An Epigenetic Reprogramming Strategy to Resensitize

Total Page:16

File Type:pdf, Size:1020Kb

An Epigenetic Reprogramming Strategy to Resensitize Published OnlineFirst March 16, 2016; DOI: 10.1158/0008-5472.CAN-15-2116 Cancer Molecular and Cellular Pathobiology Research An Epigenetic Reprogramming Strategy to Resensitize Radioresistant Prostate Cancer Cells Claudia Peitzsch1,MonicaCojoc1, Linda Hein1,InaKurth1,KatrinMabert€ 1, Franziska Trautmann1, Barbara Klink2,3,4,EvelinSchrock€ 2,3,4, Manfred P. Wirth5, Mechthild Krause1,3,4,6,7, Eduard A. Stakhovsky8,GennadyD.Telegeev9,VladimirNovotny5, Marieta Toma10, Michael Muders10, Gustavo B. Baretton10, Fiona M. Frame11, Norman J. Maitland11, Michael Baumann1,3,4,6,7, and Anna Dubrovska1,3,4,7 Abstract Radiotherapy is a mainstay of curative prostate cancer treat- switch occurred during a course of radiotherapy that was ment, but risks of recurrence after treatment remain significant associated with stable genetic and epigenetic changes. Specif- in locally advanced disease. Given that tumor relapse can be ically, we found that irradiation triggered histone H3 meth- attributed to a population of cancer stem cells (CSC) that ylation at the promoter of the CSC marker aldehyde dehydro- survives radiotherapy, analysis of this cell population might genase 1A1 (ALDH1A1), stimulating its gene transcription. illuminate tactics to personalize treatment. However, this Inhibiting this methylation event triggered apoptosis, promot- direction remains challenging given the plastic nature of pros- ed radiosensitization, and hindered tumorigenicity of radio- tate cancers following treatment. We show here that irradiating resistant prostate cancer cells. Overall, our results suggest that prostate cancer cells stimulates a durable upregulation of stem epigenetic therapies may restore the cytotoxic effects of irra- cell markers that epigenetically reprogram these cells. In both diation in radioresistant CSC populations. Cancer Res; 76(9); tumorigenic and radioresistant cell populations, a phenotypic 2637–51. Ó2016 AACR. Introduction treated with surgery and radiotherapy alone or in combination with androgen ablation. Tumor radioresistance can be a limiting Prostate cancer is the most common cancer among men and the factor of the efficacy of radiotherapy for some patients with a high- third leading cause of cancer-related deaths in men worldwide risk prostate cancer (2, 3). Depending on the stage of disease, up to (1). A significant proportion of prostate cancer patients are 45% of prostate cancers can relapse after radiotherapy (4–6). diagnosed with potentially curable localized tumor that can be Tumor relapse after radiotherapy has been attributed to the population of cancer stem cells (CSC) or tumor-initiating cells (7–9). The CSC hypothesis argues that cancer cells are hierar- 1OncoRay-National Center for Radiation Research in Oncology, Fac- ulty of Medicine and University Hospital Carl Gustav Carus,Technische chically organized according to their tumorigenic potential, and Universitat€ Dresden and Helmholtz-Zentrum Dresden-Rossendorf, tumors are initiated and maintained by the populations of CSCs Dresden, Germany. 2Institute of Clinical Genetics, Faculty of Medicine (10). Decades of radiobiologic research have demonstrated that and University Hospital Carl Gustav Carus, Technische Universitat€ Dresden, Dresden, Germany. 3German Cancer Consortium (DKTK), the frequency of tumor cells with CSC characteristics and their Dresden, Germany. 4German Cancer Research Center (DKFZ), Heidel- intrinsic radiosensitivity varies between tumors (7, 11, 12). berg, Germany. 5Department of Urology, Faculty of Medicine and Radiobiologic studies provided evidence for the importance of University Hospital Carl Gustav Carus,TechnischeUniversitat€ Dresden, fi Dresden, Germany. 6Department of Radiation Oncology, Faculty of these cells for local tumor control and suggested that ef cient Medicine and University Hospital Carl Gustav Carus, Technische Uni- tumor treatment by irradiation might require eradication of the versitat€ Dresden, Dresden, Germany. 7Helmholtz-Zentrum Dresden- entire CSC population. The role of CSCs in tumor development Rossendorf, Institute of Radiation Oncology, Dresden, Germany. and recurrence has recently motivated investigations of CSC- 8National Cancer Institute, Kyiv, Ukraine. 9Institute of Molecular Biol- ogy and Genetics NAS of Ukraine, Kyiv, Ukraine. 10Department of specific biomarkers for the analysis of CSC populations in tumor Pathology, Faculty of Medicine and University Hospital Carl Gustav pretreatment biopsies for the prediction of clinical outcome and € 11 Carus, Technische Universitat Dresden, Dresden, Germany. YCR Can- selection of the optimal treatment strategy (13, 14). It is also cer Research Unit, Department of Biology, University of York, York, United Kingdom. assumed that the combination of radiotherapy with agents that target or radiosensitize the CSC population might be beneficial for Note: Supplementary data for this article are available at Cancer Research fi Online (http://cancerres.aacrjournals.org/). the treatment re nement (14). However, compelling evidence suggests a high diversity of CSCs and plasticity of their features M. Cojoc and L. Hein contributed equally to this article. imposed by tumor treatment, which could challenge the devel- Corresponding Author: Anna Dubrovska, Technische Universitat€ Dresden, opment of CSC-related predictive biomarkers and CSC-targeted Fetscherstr. 74, Dresden 01307, Germany. Phone: 4935-1458-7150; Fax: therapy. Furthermore, CSCs, which are selected or induced fol- 4903-5145-87311; E-mail: [email protected] lowing chemo- or radiotherapy, are very difficult to detect before doi: 10.1158/0008-5472.CAN-15-2116 treatment and might acquire treatment resistance, resulting in Ó2016 American Association for Cancer Research. tumor relapse (15). www.aacrjournals.org 2637 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst March 16, 2016; DOI: 10.1158/0008-5472.CAN-15-2116 Peitzsch et al. In this study, we show that irradiation induces genetic and pituitary extract (Life Technologies), 2 ng/mL leukemia inhibitory epigenetic alterations that affect prostate cancer cell tumorigenic- factor (Peprotech) 2 ng/mL stem cell factor (Peprotech), 100 ng/mL ity and radioresistance. The epigenetic changes driven by irradi- cholera toxin (Sigma-Aldrich), and 1 ng/mL granulocyte macro- ation are mediated by histone methylation, which induces the phage colony-stimulating factor (GM-CSF; Miltenyi Biotec; ref. 17). expression of ALDH1A1 gene regulating the maintenance of the Cells were cultured in the presence of irradiated (60 Gy) STO prostate CSCs and their radioresistance. Targeting of the histone 3 (mouse embryonic fibroblast) cells. After expansion, the primary methylation with DZNep, an inhibitor of lysine methyltransferase epithelial cells were plated at density of 8 Â 104 cells/mL in collagen enhancer of zeste homologue 2 (EZH2), leads to the downregula- I–coated chamber slides (Corning) without feeder cells. Cells were tion of ALDH1A1 expression and tumor cell radiosensitization. pretreated with DMSO (control cells) or DZNep at concentration of Furthermore, irradiation causes long-term alterations in the 1 mmol/L for 24 hours, irradiated with 4 Gy or left nonirradiated expression of stem cell markers and induces tumor cell repro- and fixed with4% formaldehyde 24hours after irradiation. Primary gramming. To our knowledge, this is the first study demonstrating prostate cells were used for the experiments at the early passages (up that radioresistant cell populations within prostate cancer cells to 6 passages for the cells from patient 312/13 and up to 5 passages undergo a phenotypic switch during the course of irradiation. We for the cells from patient 311/13). found that in contrast to nonirradiated cells, ALDH activity is not indicative of a radioresistant cell subset in the cells surviving the Human tissue samples course of fractionated irradiation. Moreover, our study demon- Clinical material was collected at the Department of Urology, strates that radioresistant prostate cancer cells are more sensitive University Hospital Carl Gustav Carus, Technische Universit€at to the DZNep treatment, which induces apoptosis and abrogates Dresden and Kyiv National Cancer Institute with informed con- tumorigenicity in combination with X-ray irradiation. sent and approval from the local ethics committee (Institutional Our findings suggest that radioresistant properties of cancer Review Board of the Faculty of Medicine, Technische Universit€at cells are dynamic in nature and that a combination of radiother- Dresden, EK49022015 and Ethics Committee of Kyiv National apy with drugs that prevent tumor cell reprogramming may be Cancer Institute, protocol no. 44, respectively). The tumor spec- beneficial for eradication of tumor-initiating and radioresistant imen PT1 was taken from a lymph node of a 69-year-old patient cell populations. Future research must extend this work by using (pT3bpN1L1V0R0G3a, Gleason score 4 þ 3 ¼ 7, preoperative PSA additional experiments on primary cultures and biopsies, and by level 6.58 ng/mL) with newly diagnosed prostate cancer, who combination of DZNep treatment with radiotherapy in xenograft underwent primary surgery (bilateral lymphadenectomy and pros- mouse models of human prostate cancer. tate vesiculectomy). The tumor specimen PT2 is a radical prosta- tectomy tissue taken from a 64-year-old patient (pT2c N0 M0, Gleason score 3 þ 4 ¼ 7, preoperative PSA level 19.8 ng/mL). The Materials and Methods
Recommended publications
  • ` Probing the Epigenome Andrea Huston1, Cheryl H Arrowsmith1,2
    ` Probing the Epigenome Andrea Huston1, Cheryl H Arrowsmith1,2, Stefan Knapp3,4,*, Matthieu Schapira1,5,* 1. Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada 2. Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto , Toronto, ON M5G 1L7, Canada 3. Nuffield Department of Clinical Medicine, Target Discovery Institute, and Structural Genomic Consortium, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom 4. Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe University, D-60438 Frankfurt am Main, Germany 5. Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected], [email protected] Epigenetic chemical probes are having a strong impact on biological discovery and target validation. Systematic coverage of emerging epigenetic target classes with these potent, selective, cell-active chemical tools will profoundly influence our understanding of the human biology and pathology of chromatin-templated mechanisms. ` Chemical probes are research-enablers Advances in genomics and proteomics methodologies in recent years have made it possible to associate thousands of genes and proteins with specific diseases, biological processes, molecular networks and pathways. However, data from these large scale initiatives alone has not translated widely into new studies on these disease-associated proteins, and the biomedical research community still tends to focus on proteins that were already known before the sequencing of the human genome1. The human kinome for instance, a target class of direct relevance to cancer and other disease areas, is a telling example: based on the number of research articles indexed in pubmed in 2011, 75% of the research activity focused on only 10% of the 518 human kinases – largely the same kinases that were the focus of research before sequencing of the human genome - while 60% of the kinome, some 300 enzymes, was virtually ignored by the community2.
    [Show full text]
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • A 1Bp Deletion in the Dual Reading Frame Deafness Gene LRTOMT Causes a Frameshift from the First Into the Second Reading Frame
    RESEARCH LETTER A 1 bp Deletion in the Dual Reading Frame Deafness Gene LRTOMT Causes a Frameshift From the First Into the Second Reading Frame Maarten Vanwesemael,1 Isabelle Schrauwen,1 Ruben Ceuppens,1 Fatemeh Alasti,1 Ellen Jorssen,1 Effat Farrokhi,2 Morteza Hashemzadeh Chaleshtori,2 and Guy Van Camp1* 1Department of Medical Genetics, University of Antwerp, 2610, Wilrijk, Belgium 2Cellular and Molecular Research Center, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran Received 29 November 2010; Accepted 12 April 2011 TO THE EDITOR: How to Cite this Article: Congenital hearing impairment (HI) affects one in 650 newborns Vanwesemael M, Schrauwen I, Ceuppens R, and has a genetic cause in 50% of the cases. Autosomal recessive Alasti F, Jorssen E, Farrokhi E, Chaleshtori non-syndromic hearing impairment (ARNSHI) is responsible for MH, Van Camp G. 2011. A 1 bp deletion in the 70–80% of all hereditary cases of HI. ARNSHI is genetically highly dual reading frame deafness gene LRTOMT heterogeneous and until today mutations in 37 genes have been causes a frameshift from the first into the identified [Van Camp and Smith, 2011]. One of the latest genes for second reading frame. ARNSHI is LRTOMT (at locus DFNB63 on 11q13.3-q13.4). The Am J Med Genet Part A 155:2021–2023. structure of human LRTOMT has only recently been elucidated [Ahmed et al., 2008]. LRTOMT is an evolutionary recent fusion gene with alternative reading frames that exclusively exists in analysis was performed on an ABI 3130XL DNA sequence primates and is a fusion of non-primate Lrrc51 (Leucine rich repeat analyzer (Applied Biosystems Inc., Foster City, CA), using standard containing 51) and Tomt (Transmembrane O-methyltransferase) procedures.
    [Show full text]
  • Structural Determinants of Adhesion by Protocadherin-19 and Implications for Its Role in Epilepsy Sharon Cooper Cedarville University, [email protected]
    Cedarville University DigitalCommons@Cedarville Science and Mathematics Faculty Publications Department of Science and Mathematics 10-27-2016 Structural Determinants of Adhesion by Protocadherin-19 and Implications for Its Role in Epilepsy Sharon Cooper Cedarville University, [email protected] James D. Jontes Marcos Sotomayor Follow this and additional works at: http://digitalcommons.cedarville.edu/ science_and_mathematics_publications Part of the Biology Commons, and the Cell Biology Commons Recommended Citation Cooper, S. R., Jontes, J. D., Sotomayor, M. (2016) Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy. eLife. 5:e18529. http://dx.doi.org/10.7554/eLife.18529. This Article is brought to you for free and open access by DigitalCommons@Cedarville, a service of the Centennial Library. It has been accepted for inclusion in Science and Mathematics Faculty Publications by an authorized administrator of DigitalCommons@Cedarville. For more information, please contact [email protected]. RESEARCH ARTICLE Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy Sharon R Cooper1,2, James D Jontes2*, Marcos Sotomayor1* 1Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States; 2Department of Neuroscience, The Ohio State University, Columbus, United States Abstract Non-clustered d-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular domain.
    [Show full text]
  • Functional Analysis of Structural Variation in the 2D and 3D Human Genome
    FUNCTIONAL ANALYSIS OF STRUCTURAL VARIATION IN THE 2D AND 3D HUMAN GENOME by Conor Mitchell Liam Nodzak A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Bioinformatics and Computational Biology Charlotte 2019 Approved by: Dr. Xinghua Mindy Shi Dr. Rebekah Rogers Dr. Jun-tao Guo Dr. Adam Reitzel ii c 2019 Conor Mitchell Liam Nodzak ALL RIGHTS RESERVED iii ABSTRACT CONOR MITCHELL LIAM NODZAK. Functional analysis of structural variation in the 2D and 3D human genome. (Under the direction of DR. XINGHUA MINDY SHI) The human genome consists of over 3 billion nucleotides that have an average distance of 3.4 Angstroms between each base, which equates to over two meters of DNA contained within the 125 µm3 volume diploid cell nuclei. The dense compaction of chromatin by the supercoiling of DNA forms distinct architectural modules called topologically associated domains (TADs), which keep protein-coding genes, noncoding RNAs and epigenetic regulatory elements in close nuclear space. It has recently been shown that these conserved chromatin structures may contribute to tissue-specific gene expression through the encapsulation of genes and cis-regulatory elements, and mutations that affect TADs can lead to developmental disorders and some forms of cancer. At the population-level, genomic structural variation contributes more to cumulative genetic difference than any other class of mutation, yet much remains to be studied as to how structural variation affects TADs. Here, we study the func- tional effects of structural variants (SVs) through the analysis of chromatin topology and gene activity for three trio families sampled from genetically diverse popula- tions from the Human Genome Structural Variation Consortium.
    [Show full text]
  • Novel Pharmacological Maps of Protein Lysine Methyltransferases: Key for Target Deorphanization Obdulia Rabal* , Andrea Castellar and Julen Oyarzabal*
    Rabal et al. J Cheminform (2018) 10:32 https://doi.org/10.1186/s13321-018-0288-5 RESEARCH ARTICLE Open Access Novel pharmacological maps of protein lysine methyltransferases: key for target deorphanization Obdulia Rabal* , Andrea Castellar and Julen Oyarzabal* Abstract Epigenetic therapies are being investigated for the treatment of cancer, cognitive disorders, metabolic alterations and autoinmune diseases. Among the diferent epigenetic target families, protein lysine methyltransferases (PKMTs), are especially interesting because it is believed that their inhibition may be highly specifc at the functional level. Despite its relevance, there are currently known inhibitors against only 10 out of the 50 SET-domain containing members of the PKMT family. Accordingly, the identifcation of chemical probes for the validation of the therapeutic impact of epigenetic modulation is key. Moreover, little is known about the mechanisms that dictate their substrate specifc- ity and ligand selectivity. Consequently, it is desirable to explore novel methods to characterize the pharmacologi- cal similarity of PKMTs, going beyond classical phylogenetic relationships. Such characterization would enable the prediction of ligand of-target efects caused by lack of ligand selectivity and the repurposing of known compounds against alternative targets. This is particularly relevant in the case of orphan targets with unreported inhibitors. Here, we frst perform a systematic study of binding modes of cofactor and substrate bound ligands with all available SET domain-containing PKMTs. Protein ligand interaction fngerprints were applied to identify conserved hot spots and contact-specifc residues across subfamilies at each binding site; a relevant analysis for guiding the design of novel, selective compounds. Then, a recently described methodology (GPCR-CoINPocket) that incorporates ligand contact information into classical alignment-based comparisons was applied to the entire family of 50 SET-containing proteins to devise pharmacological similarities between them.
    [Show full text]
  • Sharmin Supple Legend 150706
    Supplemental data Supplementary Figure 1 Generation of NPHS1-GFP iPS cells (A) TALEN activity tested in HEK 293 cells. The targeted region was PCR-amplified and cloned. Deletions in the NPHS1 locus were detected in four clones out of 10 that were sequenced. (B) PCR screening of human iPS cell homologous recombinants (C) Southern blot screening of human iPS cell homologous recombinants Supplementary Figure 2 Human glomeruli generated from NPHS1-GFP iPS cells (A) Morphological changes of GFP-positive glomeruli during differentiation in vitro. A different aggregate from the one shown in Figure 2 is presented. Lower panels: higher magnification of the areas marked by rectangles in the upper panels. Note the shape changes of the glomerulus (arrowheads). Scale bars: 500 µm. (B) Some, but not all, of the Bowman’s capsule cells were positive for nephrin (48E11 antibody: magenta) and GFP (green). Scale bars: 10 µm. Supplementary Figure 3 Histology of human podocytes generated in vitro (A) Transmission electron microscopy of the foot processes. Lower magnification of Figure 4H. Scale bars: 500 nm. (B) (C) The slit diaphragm between the foot processes. Higher magnification of the 1 regions marked by rectangles in panel A. Scale bar: 100 nm. (D) Absence of mesangial or vascular endothelial cells in the induced glomeruli. Anti-PDGFRβ and CD31 antibodies were used to detect the two lineages, respectively, and no positive signals were observed in the glomeruli. Podocytes are positive for WT1. Nuclei are counterstained with Nuclear Fast Red. Scale bars: 20 µm. Supplementary Figure 4 Cluster analysis of gene expression in various human tissues (A) Unbiased cluster analysis across various human tissues using the top 300 genes enriched in GFP-positive podocytes.
    [Show full text]
  • Uncovering the Human Methyltransferasome*DS
    Research © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Uncovering the Human Methyltransferasome*□S Tanya C. Petrossian and Steven G. Clarke‡ We present a comprehensive analysis of the human meth- core (2, 3, 5, 6, 15). The SPOUT methyltransferase superfamily yltransferasome. Primary sequences, predicted second- contains a distinctive knot structure and methylates RNA ary structures, and solved crystal structures of known substrates (16). SET domain methyltransferases catalyze the methyltransferases were analyzed by hidden Markov methylation of protein lysine residues with histones and ribo- models, Fisher-based statistical matrices, and fold recog- somal proteins as major targets (17–19). Smaller superfamilies nition prediction-based threading algorithms to create a with at least one three-dimensional structure available include model, or profile, of each methyltransferase superfamily. the precorrin-like methyltransferases (20), the radical SAM1 These profiles were used to scan the human proteome methyltransferases (21, 22), the MetH activation domain (23), database and detect novel methyltransferases. 208 pro- teins in the human genome are now identified as known or the Tyw3 protein involved in wybutosine synthesis (24), and putative methyltransferases, including 38 proteins that the homocysteine methyltransferases (25–27). Lastly, an inte- were not annotated previously. To date, 30% of these gral membrane methyltransferase family has been defined
    [Show full text]
  • Germline PTPRT Mutation Potentially Involved in Cancer Predisposition
    Germline PTPRT mutation potentially involved in cancer predisposition Lorena Martin1, Victor Lorca2, Pedro P´erez-Segura2, Patricia Llovet1, Vanesa Garc´ıa-Barber´an3, Maria Luisa Gonzalez-Morales2, Sami Belhad4, Gabriel Capell´a5, Laura Valle4, Miguel de la Hoya2, Pilar Garre6, and Trinidad Caldes2 1Hospital Clinico San Carlos. IdISCC 2Hospital Clinico San Carlos. IdISSC 3Hospital Cl´ınicoSan Carlos, IdISCC, CIBERONC 4IDIBELL 5ICO-IDIBELL 6Hospital clinico San Carlos. IdISSC September 17, 2020 Abstract Familial Colorectal Cancer Type X (FCCTX) is a term used to describe a group of families with an increased predisposition to colorectal and other related cancers, but an unknown genetic basis. Whole-exome sequencing in two cancer-affected and one healthy members of a FCCTX family revealed a truncating germline mutation in PTPRT [c.4090dup, p.(Asp1364GlyfsTer24)]. PTPRT encodes a receptor phosphatase and is a tumor suppressor gene found to be frequently mutated at somatic level in many cancers, having been proven that these mutations act as drivers that promote tumor development. This germline variant shows a compatible cosegregation with cancer in the family and results in the loss of a significant fraction of the second phosphatase domain of the protein, which is essential for PTPRT's activity. In addition, the tumors of the carriers exhibit epigenetic inactivation of the wild-type allele and an altered expression of PTPRT downstream target genes, consistent with a causal role of this germline mutation in the cancer predisposition of the family. Although PTPRT's role cancer initiation and progression has been well studied, this is the first time that a germline PTPRT mutation is linked with cancer susceptibility and hereditary cancer, which highlights the relevance of the present study.
    [Show full text]
  • Human Leucine-Rich Repeat Proteins: a Genome-Wide Bioinformatic Categorization and Functional Analysis in Innate Immunity
    Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity Aylwin C. Y. Nga,b,1, Jason M. Eisenberga,b,1, Robert J. W. Heatha, Alan Huetta, Cory M. Robinsonc, Gerard J. Nauc, and Ramnik J. Xaviera,b,2 aCenter for Computational and Integrative Biology, and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; bThe Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; and cMicrobiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved June 11, 2010 (received for review February 17, 2010) In innate immune sensing, the detection of pathogen-associated proteins have been implicated in human diseases to date, notably molecular patterns by recognition receptors typically involve polymorphisms in NOD2 in Crohn disease (8, 9), CIITA in leucine-rich repeats (LRRs). We provide a categorization of 375 rheumatoid arthritis and multiple sclerosis (10), and TLR5 in human LRR-containing proteins, almost half of which lack other Legionnaire disease (11). identifiable functional domains. We clustered human LRR proteins Most LRR domains consist of a chain of between 2 and 45 by first assigning LRRs to LRR classes and then grouping the proteins LRRs (12). Each repeat in turn is typically 20 to 30 residues long based on these class assignments, revealing several of the resulting and can be divided into a highly conserved segment (HCS) fol- protein groups containing a large number of proteins with certain lowed by a variable segment (VS).
    [Show full text]