veiksnys (angl. Carbohydrate response element- binding protein, rat, homolog of) CLDN14 – klaudino 14 genas (angl. Claudin 14) ClinVAR – NCBI duomenų bazė, kurioje kaupiami duomenys apie genomo variantų patogeniškumą 7 CMV – citomegaloviruso infekcija COCH – kochlino genas (angl. Cochlin) COL2A1 – 2-o tipo kolageno α1 grandinės genas (angl. Collagen, type II, alpha-1) COL4A3 – 4-o tipo kolageno α3 grandinės genas (angl. Collagen, type IV, α-3) COL4A4 – 4-o tipo kolageno α4 grandinės genas (angl. Collagen, type IV, α-4) COL4A5 – 4-o tipo kolageno α5 grandinės genas (angl. Collagen, type IV, α-5) COL11A1 – 11-o tipo kolageno α1 grandinės genas (angl. Collagen, type XI, α-1) COL11A2 - 11-o tipo kolageno α1 grandinės genas (angl. Collagen, type XI, α-2) Cys –
Recommended publications
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • A 1Bp Deletion in the Dual Reading Frame Deafness Gene LRTOMT Causes a Frameshift from the First Into the Second Reading Frame
    RESEARCH LETTER A 1 bp Deletion in the Dual Reading Frame Deafness Gene LRTOMT Causes a Frameshift From the First Into the Second Reading Frame Maarten Vanwesemael,1 Isabelle Schrauwen,1 Ruben Ceuppens,1 Fatemeh Alasti,1 Ellen Jorssen,1 Effat Farrokhi,2 Morteza Hashemzadeh Chaleshtori,2 and Guy Van Camp1* 1Department of Medical Genetics, University of Antwerp, 2610, Wilrijk, Belgium 2Cellular and Molecular Research Center, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran Received 29 November 2010; Accepted 12 April 2011 TO THE EDITOR: How to Cite this Article: Congenital hearing impairment (HI) affects one in 650 newborns Vanwesemael M, Schrauwen I, Ceuppens R, and has a genetic cause in 50% of the cases. Autosomal recessive Alasti F, Jorssen E, Farrokhi E, Chaleshtori non-syndromic hearing impairment (ARNSHI) is responsible for MH, Van Camp G. 2011. A 1 bp deletion in the 70–80% of all hereditary cases of HI. ARNSHI is genetically highly dual reading frame deafness gene LRTOMT heterogeneous and until today mutations in 37 genes have been causes a frameshift from the first into the identified [Van Camp and Smith, 2011]. One of the latest genes for second reading frame. ARNSHI is LRTOMT (at locus DFNB63 on 11q13.3-q13.4). The Am J Med Genet Part A 155:2021–2023. structure of human LRTOMT has only recently been elucidated [Ahmed et al., 2008]. LRTOMT is an evolutionary recent fusion gene with alternative reading frames that exclusively exists in analysis was performed on an ABI 3130XL DNA sequence primates and is a fusion of non-primate Lrrc51 (Leucine rich repeat analyzer (Applied Biosystems Inc., Foster City, CA), using standard containing 51) and Tomt (Transmembrane O-methyltransferase) procedures.
    [Show full text]
  • 1 INVITED REVIEW Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death Shouya Feng,* Daniel Fox,* Si M
    INVITED REVIEW Mechanisms of Gasdermin family members in inflammasome signaling and cell death Shouya Feng,* Daniel Fox,* Si Ming Man Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia. * S.F. and D.F. equally contributed to this work Correspondence to Si Ming Man: Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, 2601, Australia. [email protected] 1 Abstract The Gasdermin (GSDM) family consists of Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME) and Pejvakin (PJVK). GSDMD is activated by inflammasome-associated inflammatory caspases. Cleavage of GSDMD by human or mouse caspase-1, human caspase-4, human caspase-5, and mouse caspase-11, liberates the N-terminal effector domain from the C-terminal inhibitory domain. The N-terminal domain oligomerizes in the cell membrane and forms a pore of 10-16 nm in diameter, through which substrates of a smaller diameter, such as interleukin (IL)-1β and IL- 18, are secreted. The increasing abundance of membrane pores ultimately leads to membrane rupture and pyroptosis, releasing the entire cellular content. Other than GSDMD, the N-terminal domain of all GSDMs, with the exception of PJVK, have the ability to form pores. There is evidence to suggest that GSDMB and GSDME are cleaved by apoptotic caspases. Here, we review the mechanistic functions of GSDM proteins with respect to their expression and signaling profile in the cell, with more focused discussions on inflammasome activation and cell death.
    [Show full text]
  • Sharmin Supple Legend 150706
    Supplemental data Supplementary Figure 1 Generation of NPHS1-GFP iPS cells (A) TALEN activity tested in HEK 293 cells. The targeted region was PCR-amplified and cloned. Deletions in the NPHS1 locus were detected in four clones out of 10 that were sequenced. (B) PCR screening of human iPS cell homologous recombinants (C) Southern blot screening of human iPS cell homologous recombinants Supplementary Figure 2 Human glomeruli generated from NPHS1-GFP iPS cells (A) Morphological changes of GFP-positive glomeruli during differentiation in vitro. A different aggregate from the one shown in Figure 2 is presented. Lower panels: higher magnification of the areas marked by rectangles in the upper panels. Note the shape changes of the glomerulus (arrowheads). Scale bars: 500 µm. (B) Some, but not all, of the Bowman’s capsule cells were positive for nephrin (48E11 antibody: magenta) and GFP (green). Scale bars: 10 µm. Supplementary Figure 3 Histology of human podocytes generated in vitro (A) Transmission electron microscopy of the foot processes. Lower magnification of Figure 4H. Scale bars: 500 nm. (B) (C) The slit diaphragm between the foot processes. Higher magnification of the 1 regions marked by rectangles in panel A. Scale bar: 100 nm. (D) Absence of mesangial or vascular endothelial cells in the induced glomeruli. Anti-PDGFRβ and CD31 antibodies were used to detect the two lineages, respectively, and no positive signals were observed in the glomeruli. Podocytes are positive for WT1. Nuclei are counterstained with Nuclear Fast Red. Scale bars: 20 µm. Supplementary Figure 4 Cluster analysis of gene expression in various human tissues (A) Unbiased cluster analysis across various human tissues using the top 300 genes enriched in GFP-positive podocytes.
    [Show full text]
  • The Functional Annotation of Mammalian Genomes: the Challenge of Phenotyping
    ANRV394-GE43-14 ARI 2 October 2009 19:8 The Functional Annotation of Mammalian Genomes: The Challenge of Phenotyping Steve D.M. Brown,1 Wolfgang Wurst,2 Ralf Kuhn,¨ 2 and John M. Hancock1 1MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom; email: [email protected], [email protected] 2Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; email: [email protected], [email protected] Annu. Rev. Genet. 2009. 43:305–33 Key Words First published online as a Review in Advance on mouse genetics, mutagenesis, phenotype, bioinformatics, ontologies August 18, 2009 The Annual Review of Genetics is online at Abstract genet.annualreviews.org The mouse is central to the goal of establishing a comprehensive func- This article’s doi: tional annotation of the mammalian genome that will help elucidate 10.1146/annurev-genet-102108-134143 various human disease genes and pathways. The mouse offers a unique Copyright c 2009 by Annual Reviews. combination of attributes, including an extensive genetic toolkit that Annu. Rev. Genet. 2009.43:305-333. Downloaded from www.annualreviews.org All rights reserved underpins the creation and analysis of models of human disease. An 0066-4197/09/1201-0305$20.00 international effort to generate mutations for every gene in the mouse genome is a first and essential step in this endeavor. However, the greater challenge will be the determination of the phenotype of every mu- tant. Large-scale phenotyping for genome-wide functional annotation Access provided by WIB6385 - GSF-Forschungszentrum fur Umwelt und Gesundheit on 02/17/16.
    [Show full text]
  • Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner
    The Journal of Neuroscience, March 29, 2017 • 37(13):3447–3464 • 3447 Neurobiology of Disease Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner X Marcin Kazmierczak,1* Piotr Kazmierczak,2* XAnthony W. Peng,3,4 Suzan L. Harris,1 Prahar Shah,1 Jean-Luc Puel,2 Marc Lenoir,2 XSantos J. Franco,5 and Martin Schwander1 1Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey 08854, 2Inserm U1051, Institute for Neurosciences of Montpellier, 34091, Montpellier cedex 5, France, 3Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California 94305, 4Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045, and 5Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045 Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-inducedperoxisomeproliferationinauditoryhaircellsandneurons.Herewedemonstratethatlossofpejvakininhaircells,butnot in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function.
    [Show full text]
  • Human Leucine-Rich Repeat Proteins: a Genome-Wide Bioinformatic Categorization and Functional Analysis in Innate Immunity
    Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity Aylwin C. Y. Nga,b,1, Jason M. Eisenberga,b,1, Robert J. W. Heatha, Alan Huetta, Cory M. Robinsonc, Gerard J. Nauc, and Ramnik J. Xaviera,b,2 aCenter for Computational and Integrative Biology, and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; bThe Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; and cMicrobiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved June 11, 2010 (received for review February 17, 2010) In innate immune sensing, the detection of pathogen-associated proteins have been implicated in human diseases to date, notably molecular patterns by recognition receptors typically involve polymorphisms in NOD2 in Crohn disease (8, 9), CIITA in leucine-rich repeats (LRRs). We provide a categorization of 375 rheumatoid arthritis and multiple sclerosis (10), and TLR5 in human LRR-containing proteins, almost half of which lack other Legionnaire disease (11). identifiable functional domains. We clustered human LRR proteins Most LRR domains consist of a chain of between 2 and 45 by first assigning LRRs to LRR classes and then grouping the proteins LRRs (12). Each repeat in turn is typically 20 to 30 residues long based on these class assignments, revealing several of the resulting and can be divided into a highly conserved segment (HCS) fol- protein groups containing a large number of proteins with certain lowed by a variable segment (VS).
    [Show full text]
  • Biochemical Studies of the Synaptic Protein Otoferlin
    Biochemical studies of the synaptic protein otoferlin Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen im Promotionsprogramm “Grundprogramm Biologie” der Georg-August University School of Science (GAUSS) vorgelegt von Sandra Meese aus Holzminden Göttingen, 2014 Betreuungsausschuss Prof. Dr. Ralf Ficner, Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen Prof. Dr. Tobias Moser, InnerEarLab, Department of Otolaryngology, Universitätsmedizin Göttingen Dr. Ellen Reisinger, Molecular Biology of Cochlear Neurotransmission Group, InnerEarLab, HNO-Klinik, Universitätsmedizin Göttingen Mitglieder der Prüfungskommission Referent: Prof. Dr. Ralf Ficner, Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen Korreferent: Prof. Dr. Tobias Moser, InnerEarLab, Department of Otolaryngology, Universitätsmedizin Göttingen weitere Mitglieder der Prüfungskommission: Dr. Ellen Reisinger, Molecular Biology of Cochlear Neurotransmission Group, InnerEarLab, HNO-Klinik, Universitätsmedizin Göttingen Prof. Dr. Kai Tittmann, Bioanalytik, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen Prof. Dr. Jörg Stülke, Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen PD Dr. Michael Hoppert, Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen
    [Show full text]
  • Mechanisms and Functions of Pexophagy in Mammalian Cells
    cells Review Mechanisms and Functions of Pexophagy in Mammalian Cells Jing Li 1 and Wei Wang 2,* 1 Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; [email protected] 2 Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China * Correspondence: [email protected] Abstract: Peroxisomes play essential roles in diverse cellular metabolism functions, and their dy- namic homeostasis is maintained through the coordination of peroxisome biogenesis and turnover. Pexophagy, selective autophagic degradation of peroxisomes, is a major mechanism for removing damaged and/or superfluous peroxisomes. Dysregulation of pexophagy impairs the physiological functions of peroxisomes and contributes to the progression of many human diseases. However, the mechanisms and functions of pexophagy in mammalian cells remain largely unknown com- pared to those in yeast. This review focuses on mammalian pexophagy and aims to advance the understanding of the roles of pexophagy in human health and diseases. Increasing evidence shows that ubiquitination can serve as a signal for pexophagy, and ubiquitin-binding receptors, substrates, and E3 ligases/deubiquitinases involved in pexophagy have been described. Alternatively, pex- ophagy can be achieved in a ubiquitin-independent manner. We discuss the mechanisms of these ubiquitin-dependent and ubiquitin-independent pexophagy pathways and summarize several in- ducible conditions currently used to study pexophagy. We highlight several roles of pexophagy in human health and how its dysregulation may contribute to diseases. Citation: Li, J.; Wang, W. Keywords: peroxisome; autophagy; mammalian; pexophagy; ubiquitin; receptor Mechanisms and Functions of Pexophagy in Mammalian Cells.
    [Show full text]
  • Integration of Tmc1/2 Into the Mechanotransduction Complex in Zebrafish Hair Cells Is Regulated by Transmembrane O-Methyltransferase (Tomt)
    This is a repository copy of Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/117038/ Version: Accepted Version Article: Erickson, T. orcid.org/0000-0002-0910-2535, Morgan, C.P, Olt, J. et al. (9 more authors) (2017) Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife, 6. https://doi.org/10.7554/eLife.28474 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Title Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt) Running title Tomt is required for mechanotransduction Authors Timothy Erickson1, Clive P.
    [Show full text]
  • Diaphanous Causes Hearing Defects in Humans with Auditory Neuropathy and in Drosophila
    Increased activity of Diaphanous homolog 3 (DIAPH3)/ diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila Cynthia J. Schoena,b, Sarah B. Emeryc, Marc C. Thornec, Hima R. Ammanad,Elzbieta_ Sliwerska b, Jameson Arnettc, Michael Hortsche, Frances Hannand,f, Margit Burmeisterb,g,h, and Marci M. Lesperancec,1 aNeuroscience Graduate Program, bMolecular & Behavioral Neuroscience Institute, cDivision of Pediatric Otolaryngology, Department of Otolaryngology- Head and Neck Surgery, and Departments of eCell and Developmental Biology, gHuman Genetics, and hPsychiatry, University of Michigan Health System, Ann Arbor, MI 48109; and Departments of dCell Biology and Anatomy and fOtolaryngology, New York Medical College, Valhalla, NY 10595 Edited* by Mary-Claire King, University of Washington, Seattle, WA, and approved June 15, 2010 (received for review March 11, 2010) Auditory neuropathy is a rare form of deafness characterized by an We previously mapped the nonsyndromic auditory neuropathy, absent or abnormal auditory brainstem response with preservation autosomal dominant 1 (AUNA1) locus to chromosome 13q21-q24 of outer hair cell function. We have identified Diaphanous homolog in an American family of European descent (5). Affected individ- 3 (DIAPH3) as the gene responsible for autosomal dominant non- uals in this family develop hearing loss in the second decade of life syndromic auditory neuropathy (AUNA1), which we previously which rapidly progresses to profound deafness. Outer hair cell mapped to chromosome 13q21-q24. Genotyping of additional fam- function as measured by OAEs is preserved until approximately the ily members narrowed the interval to an 11-Mb, 3.28-cM gene-poor fifth decade of life. Electrically evoked responses of the auditory region containing only four genes, including DIAPH3.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]