<<

The Pennsylvania State University

The Graduate School

Department of Energy and Geo-Environmental Engineering

AN EMPIRICAL APPROACH FOR PREDICTING OF

HYDROCARBON SYSTEMS: DEFINED COMPOUNDS, DIRECT COAL LIQUID OILS

AND LIGHT CRUDE OILS

A Thesis in

Energy and Mineral Engineering

by

Vijayaragavan Krishnamoorthy

 2010 Vijayaragavan Krishnamoorthy

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

August 2010 The thesis of Vijayaragavan Krishnamoorthy was reviewed and approved* by the following:

Sharon F. Miller Research Associate at EMS Energy Institute Thesis Advisor

Harold H. Schobert Professor of Fuel Science

Caroline E. Burgess Clifford Senior Research Associate at EMS Energy Institute

Bruce G. Miller Senior Research Associate at EMS Energy Institute

R. Larry Grayson Professor of Energy and Mineral Engineering Graduate Program Officer of Energy and Mineral Engineering

* Signatures are on file in the Graduate School

ABSTRACT

A single parameter empirical method, based on the Effective Number (ECN) concept proposed by Allan and Teja (1991), was modified and extended to predict the viscosities of defined compounds (pure and their mixtures) and undefined liquids

(petroleum fractions, crude oil, coal liquids, and coal liquid fractions) over a wide range of temperatures, pressures up to 700 bars, and compositions. Two correlations, n- correlation and aromatic correlation, were developed to calculate the ECN for the liquid under investigation.

The n-alkane correlation was obtained by correlating data of normal to their carbon number, while the aromatic correlation was obtained by correlating viscosity data of selected coal liquid model compounds with their carbon number. The aromatic correlation was used in calculating ECN only in certain cases. Andrade‘s equation [Reid et al (1987)] was used in obtaining the viscosity-temperature relationship. Viscosity-pressure relationships for ECN <12 and ECN ≥12 were obtained from high pressure n-alkane and synthetic crude oil data. Thus, viscosities over a wide range of temperatures and pressures up to 700 bars can be calculated with a single reference viscosity datum.

The model thus obtained was tested with viscosity data of 13 pure aromatics, 11 olefins, 28 alicylics, 7 defined hydrocarbon liquid mixtures at low pressures, 8 pure liquid hydrocarbons and mixtures at high pressures, and 53 undefined liquid hydrocarbon mixtures. The overall Average

Absolute Error (AAE), which is defined as the average of the percent absolute difference between predicted and experimental viscosity data points, in predicting the viscosities of various categories of liquids was as follows: 6.28% for aromatics, 3.44% for olefins, 4.09% for alicyclics, 2.90% for defined hydrocarbon mixture at low pressure, 3.90% for pure hydrocarbons

iii

and mixtures at high pressures, 9.99% for coal liquids and 4.69% for crude oil and petroleum fractions.

The developed method compared favorably with the Generalized Corresponding State Principle

(GCSP); a widely recognized model in predicting the viscosities of coal liquids. Moreover, the developed method was found to compare favorably with the method of Kabadi and Palakkal and the method of Sharma and Goel, for limited coal liquid data points. The distinguishing characteristics of the developed method over the method of Allan and Teja (1991) are their applicability to high pressure data and the prediction of viscosities for heavy coal liquid distillates.

Overall, the model has been shown to be a powerful technique in predicting viscosities of defined and undefined compounds (light and middle distillates of coal liquid oils, and light crude oils and fractions) over a wide range of temperatures (253.15-673.15 K) and pressures (1.01-700 bars). However, the developed method should be used with caution when predicting viscosities of heavy distillates at low temperatures (<340 K) and light and middle distillates at very high temperatures (>673.15 K).

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES ...... vii

LIST OF TABLES ...... viii

NOMENCLATURE ...... x

ACKNOWLEDGEMENTS ...... xii

Chapter 1. Introduction ...... 01

Chapter 2. Literature Review ...... 03

2.1. Semitheoretical Methods ...... 04

2.1.1. Corresponding States Principle ...... 05

2.1.1.1. Ely and Hanley Method (1981)...... 06

2.1.1.2. Generalized Corresponding States Principle (GCSP) ...... 09

2.1.1.3. Pedersen Method (1984) ...... 13

2.1.2. Conclusions of the Semitheoretical Methods ...... 15

2.2. Empirical Methods ...... 15

2.2.1. Method of Amin and Maddox (1980) ...... 16

2.2.2. Methods of Twu (1985, 1986) ...... 17

2.2.3. Method of Sharma and Goel (1997) ...... 19

2.2.4. Method of Kabadi and Palakkal (1996) ...... 20

2.2.5. Method of Allan and Teja (1991) ...... 20

2.2.6. Conclusions of the Empirical Methods ...... 22

2.3. Conclusions of the Literature Review...... 23

Chapter 3. Experimental Methods ...... 24

3.1. Coal, Coal Preparation and Solvent Selection ...... 24

3.2. Liquefaction Procedure ...... 25

v

3.3. and Specific Gravity Measurements ...... 29

3.4. Viscosity Measurements ...... 30

Chapter 4. Model Development and Results ...... 32

4.1. Development of the Viscosity Model ...... 32

4.1.1. Viscosity-Temperature Relationship ...... 32

4.1.2. Viscosity-Pressure Relationship ...... 36

4.1.3. Procedure for Calculating Viscosity using the Developed Method ...... 38

4.1.4. Effectiveness of the Model ...... 41

4.2. Results ...... 41

4.2.1. Evaluation of the Model to Predict Viscosities of Hydrocarbon Systems ... 43

4.2.1.1. Evaluation of the Model with Defined Compounds ...... 44

4.2.1.2. Evaluation of the Model with Undefined Compounds (DCLOs) ...... 49

4.2.1.3. Evaluation of the Model with Undefined Compounds (Light Crudes

and Fractions)...... 53

4.2.3. Summary of the Results ...... 56

Chapter 5. Comparison with the GCSP Model ...... 57

Chapter 6. Conclusions and Recommendations ...... 61

Bibliography ...... 63

Appendix A. Liquefaction Conversion Data, GC-MS Operating Conditions and

Compositional Information of Surrogate Coal Liquid Oils ...... 68

Appendix B. Physical Properties and Viscosity Data of Surrogate Coal Liquid Oils ...... 70

Appendix C. Repeatability Study ...... 72

Appendix D. Sample Calculations ...... 74

Appendix E. Results of Various Hydrocarbon Systems ...... 76

vi

LIST OF FIGURES

Page

Figure 2.1 Various liquid viscosity models [adapted from Mehrotra et al (1996)] ...... 04

Figure 3.1 Picture of a microreactor used in this work ...... 26

Figure 3.2 Block diagram of the experimental procedure followed in this work ...... 28

Figure 3.3 Picture of a Bohlin Gemini HR Nano rheometer fitted with flat plate

geometry ...... 31

Figure 4.1 Schematic procedure for calculating viscosity ...... 40

Figure 4.2 Effect of viscosity datum on the predictive ability of the model...... 43

Figure 4.3 Evaluation of defined compounds by the developed method ...... 44

Figure 4.4 Probability plots of absolute error in predicting the viscosities of coal liquid

oils and fractions ...... 51

Figure 4.5 A comparison between experimental and calculated viscosities of a coal

liquid fraction (SRC-II cut 16 fraction) (AAE=25.11%) ...... 51

Figure 4.6 Comparison of the developed method with the method of Sharma and Goel ..... 52

Figure 4.7 Comparison of the developed method with the method of Kabadi and Palakkal

for SRC-II coal liquid fractions ...... 53

Figure 4.8 Evaluation of light crude oils and fractions by the developed method ...... 55

Figure 4.9 Probability plots of absolute error in predicting the viscosities of light crude

oils and fractions ...... 55

Figure 5.1 Comparison of the developed method with the GCSP method for DCLOs ...... 58

vii

LIST OF TABLES

Page

Table 2.1 Viscosity correction factors...... 19

Table 3.1 Composition of the coal used in this study ...... 25

Table 4.1 Summary of results of compounds used in developing the n-alkane correlation 34

Table 4.2 Summary of results of compounds used in developing the aromatic correlation 35

Table 4.3 Summary of results of compounds used in developing the pressure correlation

for liquids with n<12 ...... 37

Table 4.4 Summary of results of compounds used in developing the pressure correlation

for liquids with n≥12 ...... 38

Table 4.5 Comparison of AAE using ECN calculated from different viscosity datum ...... 42

Table 4.6 Calculated results of alicyclics at atmospheric pressure ...... 45

Table 4.7 Calculated results of olefins at saturation pressures ...... 46

Table 4.8 Calculated results of aromatics at saturation pressures ...... 46

Table 4.9 Calculated results of defined compounds at atmospheric pressure ...... 47

Table 4.10 Calculated results of defined compounds at various pressures and

temperatures ...... 48

Table 4.11 Calculated results of direct coal liquid oils and fractions ...... 50

Table 4.12 Calculated results of light crude oils and fractions ...... 54

Table 5.1 Comparison of the developed method with the GCSP method for DCLOs ...... 59

Table A.1 Liquefaction conversion of the Dietz coal ...... 68

Table A.2 Major constituents of surrogate coal liquid oils ...... 69

Table B.1 Boiling cuts of surrogate coal liquid oils ...... 70

Table B.2 Specific gravity and MeABP of surrogate coal liquid oils ...... 70

Table B.3 Viscosity data of surrogate coal liquid oils ...... 71

viii

Page

Table C.1 Repeatability studies on surrogate coal liquid oils ...... 72

Table E.1 Results ...... 76

ix

NOMENCLATURE

A Constant A(P) in equation 68 Multiplication factor

AE Absolute error, 100×(|μcal –μexp|/|μexp|)

AAE Average absolute error, ∑100×|μcal –μexp|/|μexp|)/N API API gravity defined in equation 32 B Constant

b1-b5 Constants

C1-C6, C Constants f(o), f(1) Functions of reduced boiling point f and h in eq-12 and 13 Scaling ratios 0.33 Kw Watson parameter, (1.8Tb) /SG

kαβ, lαβ Binary interaction parameters M Molecular weight MeABP Mean average boiling point

MWmix Molecular weight of mixture

MWo Molecular weight of reference component N Number of data points predicted n Effective carbon number (ECN) P Pressure

Pc Critical pressure

Pcm Critical pressure of the mixture

Po Reference pressure

Pr Reduced pressure, P/Pc

Pvap Vapor pressure at Tr=0.7 R Gas constant r1 Reference fluid 1 r2 Reference fluid 2 SG Specific gravity

SD2887 Slope T Temperature

Tb Boiling point

Tc Critical temperature

Tcm Critical temperature of the mixture

To Temperature of the reference fluid

x

Tr Reduced temperature, T/Tc V Volume

Vc Critical volume

Vr Reduced volume, V/Vc Va+, Ta+ Parameter to calculate shape factor WABP Weight average boiling point X Dimensionless configurational property xi, xj Mole fraction of i and j component Z Compressibility factor

Zc Critical compressibility Zr Compressibility factor of reference fluid Zt Empirical correlation in Twu‘s method α Correction factor in equation 55

αo Coefficient for reference fluid

αmix Coefficient for mixture

αTG Rotational coupling coefficient β Characterization property ε Energy potential parameter

ξ Constant for reduced viscosity

Θ, φ Shape factor

ρo Density of reference fluid

ρc Critical density

ρr Reduced density, ρ/ρc η Viscosity of fluid of interest

ηc Critical viscosity

ηr Reduced viscosity, η/ ηc τ Shear stress μ Dynamic viscosity

μexp Experimental viscosity

μcal Calculated viscosity

μsl Saturated dynamic viscosity μ* Complex viscosity ν Kinematic viscosity υ Shear rate ω Acentric factor

xi

ACKNOWLEDGEMENTS

I wish to express my deep sense of gratitude to Dr. Sharon Falcone Miller and Mr. Bruce Miller for their assistance, guidance, and patience during my course of study. The freedom and the support they offered me had significantly enhanced my knowledge and skill sets. I am also grateful to Dr. Harold Schobert and Dr. Caroline Clifford for their support and assistance whenever needed. I owe special thanks to Dr. Harold Schobert for being a constant source of inspiration. I wish to express my appreciation to Mr. Gareth Mitchell for imparting knowledge on coal petrology. I wish to thank Dr. Quijing Yang, Dr. Dania Alvarez Fonseca, Ms. Sarah

Luchner, Mr. Ronald Wasco and other EMS staff members, for their invaluable advice, guidance, and discussions. I also like to thank my friends Girish, Madhu, Arun and Roshan for making my life at Penn State a memorable one.

Finally, I would like to express my gratitude to my parents, Krishnamoorthy and Bhuvaneshwari, and my brothers, Jayaraman and Vasudevan, for their constant support and love. I can never express my love and gratitude for them enough.

xii

CHAPTER 1

INTRODUCTION

Transport properties are very important in chemical engineering applications, which include calculating heat, mass, and momentum transfer coefficients [Bird et al (2002)]. Viscosity is one of the most important transport properties required for designing equipment [Moharam and Fahim

(1995)], specifically in determining the size of process equipment, reactor specifications, and material selection. Viscosity is also used in simulation studies for obtaining a detailed understanding of the chemical engineering process. For example, flow of liquids through conduits may be characterized as laminar or turbulent flow. To understand the type of flow through conduits, Reynolds number, which is a component of viscosity, needs to be calculated [McCabe et al (1993)]. Viscosity data are also required to calculate Prandtl numbers and Grashof numbers, which in turn are required for understanding the effect of momentum and thermal boundary layers on heat transfer in process system and heat transfer in free convection system, respectively

[McCabe et al (1993)]. For design engineers, viscosity data over a wide range of temperatures are needed for designing the process systems effectively [Moharam and Fahim (1995)]. Since the experimental viscosity data for various liquids over a wide range of temperatures and pressures are not usually available in the literature, simple and reliable methods for viscosity estimations are highly desirable.

Although coal liquid oils (CLOs) are considered as an alternative to crude oils, viscosity prediction methods of crude oil cannot be applied to predict viscosity of coal liquids [Sharma and

Goel (1997)]. This is due to the difference in crude oil and coal liquid composition. Sharma and

Goel suggested that the presence of heteroatoms and not the aromatic contents causes the major

1

differences between experimental and predicted viscosities of coal liquids by traditional methods

[Sharma and Goel (1997)]; therefore, a useful viscosity prediction method for coal liquids is required.

A detailed review of various viscosity models was given by Poling et al (2001). The viscosity prediction models range from completely empirical (by best-fit procedure) to completely theoretical (based on the physical explanation accompanied by mathematical proof).

Corresponding state methods have more theoretical foundation [Moharam and Fahim (1995); Teja et al (1985); Ely and Hanley (1981)] and are more reliable than the empirical models presented in the review of Reid et al [Reid et al (1987)].

The objective of this work is to develop simple and reliable correlations that can predict viscosities of both defined (pure hydrocarbons and their mixtures) and undefined (coal liquid oils and fractions, and crude oils and fractions) liquid hydrocarbons over a wide range of temperatures, pressures, and compositions.

2

CHAPTER 2

LITERATURE REVIEW

There are many methods that are used to predict viscosities of liquids [Poling et al (2001)]. These methods range from semitheoretical to completely empirical as shown in Figure 2.1 [Mehrotra et al (1996)]. Widely accepted theoretical viscosity models for liquids have not been established yet due to a limited understanding of the intermolecular forces, such as long range forces (attractive forces), short range forces (repulsion and bonding) and wide range effects (electrostatic forces) [Mehrotra et al (1996)]. Hence, there are more semitheoretical and empirical models for predicting the viscosities of liquids [Reid et al (1987)]. Most of these viscosity models have a specific range of their applicability based on composition, temperature, and pressure. For example, a correlation for predicting the viscosities of petroleum fractions may not predict the viscosities of coal liquids due to differences in composition [Sharma and Goel (1997)]. Hochman showed that a significant difference between coal liquids and petroleum fractions is the level of heteroatoms and aromatics [Hochman (1982)]. Sharma and Goel suggested that for coal liquids, the higher experimental viscosities compared to the viscosities calculated using a petroleum correlation is primarily due to the association effect of heteroatoms in coal liquids [Sharma and

Goel (1997)]. Sharma et al showed that the higher aromaticity of coal liquids had a minor effect in creating a major property difference between coal liquids and petroleum fractions [Sharma et al

(1982)]. Coal liquids, like petroleum fractions, are complicated undefined fluids, which must be characterized to obtain relevant parameters [Tsonopoulos et al (1986)]. In the following sections, a review of the viscosity models having applicability for coal liquid oils is discussed, with an emphasis on understanding the limitations of the various viscosity models.

3

Liquid Viscosity

Semi- Theoretical Empirical Theoretical

Corresponding States Method of Sharma Methods and Goel (1997)

Hard Sphere Theory Method of Allan and Teja (1991) Lennard-Jones Theory Methods of Twu Modified Chapman- (1985, 1986) Enskog Theory Method of Amin Reaction Rate Theory and Maddox (1980)

Square Well Theory

Figure 2.1: Various liquid viscosity models [adapted from Mehrotra et al (1996)]

2.1. Semitheoretical Methods

As mentioned earlier, semitheoretical models are popular because widely recognized theoretical models for liquids are not available [Reid et al (1987)]. Semitheoretical models are either categorized as principle of corresponding states, or applied statistical models such as hard sphere theory, square well theory, Lennard-Jones theory, modified Chapman-Ensog theory, and reaction rate theory [Mehrotra et al (1996)]. Of these, the corresponding states methods are widely used in predicting the viscosities of petroleum fractions and synthetic fuels [Ely and Hanley (1981);

Baltatu (1982); Pedersen et al (1984); Teja et al (1985); Johnson et al (1987); Mehrota and Svrcek

(1987); Baltatu (1996)]. Therefore, only corresponding state methods will be discussed under semitheoretical methods.

4

2.1.1. Corresponding States Principle

The corresponding states principle was originally proposed by Van der Waals and later was expanded by Pitzer [Pitzer (1955)]. According to this theory, a dimensionless property of one substance is equal to that of another (reference) substance if both are evaluated at the same reduced conditions, i.e., same reduced temperature and reduced pressure [Monnery et al (1996)].

The equation of corresponding states principle is given as follows [Smith et al (1996)]:

Xo(Tr,Pr) = Xf(Tr, Pr) --1

where, X refers to a dimensionless configurational property as compressibility, reduced viscosity, reduced thermal conductivity or reduced diffusivity. Subscripts o and f refer to reference fluid and fluid of interest, respectively. The applicability of the two parameter correlation is restricted to simple fluids such as argon, krypton, and xenon [Smith et al (1996)].

Hougan and Watson (1947) applied Pitzer‘s two-parameter corresponding states method to determine the compressibility of dense gases and liquids [Poling et al (2001)]. The deviations from the corresponding states method estimates were found to vary from 5 to 35%. These deviations were due to polar and nonspherical molecules [Poling et al (2001)]. To account for the deviation from spherical molecules, Pitzer et al (1955) proposed acentric factor, ω, as a third parameter in the corresponding state method, i.e.,

ω = -log (Pr)Tr=0.7 - 1 --2

The three parameter corresponding states principle proposed by Pitzer et al (1955) is:

Z(Tr,Pr,ω) = Zo(Tr,Pr,ω) + ωZ1(Tr,Pr,ω) --3

5

where Zo and Z1 represent the compressibility factor of a spherical and nonspherical molecule, respectively.

Pitzer et al‘s (1955) corresponding states method was used or extended by Lestou and Stiel

(1973), Lee and Kesler (1975), Ely and Hanley (1976, 1981), Teja and Rice (1981), Pedersen et al

(1984, 1984a, 1986), Teja et al (1985), and many others for predicting viscosities of fluids containing nonspherical molecules. Of all the above-mentioned models, the three widely known and accepted models—Ely and Hanley method (1981), Pedersen et al (1984, 1984a, 1986) method, and the Generalized Corresponding States Principle by Teja et al (1985)—for predicting viscosities of coal liquids or petroleum fractions are reviewed in the following sections.

2.1.1.1. Ely and Hanley Method (1981)

The Ely and Hanley method is based on an extended corresponding states principle [Ely and

Hanley (1981)]. According to this method, the transport coefficient of a fluid, x, at a particular temperature and density, can be expressed in terms of the other fluid, o, a reference fluid. Their equation takes the form:

ηx (ρ, T) = ηo (ρo, To)Fη --4

1/2 1/2 -2/3 Fη = (Mx/Mo) fx,o hx,o --5

To = T/ fx,o --6

ρo= ρhx,o --7 where x refer to the pure fluid or mixture.

For a pure fluid (x=α), the following equations apply:

6

fα,o = (Tcα/ Tco) Θα,o --8

hα,o = (ρco/ ρcα) φα,o --9 where shape factors are given by:

+ + + Θα,o(Trα, Vrα,ωα) = 1+ (ωα - ωo)(0.090569-0.862762 ln Tα +(0.316636 –(0.465684/Tα ))(Vα -0.5) --10

+ + + φα,o(Trα, Vrα,ωα) = [1+ (ωα - ωo)(0.394901 (Vα -1.023545))-0.932813 Ap(Vα -0.754639)ln Tα ]Zco/Zcα --11 and

+ Tα = min[2,max{Trα,0.5}]

+ Vα = min[2,max{Trα,0.5}]

where Vrα, Trα are reduced parameters and ωα is an acentric factor.

For a mixture (x=αβ):

1/2 fαβ,o = (f α,o fβ,o) (1-k αβ) --12

1/3 1/3 3 hαβ,o = 1/8(hα,o + hα,o ) (1-lαβ) --13

and Mαβ = 2 Mα Mβ/(Mα+Mβ) --14

where kαβ and lαβ are correction factors or binary interaction parameters with values close to zero.

This method requires Tc, density or volume, pressure, acentric factor and molecular weight of each component of the mixture of interest as input parameters. These parameters are also required for the reference fluid with an equation of state and some functional form of the viscosity of the fluid.

7

Methane was used as a reference fluid and the Benedict-Web-Rubin equation was used as an equation of state. The functional form of the viscosity of (reference fluid) is given as follows:

1 2 ηo(ρo, To) = ηo (To)+ ηo (To)ρo+ Δηo(ρo ,To) Xη --15

1 2 where ηo and ηo represent the dilute gas and first density correction, respectively, while Δη is a remainder, which dominates the viscosity at high density. A detailed explanation of their calculation procedure can be found elsewhere [Ely and Hanley (1981)].

Baltatu used this method to predict the viscosities of heavy petroleum fractions [Baltatu (1982)].

Johnson et al extended the method to predict the viscosity of gas saturated Athabasca bitumen

[Johnson et al (1987)]. Although models such as the TRAPP (Transport Property Prediction) and the SUPERTRAPP (Super Transport Property Prediction) are useful for predicting the viscosities of species, the mathematical complexity of these models can cause problems in simulation packages because of the extensive calculations involved, failures to converge to a solution, and inaccuracy when complicated cyclic or aromatic molecules are involved [Orbey and Sandler

(1993)]. Moreover, Moharam and Fahim claimed that the TRAPP program, based on methane as a reference fluid, has a limitation in predicting the viscosities of high boiling petroleum fractions

[Moharam and Fahim (1995)]. The major difficulty in using methane is that its freezing point is at a reduced temperature of 0.476, which is above that of many other hydrocarbons. Also, the noncorrespondence of methane viscosities at high reduced densities poses additional problems

[Monnery et al (1995)]. In order to extend the applicability of the TRAPP method to high boiling liquids and aromatic liquids, Baltatu used as reference fluid in the TRAPP method

8

[Baltatu (1996)]. Despite this improvement, the method was found to predict the viscosities of 61 coal liquid data points with considerable error (30%).

2.1.1.2. Generalized Corresponding States Principle (GCSP)

The three-parameter generalized corresponding states equation proposed by Teja and Rice (1981) was a modification of the work of Lee and Kesler (1975) [Teja and Rice (1981)]. Lee and Kesler

(1975) expressed the compressibility factor in terms of acentric factor as:

Z = Zo+(ω/ωr)(Zr-Zo) --16 where ω, Zo and ωr, Zr are the acentric factor and compressibility factor of a spherical and non- spherical reference fluid, respectively [Lee and Kesler (1975)]. Teja et al (1981) modified the Lee and Kesler (1975) equation in such a way that a simple fluid was not necessarily retained as one of the reference fluids [Teja et al (1981)], resulting in:

r1 r1 r2 r1 r2 r2 r1 r1 X[Tr,Pr,β] = X [Tr,Pr,β] + (β-β )/(β -β ){X [Tr,Pr,β ]- X [Tr,Pr,β ]} --17 where X is any dimensionless configurational property such as the reduced viscosity, thermal conductivity, or diffusivity. r1 and r2 refer to reference fluids, and β is some characterizing property such as acentric factor.

For calculating the viscosity of liquids, equation 17 can be written as: ln(ηξ) = ln(ηξ)r1 + (ω-ωr1)/(ωr2-ωr1) × ( ln(ηξ)r2- ln(ηξ)r1) --18 where ω = acentric factor

1/6 -1/2 -2/3 and ξ = Tc M Pc

9

Applicability for defined mixtures

Equation 18 was then applied to defined mixtures, i.e., methane+n-, methane+n-, +ethylene, benzene+n-, benzene+n-decane, using the following mixing rules proposed by Wong et al (1983) [Teja et al (1985)]:

2/3 2/3 ω(Tc/Pc) = ∑∑xixjωij(Tcij/Pcij) --19

Tc/Pc = ∑∑xixj(Tcij/Pcij) --20

2 2 Tc /Pc = ∑∑ xixj(Tcij /Pcij) --21

1/2 Tcij = εij (Tcij Tcjj) --22

1/3 1/3 3 Pcij = 8Tcij/[Tcij/Pcij) + (Tcij/Pcij) ] --23

ωij = (½)×(ωii+ωjj) --24

Undefined mixtures

The critical parameters for undefined mixtures, coal liquids, can be obtained from the equations proposed by Wilson et al and Brule et al [Wilson et al (1981); Brule et al (1982)] as follows:

Wilson correlations [Wilson et al (1981)]:

log Tc = 1.0719 + 0.38882 log SG +0.66709 log Tb --25

log Pc = 1.05918- 0.05445 Kw + 3.12579(1-(Tb/Tc)) --26

1/3 Kw = (1.8Tb) /SG --27

(o) (1) ω = {ln(1.01325/Pc) - f }/f --28

10

(o) 6 f = 5.92714 - 6.09648/(Tb/Tc) - 1.28862 ln(Tb/Tc) + 0.169347 (Tb/Tc) --29

(1) 6 f = 15.2518 - 15.6875/(Tb/Tc) - 13.4721 ln(Tb/Tc) + 0.43577 (Tb/Tc) --30

where Tb is the average boiling point in K and SG is the specific gravity at 288.71 K. The units of

Tc and Pc are in K and bar, respectively.

Starling correlations [Brule et al (1982)]:

-4 2 -3 Tc = 429.138 + ( 0.886861×Tb - 4.596433×10 Tb ) - (2.410089×10 API×Tb) +

-7 3 -7 2 -8 2 2 (1.630489×10 Tb ) - (9.323778×10 API×Tb ) - (1.430628×10 API ×Tb ) --31

o where Tb in F and Tc in K.

API = 141.5/SG - 131.5 --32

1.02247 -0.054476 3 -1 Vc = 3.01514 M × (SG) ; (Vc in cm g-mol ) --33

4 γ = 333.333 + 151.244 (Tc/Tb) - 519.841(Tb/Tc) + 38.9063(Tb/Tc) + 1255.01 log(Tb/Tc) --34

γ = ω[1 + 0.106683 sin(4πω) + 0.0139024 cos(4πω) - 0.00992134 Sin(8πω) + 0.01993780

cos(8πω) - 0.03202890 Sin(12πω) - 0.0115012 cos(12πω)] --35

Zc = 1/(1.28ω + 3.41) --36

Pc = ZcRTc/Vc --37 where M is molecular weight obtained from the work of Brule et al (1982):

11

M = -12421.7 + 9316.25 SG + (7.753212-5.362614 SG) Tb + (1-(0.753344 SG)

2 6 - (0.0173543SG )(1.42072 - 405.3994/Tb)(5.5556×10 /Tb) +

2 11 3 (1- 0.888972 SG + 0.118591 SG )(1.66192 - 46.75250/Tb)(1.714678×10 /Tb ) --38

SG can be estimated by the following equation for coal liquids from its boiling point (Tb)

[Tsonopoulos et al (1986)]:

2 3 SG = 0.553461 + 1.15156×(Tb/1000) - (0.708142×(Tb/1000) ) + (0.196237×(Tb/1000) ) --39

In this case, the acentric factor, ω, is found by trial and error. SG is the specific gravity measured at 293.15 K.

Teja et al used the Wilson correlations and the Starling correlations in estimating critical parameters of four Exxon Donor Solvent (EDS) coal liquids (direct coal liquid oils (DCLOs)

[Teja et al (1985)]. Average absolute errors (AAEs), which is defined as the average of the percent absolute difference between predicted and experimental viscosity data points, of four coal liquids were 13.60% for parameters obtained from the Starling correlations and 17.80% for parameters obtained for the Wilson correlations. Although this is the best available model to predict viscosities of coal liquids over a wide range of temperatures and pressures, it has a few limitations. The limitations of the model are:

1. This model assumes that all mixtures are a single-fluid component. This assumption works

best for mixtures of nonpolar fluids in which components do not greatly differ in size

[Monnery et al (1995)];

2. This model requires viscosity data of two components, which resemble the component of

interest [Monnery et al (1995)];

12

3. Most of the parameters for this method must be estimated and thereby error may be

introduced [Riazi and Al-Otaibi (2001)]; and

4. This method requires an acentric factor, which in turn depends on the vapor pressure,

which cannot be calculated precisely [Teja et al (1985); Reid et al (1987)].

2.1.1.3. Pedersen Method (1984)

Tham and Gubbins suggested that the deviation from the Pitzer‘s two parameter corresponding states principle for liquids can be described as the function of the rotational coupling coefficient,

αTG [Tham and Gubbins (1970)].

Pedersen et al (1984) proposed a model based on the method of Tham and Gubbins (1970), which can be applied to pure fluids, binary mixtures and crude oils [Pedersen et al (1984)]. The equation can be written in the form:

-1/6 2/3 1/2 ηx (P,T) = (Tcx/Tco) (Pcx/Pco) (MWx/MWo) (αmix/αo) ×

ηo [(P Pcoαo/Pcx αmix,x), (T TcoαTGo/Tcmix αmix,x)] --40 where αmix is the Tham-Gubbins rotational coefficient of the mixture.

Pedersen et al (1984) utilized the work of Christensen and Fredenslund (1980) to calculate α for above equation (equation-40) [Pedersen et al (1984)].

Based on their work,

2.4049 α = 1 + (ρr/2.6605) (αTG -1) --41

1/2 where αTG = ∑∑ xi xj(αTG,i αTG,j)

13

Instead of using the mixing rule for calculating αTG and determining αmix, one may determine αmix with a known molecular weight of the mixture using the following equation:

b3 b4 αmix = 1 + b2 ρr MW mix --42

where MWmix is the molecular weight of the mixture, which can be calculated using the following mixing rule:

MWmix = MWn + b1(MWw-MWn) --43

MWn = ∑xi MWi --44

2 MWw = ∑xi MWi /∑xi MWi --45

where b1-b4 are determined by a least squares fit of experimental crude oil viscosity data.

Methane is used as the reference fluid in this model. However, the problem when using methane, as explained in the Ely and Hanley method, can be expected to occur in this method as well. The author claims that this method requires low computation time and results in safe convergence.

Moreover, this model requires only critical constants and molecular weights of each component as input parameters. This model was also found to accurately predict viscosities of low boiling petroleum fractions using the input parameters obtained from Pedersen et al (1984a) [Monnery et al (1995)].

In order to improve the Pedersen‘s correlation for higher molecular mass liquids, Pedersen et al extended the predictive capability of the model to Tr<0.4, which is below the freezing point of methane, by modifying the molecular the weight mixing rules [Pedersen et al (1986)], i.e.,

b5 b5 Mmix = b1(Mw -Mn ) + Mn --46

14

This modification did not improve the predictions of the viscosities of high liquids; but for lighter components, this equation considerably improved the predictions. In order to extend this method for predicting the viscosities of coal liquids, a large coal liquid database is required to obtain fitting constants (b1-b5). Moreover, the critical parmeters for coal liquids have to be estimated in order to use this method. According to Riazi and Al-Otaibi, a method that uses too many estimated input parameters predicts the viscosities of liquids with significant error

[Riazi and Al-Otaibi (2001)]. Therefore, this method will not be considered.

2.1.2. Conclusions of the Semitheoretical Methods

Three corresponding states models have been reviewed. All these models require critical parameters, viscosity data of at least one reference fluid, and some kind of characterizing parameter like accentric factor, molecular weight, or rotational constant to take care of deviations due to nonspherical molecules. Most of the above mentioned input parameters for corresponding states methods are not readily available and cannot be estimated accurately [Riazi and Al-Otaibi

(2001)]. Moreover, these methods are more complex and the accuracy of these methods strongly depend upon the type of reference fluids used in predicting the viscosity [Monnery et al (1995)].

Therefore, a review of simple methods (empirical methods) that do not require several parameters to predict the viscosities of coal liquids is provided.

2.2. Empirical Methods

Most of the empirical methods are simple and do not require several parameters like that of the corresponding states methods [Amin and Maddox (1980); Twu (1985, 1986); Allan and Teja

(1991); Sharma and Goel (1997)]. Some of the empirical methods were found to compare favorably with the corresponding states methods for predicting the viscosities of undefined

15

compounds. The Allan and Teja method was shown to work better than the TRAPP method in predicting the viscosities of hydrocarbon systems [Allan and Teja (1991)], while Twu‘s methods

[Twu (1985,1986)] were found to compare favorably over the Ely and Hanley method [Ely and

Hanley (1981)] for predicting viscosities of coal liquids [Sharma and Goel (1997)]. However, the objective of this thesis is to propose a simple and reliable method to predict viscosities of coal liquids, and therefore, widely accepted empirical correlations along with empirical methods specifically designed for coal liquids are included in this review.

2.2.1. Method of Amin and Maddox (1980)

Amin and Maddox proposed an empirical equation to predict kinematic viscosity from the viscosity data of ten crude oil fractions [Amin and Maddox (1980)]. Their equation can be written as:

η = A [exp(B/T)] --47

-0.175 -6 where A = [91.836×Tb – 29.263]×[K/B]×10

B = exp[4.717 + 0.00526 Tb]

K is UOP characterization factor

Tb is 50% boiling point, K

A and B were obtained by empirically fitting the kinematic viscosity data of four American crude oils to temperature. A and B were then related to the 50% boiling point temperature of those twenty-four fractions of four American crude oils. Although this approach is simple, it requires a

16

large coal liquid database to obtain this kind of correlation. Moreover, pressure correlations have to be developed in order to use this method for coal liquids.

2.2.2. Methods of Twu (1985, 1986)

Twu developed a method for calculating kinematic viscosity of petroleum fractions at 310.92 K and 372.04 K, based on a perturbation approach [Twu (1985)]. According to this approach, the viscosities of the ideal fluids, at 372.04 K and 310.92 K in this case, were related to that of real fluids at the same temperature. The real fluids and ideal fluids are petroleum fractions and n- paraffins. However, this model is widely used in petroleum industries for predicting viscosities of crude oils and fractions. The equation of Twu is given as follows [Twu (1985)]:

For viscosities at 310.92 K:

2 ln (ν1 + 450/Tb) = ln(ν1⁰ + 450/Tb) ((1 + 2f1)/(1 - 2f1)) --48

2 ½ f1 = 1.33932|x|ΔSG - 21.1141 ΔSG /(Tb )

For viscosities at 372.04 K:

2 ln(ν2 + 450/Tb) = ln(ν2⁰ + 450/Tb) ((1 + 2f2)/(1 - 2f2)) --49

2 1/2 f2 = |x| ΔSG - 21.1141 ΔSG /(Tb )

1/2 |x| = |1.99873 - 56.7394/Tb |

For petroleum fractions:

ΔSG = SG - SG⁰ --50

Where SG and SG⁰ represent specific gravity of petroleum mixtures and ideal fluid, respectively.

17

To obtain the viscosity-temperature relationship, Twu recommended the following ASTM equation [Twu (1985)]:

ln ln Zt = ln ln Zt1 + B (ln T –ln T1) --51

where B = (ln ln Zt1 - ln ln Zt2) /(ln T1- ln T2)

T1 and T2 are the temperatures at which ν1 and ν2 are calculated and Zt1 and Zt2 can be obtained by replacing ν1 and ν2 in the following equation:

Zt = ν + 0.7 + exp(- 1.47 - 1.84ν - 0.51ν2) --52

No physical significance should be attached to Zt as this model is purely empirical. However, this model was shown to predict viscosities of coal liquids compiled by Sharma (1980) with significant error [Sharma and Goel (1997)]. Large deviations for predicting viscosities of coal liquids by Twu‘s method [Twu (1985)] may be due to association effects of heteroatoms in coal liquids [Sharma and Goel (1997)].

Twu developed a generalized method to predict viscosity of petroleum fractions [Twu (1986)].

The generalized equation of Twu is as follows:

0 0 0 (K -10)/2 νTwu = ν1 (ν2 / ν1 ) w --53

1/3 o o where Kw = (1.8 Tb) / SG, is the Watson characterization factor and ν1 and ν2 are the kinematic viscosity that can be calculated using the following equation by replacing approporiate constants that can be found in the work of Twu [Twu (1986)]:

0 3 6 ln (ν ) = C1 + C2/Tb + C3 ln(Tb) + C4 Tb + C5 Tb + C6 Tb --54

18

The method uses petroleum fractions as reference fluids and requires boiling points as the only input parameter. This model was also found to poorly predict viscosities of coal liquids compiled by Sharma (1980) [Sharma and Goel (1997)]. The other major limitation is its inability to calculate viscosities at various pressures.

2.2.3. Method of Sharma and Goel (1997)

Sharma and Goel proposed a correlation based on Twu‘s generalized correlation to predict viscosities of coal liquids [Sharma and Goel (1997)]. Instead of using petroleum liquids as reference components in Twu‗s method [Twu (1986)], they proposed using coal liquids as reference fluids. Following were the correlations proposed to predict viscosities of coal liquids:

νactual = α × νTwu --55 where α (correction factor) can be obtained from Table 2.1. and

0 0 0 (Kw-10)/2 νTwu = ν1 (ν2 / ν1 ) --56

1/3 where Kw = (1.8 Tb) / SG, is the Watson characterization factor.

Table 2.1: Viscosity correction factors

Watson parameter, Kw Temperature (K) Correction factor, α 10.0 310.93 1.82 372.04 1.41 310.93 1.09 12.0 372.04 1.05

The following stepwise procedure was proposed for estimating viscosities of coal liquids by

Sharma and Goel (1997):

19

1. Determine viscosities of petroleum fractions as the reference fluids using Watson

parameters (Kw) 10 and 12 and at 310.93 K and 372.04 K, respectively, as per Twu‘s

generalized correlation (1986).

2. Determine viscosities of coal liquids as the reference fluids using Watson parameters 10

and 12 and at 310.93 K and 372.04 K, respectively, by multiplying the correction factor

given in Table 2.1.

3. Calculate the viscosities of coal liquids using various Kw at various temperatures using

Twu‘s correlation (1985).

Although this method is simple, it has a major limitation in that it cannot be applied to predict viscosities at various pressures. Moreover, the method seems to predict the viscosities of light and heavy distillates of coal liquid fractions with considerable error.

2.2.4. Method of Kabadi and Palakkal (1996)

Kabadi and Palakkal proposed a group contribution approach to predict viscosities of Solvent

Refined Coal-II (SRC-II) coal liquids [Kabadi and Palakkal (1996)]. The overall AAE of SRC-II coal liquids viscosities determined by this method was 25.01%. The major limitation of this model is that it requires compositional and structural information of saturates, aromatics, sulfur, nitrogen and oxygen present in coal liquids as inputs to predict viscosities of coal liquids [Kabadi and Palakkal (1996)].

2.2.5. Method of Allan and Teja (1991)

Allan and Teja applied the effective carbon number (ECN) concept in predicting viscosities of hydrocarbon systems [Allan and Teja (1991)]. The concept is to correlate the constants in any viscosity-temperature relationship to the carbon numbers of defined compounds used in the

20

development of the model. Allan and Teja used n-alkane viscosity data compiled by Rossini et al

(1953) for the model development and obtained the following equations to predict the viscosities of defined liquids, defined mixtures, and undefined mixtures [Allan and Teja (1991)]: ln μ = A[-1/B + 1/(T+C)] --57 where A= 145.73+99.01n +0.83n2-0.125n3

B = 30.48+34.01n-1.230n2+0.0170n3

C = -3.07-1.99n

μ is the viscosity of the liquid in mPa-s

and ―n‖ is the ECN.

In order to use this method, a single viscosity datum of the compound of interest must be known to predict its viscosities over a wide range of temperatures. The effective carbon number of that hydrocarbon can be calculated based on its viscosity datum in comparison with the viscosities of n-alkanes. Therefore, the effective carbon number of the hydrocarbon indicates the n-alkane‘s carbon number that has the same viscosity at a given temperature as that of the compound of interest. For example, a hydrocarbon having an effective carbon number of 6.5 will have an approximate average viscosity between the viscosities of n-hexane and n- at a given temperature based on the n-alkane correlation.

This method was extended to predict viscosities of mixtures assuming the following simple mixing rule for calculating effective carbon number for mixtures:

21

nmix = ∑xi ni --58 where ―nmix‖ and ―ni‖ are the effective carbon numbers of mixtures and pure components, respectively. ―xi‖ is the mole fraction of individual components present in the mixture.

This method was found to compare favorably over the TRAPP method for defined liquids used in evaluating this model. Although this method is simple and reliable over a certain range of compositions, it has the limitations in that it cannot be applied to predict viscosities at various pressures and it fails to give a qualitative behavior for those liquids having a carbon number greater than 22 [Gregory (1992)].

2.2.6. Conclusions of the Empirical Methods

All the methods reviewed under empirical methods have a major limitation in that they cannot be applied to predict viscosities at various pressures. Other limitations are that a large coal liquid database is required in developing a model similar to that of the method of Amin and Maddox, while a complete analytical dataset is required in using the group contribution method of Kabadi and Palakkal. Although the method of Sharma and Goel is simple, it predicts the viscosities of lighter coal liquid fractions and heavy distillates with considerable error. The method of Allan and

Teja is the most simple and reliable of all the models reviewed above. The inherent limitation of the Allan and Teja method is that this method fails to give a qualitative behavior of the viscosities of liquids having a carbon number greater than 22. Also, the method of Allan and Teja requires a single viscosity datum to calculate the viscosities at various temperatures. However, it can be concluded that of all the methods reviewed, the one-parameter correlation of Allan and Teja is the most simple and reliable.

22

2.3. Conclusions of the Literature Review

The objective of this thesis is to propose simple and reliable correlations that can predict viscosities of defined and undefined compounds over a wide range of temperatures, pressures and compositions. From the review of the various methods, it is understood that the most simple and reliable method is the method of Allan and Teja. Therefore, the method of Allan and Teja was modified and expanded to predict viscosities of hydrocarbon systems at various temperatures, pressures, and compositions.

23

CHAPTER 3

EXPERIMENTAL METHODS

To evaluate the method developed in this work, experimental liquid viscosity data of coal liquids, in addition to the viscosity data of pure hydrocarbons and mixtures, are required. Viscosity data of coal liquids, unlike petroleum fractions, are scarcely available in the literature. In order to test the method with coal liquids over a wide range of compositions, SRC-I and SRC-II coal liquids, EDS coal liquids, Char-Oil-Energy-Development (COED) process liquids, and Headwaters

Technology Innovation (HTI) process coal liquids (also referred to as Shenhua coal liquids in this thesis) were obtained from the literature. To add one more variation in composition to the above mentioned coal liquids, it was decided to generate coal liquids from microreactor work. The coal, solvents, and other physical and viscosity measurements of laboratory generated coal liquids used in this study are given in following sections of this chapter.

3.1. Coal, Coal Preparation and Solvent Selection

It is important to choose the appropriate coal for a specific liquefaction process as the coal rank influences conversion [Given et al (1975); Whitehurst et al (1980)]. The ideal rank of coal for liquefaction ranges from subbituminous coal to high volatile bituminous coal [Tomic and

Schobert (1996); Whitehurst et al (1980)]. Most of these coals produce more liquids than residue and gas [Whitehurst et al (1980)]. For this study, a subbituminous coal (Penn State Coal Sample

Bank, DECS-38) from the Dietz seam in Montana was used. Table 3.1 gives the proximate analysis, ultimate analysis, and maceral composition of the Dietz coal. The coal was ground to

-200 mesh in a ball mill, air dried at 60 ⁰C for 19 hours, and stored in nitrogen until it was used.

24

Table 3.1: Composition of the coal used in this study

Seam, State Dietz, Montana ASTM Rank Subbituminous B Ash (dry basis, wt%) 5.5 Volatile matter (dry basis, wt%) 42.58 Fixed carbon (dry basis, wt%) 51.92 Elemental composition, daf% Carbon 69.90 Hydrogen 5.52 Nitrogen 0.96 Total Sulfur 0.53 Oxygen 23.09 Atomic H/C 0.88 Petrographic composition, volume% Vitrinite 85.5 Liptinite 2.8 Inertinite 11.7 (daf = dry ash-free basis)

Since the objective was to generate a maximum quantity of coal-derived liquids, tetralin, a good hydrogen donor solvent, was used [Whitehurst et al (1980); Volker and Bockrath (1984)]. It has also been shown that phenolic compounds, in addition to tetralin, improve the conversion of coal

[Pott and Broche (1934); Kamiya et al (1978)]. For this reason, mixtures of tetralin+phenol were also used. Reagent grade tetralin and phenol were obtained from VWR.

3.2. Liquefaction Procedure

The liquefaction reactions were performed in ~100 mL microreactors. The microreactor, also referred to as a ‗tubing bomb‘, consisted of a 12.8 cm long stainless steel tube, with a 3.5 cm i.d., and was sealed on both ends by Swage lock fittings. Figure 3.1 shows the picture of a microreactor used in this work. The microreactors were loaded with 10.2 g of coal and 30.6 g of solvent with 3.0 wt% (based on dry ash-free (daf) coal) FeS as catalyst.

25

Figure 3.1: Picture of a microreactor used in this work

Two solvents were used throughout this process: tetralin and tetralin+phenol. The ratio of tetralin and phenol was maintained at 75.8 wt% and 24.2 wt%, respectively. After the reactor was loaded, it was purged with nitrogen once and hydrogen twice before filling the reactor with ~69 bars of hydrogen. The reactor was then suspended in a fluidized sand bath for 1 hour, maintained at 430

⁰C and was agitated at a rate of 107 cycles/min. The liquefaction procedure used in this work is similar to previous Penn State work [Huang and Schobert (2005); Burgess (1994)]. These conditions were maintained because increasing the temperature of the reaction further increases the yield of gas and residue at the expense of coal-derived liquid and preasphaltene, respectively

[Tomic and Schobert (1996); Huang and Schobert (2005); Whitehurst et al (1980)], while

26

reduction in hydrogen pressure, temperature and agitation also negatively affects the overall conversion of coal and yield of oil [Neavel (1976); Shibaoka and Ueda (1978); Marsh and Neavel

(1980); Neavel (1982)]. Therefore, these conditions were maintained to generate maximum coal- derived liquids for analysis.

After the reaction period, the reactor was quenched in a cold waterbath. The reactor was then opened to release the gas. The products were then rinsed from the reactor with THF

(tetrahydrofuran) and soxhlet-extracted for ~48 h until the THF remained clear. The resultant liquids were then extracted with toluene and with hexane. Overall conversion, yields of gas and oil, asphaltene, preasphaltene and residue were calculated on the basis of the weight of daf coal.

The experiments were repeated for two solvent combinations, tetralin and tetralin+phenol, to generate sufficient quantities of two coal-derived oils. The resulting oils, hexane solubles and toluene insolubles, thus obtained were used for measuring their viscosities. Figure 3.2 shows a block diagram of the procedure followed in this work. Liquefaction conversion of the Dietz coal is shown in the Appendix A. Liquefaction conversion of Dietz coal with tetralin is comparable with the results reported by Burgess and Schobert (1991). From gas chromatography-mass spectra

(GC-MS) analysis on coal-derived oils, it was found that a significant portion (>90%) of coal- derived oils from microreactor work were constituted by four major compounds: tetralin, naphthalene, phenol and butylhydroxytoluene. Therefore, the laboratory generated coal-derived oils are referred to as surrogate coal-derived liquids/oils in this thesis. Major constituents of surrogate coal-derived liquids and the conditions at which the GC-MS was operated are also shown in Appendix A.

27

H , Gas 2 ~69 bar

10g of coal 430 C, 1h Soxhlet Residue Extraction-THF

0.27 g of Catalyst (FeS) Solvent, 30 g THF soluble

Reflux with Toluene for 3 h Preasphaltenes

Toluene soluble

Reflux with n- Asphaltenes hexane

hexane soluble

Oil

Solvent 1: Tetralin+Phenol Viscosity Solvent 2: Tetralin Measurement

Figure 3.2: Block diagram of the experimental procedure followed in this work t

28

3.3. Boiling Point and Specific Gravity Measurements

Specific gravity and boiling point were determined on the two combinations of surrogate coal liquid oils by ASTM procedures, D-2887 [ASTM (2000)] and D-153 [ASTM (2008)]. Specific gravities of surrogate liquids were measured using a pycnometer at room temperature. Boiling cuts of surrogate coal liquids were measured using a Hewlett Packard 5890 simulated distillation gas chromotography (SdGC) fitted with a 30m Restek Rtx-5 column (5% diphenyl, 95% dimethyl polysiloxane) having an inner diameter of 0.25mm and a film thickness of 0.50 μm. The oven temperature was programmed from 323 K to 623 K at rate of 5 K/min during the analysis. In the simulated distillation experiment, a calibration mixture of known boiling points—a mixture of n- alkanes—covering a wide range of boiling points was run in a gas chromatography and a calibration curve was obtained by plotting retention time vs boiling point. After obtaining the calibration curve, the surrogate liquids were run in the gas chromatography under the same operating conditions and the retention times from 0 to 100 wt% were obtained. The simulated distillation temperatures at the corresponding weight% were then determined using the calibration curve. Weight fraction boiling points, obtained from SdGC, were used in determining weight average boiling points (WABPs) and mean average boiling points (MeABPs) for surrogate coal liquid oils using following equations [API (2008)]:

1.83 MeABP = WABP – 1.675×(SD2887) --59 where

WABP = 0.015×(TIBP+TFBP) + 0.051×(T5 + T95)+0.116×(T10 + T90) + 0.212×(T30 + T50 + T70)

and SD2887 = 10 to 90% slope of the D2887 distillaton curve, ⁰F

29

The physical properties of the Dietz surrogate coal liquid oils are given in Appendix B.

3.4. Viscosity Measurements

Viscosity measurements of surrogate liquids were carried out using a controlled shear stress/strain

Bohlin Gemini HR Nano rheometer. The rheometer, shown in Figure 3.3, fitted with a flat plate geometry having 40 mm diameter, was used to measure viscosities at a fixed stress (τ) of 1 Pa.

Surrogate coal-derived oils were placed between the parallel plates. The top plate of the rheometer geometry was rotated and the shear rate (υ) of the sample was measured using a sensor.

The sample temperature was measured with a thermocouple probe inserted into the middle of the bottom plate. Complex viscosity, μ*, is defined as [Hasan et al (2009)]:

|μ*|2 = | μ|2 + |μ'|2 --60 where μ is dynamic viscosity and μ' is the imaginary part of complex viscosity resulting from the elastic component.

If one takes into the account the definition of complex viscosity, only the viscous component dominates for petroleum liquids [Hasan et al (2009)], i.e.:

|μ*| ≈ | μ| --61

Dynamic viscosities of surrogate liquids, μ, were then calculated from the measured shear rate (υ) and known shear stress (τ) using a simple Newtonian equation:

μ = τ/ υ --62

The viscosities and other properties of the surrogate liquids can be found in Appendix B. Each measurement was repeated twice to check the repeatability of the viscosity data (Appendix C). In

30

order to check the accuracy of the work, the viscosities of N4-Canon Standard Liquids were measured and compared. Deviations between measured and reported values were within ±8.00%.

Figure 3.3: Picture of a Bohlin Gemini HR Nano rheometer fitted with flat plate geometry

31

CHAPTER 4

MODEL DEVELOPMENT AND RESULTS

4.1. Development of the Viscosity Model

The detailed review of some of the models suggested that the effective carbon number concept proposed by Allan and Teja (1991) is the most simple and reliable method. Therefore, the method of Allan and Teja was modified and expanded in this study. Based on this method, the effective carbon number of every hydrocarbon was calculated based on its viscosity in comparison with the viscosity of an n-alkane/aromatic compound viscosity. For example, a hydrocarbon having an effective carbon number (n) of 6.5 will have an approximate average viscosity between n-hexane and n-heptane at a given temperature based on the n-alkane correlation.

4.1.1. Viscosity-Temperature Relationship

It is very well known that the viscosities of liquids decrease with an increase in temperature [Reid et al (1987)]. Andrade‘s equation explains this in a most simple form. According to Andrade‘s equation, the natural logarithmic viscosity of a liquid is indirectly proportional to absolute temperature at isobaric conditions [Reid et al (1987)]:

ln μsl = (A/T)+B --63

where μsl is the viscosity of saturated liquids in mPa-s, T is temperature in K, and A and B are constants.

32

This simple form was first proposed by de Guzman, but it is more commonly referred to as

Andrade‘s equation [Reid et al (1987)]. This equation was used in the model development considering its simplicity.

In the development of this model, only liquid n-alkanes for which there are considerable viscosity data above 253 K were considered. This was done to ensure that a more uniform viscosity- temperature data set was available for all liquids. The first step in the model development was obtaining a linear correlation between natural logarithmic viscosity of n-alkane (n-hexane to n- eicosane) and inverse temperature based on Andrade‘s equation. A near linear correlation

(R2>0.99) was obtained for each n-alkane compound for a temperature range extending beyond its boiling point. Slope and y-intercept (A and B) of the linear equation was then correlated to the corresponding n-alkane‘s carbon number. The n-alkane correlation thus obtained takes the form as follows:

A = (-2.90 × n2) + (142.55 × n) + 196.99 --64

B = (0.0027 × n2) – (0.10 × n) – 3.87 --65 where ―n‖ is the effective carbon number.

The above correlation predicted the viscosity of n-hexane to n-eicosane with an AAE of 4.23%, with no compound‘s AAE exceeding 8.00%. Sample calculations, and summaries of experimental viscosities, calculated viscosities, absolute errors, and average absolute errors of each hydrocarbon system at various temperatures and pressures are given in Appendix D and E, respectively. A brief summary of the n-alkane results is shown in Table 4.1. Moreover, the correlation predicts the viscosity of n-hexane to n- with an average absolute error less than 5.00%. The correlation prediction had relatively large errors (AAE>5.00%) for n- to n-eicosane.

33

Large errors for higher carbon number compounds were mostly observed for calculations outside the range of 320-500 K.

Table 4.1: Summary of results of compounds used in developing the n-alkane correlation

Compound Temperature AAE, % N Reference range, K

n-hexane 253.15-423.15 4.28 18 n-heptane 253.15-453.15 3.58 21 n- 253.15-483.15 3.07 24 n- 253.15-503.15 2.63 26 n-decane 253.15-523.15 2.12 28 n- 263.15-533.15 1.81 28 n- 273.15-553.15 2.05 29 Isdale (1979) n- 273.15-573.15 2.50 31 n- 283.15-583.15 3.35 31 n- 293.15-593.15 3.50 31 n-hexadecane 293.15-603.15 4.64 32 n-heptadecane 303.15-613.15 5.02 32 n- 303.15-633.15 7.71 34 n- 313.15-633.15 7.87 33 n-eicosane 353.15-603.15 7.98 26 Rossini (1953) Total 4.23 424

N: No. of data points predicted; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N

A simple calculation showed that the developed n-alkane correlation tends to fail when the viscosities of the liquids exceed 3.31 mPa-s at 333.15 K. This is due to a mismatch in the viscosity range of n-alkane viscosity data used in developing this model in comparison with the viscosity range of heavy distillates. It is well known that heavy distillates have viscosities greater than 3.31 K at 333.15 K and their viscosity range is much wider than n-alkanes. In order to extend this method to predict viscosities of heavy distillates, the development of an aromatic correlation similar to the n-alkane correlation was undertaken. Coal liquid model compounds having boiling points greater than 473.15 K, such as naphthalene, 1-methylnaphthalene, diphenylether, biphenyl, and o-terphenyl, were selected for the development of the aromatic correlation. These compounds

34

were specifically selected to represent heavy distillates of coal liquids because of the availability of data over a wide range of temperatures [Isdale (1981); Byers and Williams (1987)]. When correlating viscosities of these compounds with their carbon number, the following equations were obtained:

A= (2.1881× n2) + (118.2 × n) + 4.1258 --66

B = (0.013 × n2) – (0.6226 × n) + 0.9479 --67 where ―n‖ is the effective carbon number

In this case, the AAE for 143 polyaromatic hydrocarbon data points was found to be 4.96%. From

Table 4.2, it is very clear that the AAE for o-terphenyl is much higher than the other compounds considered in this correlation. This was mainly because of a wide range of viscosities of o- terphenyl compared to the other compounds used in developing the aromatic correlation.

However, other compounds used in developing the aromatic correlation were predicted with good accuracy (~3% AAE).

Table 4.2: Summary of results of compounds used in developing the aromatic correlation

Compound Temperature AAE, % N Reference range, K Naphthalene 353.15-603.15 2.49 26 Isdale (1981) 1-Methylnaphthalene 303.20-503.20 3.17 27 Byers (1987) Phenylether 303.20-483.20 2.39 22 Byers (1987) BiPhenyl 343.15-663.15 2.81 33 Isdale (1981) o-terphenyl 333.15-673.15 11.82 35 Isdale (1981) Total 4.96 143 N: No. of data points predicted; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N

35

4.1.2. Viscosity-Pressure Relationship

One of the major shortcomings of Allan and Teja‘s (1991) method is its inability to predict viscosities over a wide range of pressures. An ideal method is one that not only predicts viscosities over a wide range of temperatures, but also over a wide range of pressures. In order to keep the model simple and predict over a wide range of pressures, the model was restricted to predict the viscosities of liquids up to 700 bars. For this purpose, a pressure correction factor A(P) was multiplied with equation 63, which takes the form:

μp = A(P) × exp((A/T)+B) --68

where A(P) is a function of pressure.

It is well known that an increase in pressure increases the viscosities of liquids [Reid et al (1987)].

Moreover, the viscosity-pressure relationship was found to vary with temperature as well as the carbon number [Reid et al (1987)]. In order to keep the pressure correlation simple, two assumptions went into developing the pressure correction term. They were: 1) the viscosity- pressure relationship of all light distillates (or n<12) behaves like a low carbon n-alkane, i.e., (n- to n-undecane), while the middle and heavy distillates (n≥12) behave like synthetic heavy crude oil and high carbon n-alkane, i.e., (n-dodecane to n-octadecane); and 2) the viscosity- pressure relationship of each category of liquids (n≥12 or n<12) behaves in a similar manner irrespective of their homologous series. It is well known that kerosene, a middle distillate, has a

50% boiling point temperature roughly comparable with n-dodecane (n=12) [Wauquier (1995)] and hence, in this thesis, all those liquids having n≥12 are considered in the middle and heavy distillate category.

36

Based on the above assumptions, a simplified correlation between an increase in viscosity (μp/μsl) and an increase in pressure (P-Po) was obtained and optimized for light distillates (or n< 12) with

254 high pressure data points covering seven liquid compounds (n-pentane to n-undecane). The simplified correlation is:

μp = μsl × (1+ ((P-Po)×0.00112)) --69

A summary of the results is given in Table 4.3. From the table, it is very clear that the AAE for defined compounds at high pressures increased with an increase in carbon number over a wide range of temperatures. This led to the development of another equation for all those liquids having an effective carbon number (n) ≥12.

Table 4.3: Summary of results of compounds used in developing the pressure correlation for liquids with n<12

Compound Temperature range, K/ AAE, % N Reference Pressure range, Bar n-pentane 303.15-383.15/ 3.89 32 Audonnet 1.10-600.80 (2001) n-hexane 313.00-448.00/ 4.85 76 Kiran (1992) 2.10-658.50 n-heptane 303.15-323.15/ 1.89 28 Assael (1991) 1.00-694.10 n-octane 298.15-473.15/ 4.39 24 Caudwell 1.00-609.00 (2009) n-nonane 303.15-323.15/ 2.22 27 Assael (1991) 1.00-690.00 n-decane 289.00-573.70/ 7.99 41 Naake 1.00-600.00 (2002) n-undecane 303.15-323.15/ 2.57 26 Assael 1.00-624.20 (1991) Total 4.35 254

N: No. of data points predicted; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N

Similarly, the pressure correction factor for those compounds having a carbon number (n) ≥12 was obtained by correlating the increase in viscosity (μp/μsl) to the increase in pressure from 166

37

high pressure data points covering seven major compounds which includes synthetic heavy distillates of crude oil. The equation for liquids having carbon number (n) ≥12 is:

μp = μsl × (1+ ((P-Po)×0.0016)) --70

A summary of results for 166 data points that was used in generating the correlation is listed in

Table 4.4.

Table 4.4: Summary of results of compounds used in developing the pressure correlation for liquids with n≥12

Compound Temperature ECN AAE, % N Reference range, K/ Pressure range, Bar Synthetic Heavy 293.15-353.15/ 13.92* 4.69 27 Boned (2003) Liquids- Ternary 1.00-600.00 Synthetic Heavy 293.15-353.15/ 14.14* 1.70 27 Boned (2003) Liquids- Quinary 1.00-600.00 n-dodecane 298.15-473.15/ 12.00 3.64 16 Caudwell (2004) 1.00-422.10 n-tetradecane 313.20-393.20/ 14.00 4.61 40 Galvan (2007) 6.90-600.00 n-pentadecane 310.93-408.15/ 15.00 2.15 12 Hogenboom 1.00-400.00 (1967) n-hexadecane 298.08-373.24/ 16.00 3.33 16 Dymond (1980a) 1.00-524.00 n-octadecane 323.15-473.15/ 18.00 3.20 28 Caudwell (2004) 1.00-628.10 Total 3.52 166 ECN: Effective Carbon Number;* ECN calculated from the n-alkane correlation; N: No. of data points predicted; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N

4.1.3. Procedure for Calculating Viscosity using the Developed Method

The following step-wise procedure was proposed to calculate viscosities of defined and undefined compounds using the newly developed model:

38

Step 1: Input single viscosity datum of the liquid whose viscosities over a wide range of

temperatures and pressures have to be estimated. Also, input temperature (T) and

pressure (Po) at which the viscosity datum was measured.

Step 2: If the viscosity datum is <2.5mPa-s for temperature >300 K, then go to step 3, otherwise,

go to step 4.

Step 3: Calculate ―n‖ by substituting A(n) and B(n), obtained from the n-alkane correlation

(equations 64 and 65), and μo and T, obtained from the step 1, in the viscosity-temperature

correlation, i.e.,

ln μo = (A/T) +B

If ‗n‘ cannot be calculated by the n-alkane correlation, go to step 4, otherwise

go to step 5.

Step 4: Calculate ‗n‘ using the aromatic correlation (equations 66 and 67).

Step 5: Calculate A and B for the liquid under investigation.

Step 6: If n< 12, calculate viscosities over a wide range of pressures and temperatures by simply

varying T and P in the following equation:

μp = exp(A/T+B)×(1+ (0.00112 ×(P-Po)))

otherwise, calculate viscosities using the heavy distillate equation:

μp = exp(A/T+B)×(1+ (0.0016 ×(P-Po)))

Note: If the effective carbon number of a compound was estimated by the aromatic correlation, then viscosities over a wide range of temperatures and pressures for that compound should be estimated by heavy distillate equation only. A schematic diagram of this procedure is shown in

Figure 4.1.

39

Input viscosity data, T and P at which viscosity was measured.

Yes

Is the viscosity datum > 2.5 mPa-s

No

No

Can n-alkane correlation calculate n?

Yes Calculate n using aromatic correlation. (Equations-66 and 67)

Yes Is the liquid‘s ECN ≥ 12?

Predict viscosities using equation- 70. No

Predict viscosities using equation-69

Figure 4.1: Schematic procedure for calculating viscosity

40

4.1.4. Effectiveness of the Model

A model is considered to be acceptable when it predicts viscosities over a wide range of temperatures and pressures within ±25% error range required for designing process equipment effectively [Lohrenz et al (1964)]. However, there is not a single model, reviewed in this thesis, which predicts all the viscosities of coal-derived liquids within this limit. Therefore, in this thesis, any model that predicts viscosities of undefined and/or defined compounds with an overall average absolute error less than 25% is considered as an effective model. The effectiveness of the developed method was tested with the viscosity data of both defined and undefined compounds covering a wide range of compositions.

4.2. Results

In order to use this model for predicting viscosities of liquid hydrocarbons, a viscosity data point in the liquid range must be known. This data point is then used to calculate the effective carbon number for the liquid under investigation.

To calculate the viscosities of pure compounds and mixtures, one data point in the liquid range, as previously explained, is needed. The point chosen as a reference for calculating ECN is of a great importance as the AAE varies considerably, depending upon temperature and pressure at which the reference viscosity was measured. The lower the viscosity that is used in calculating ECN, the better the predictions will be for the n-alkane correlation. For all liquids, the effective carbon number calculated from viscosity datum, measured at low pressure, does not change the AAE considerably with temperature, whereas the ECN calculated using viscosity datum measured at high pressure irrespective of temperature leads to an increase in AAE. A comparison of ECN calculated at extreme ends of the data range and its effect on AAE of liquids is shown in

41

Table 4.5 and Figure 4.2. For p-xylene, the data show that the reference viscosity chosen for calculating ECN is of no great importance as the change in AAE with different ECN is slight, considering the wide range of temperatures. However, for the cyclohexane + n-octane mixture, the reference viscosity chosen for calculating ECN varies considerably with pressure. Reference viscosity measured at 1 bar yield more accurate effective carbon number than ECN obtained from the viscosity measured at high pressures. Moreover, the AAE increases considerably for the ECN calculated with high pressure viscosity datum for all the cases shown in Figure 4.2. Taking all these into consideration, the ideal reference viscosity point for calculating ECN should have been measured at low pressure (1 bar) and temperature greater than 330 K.

Table 4.5: Comparison of AAE using ECN calculated from different viscosity datum

Temperature Reference Reference range, K/ ECN AAE, % Ref. Compound Temperature, Pressure, Pressure range, K bar Bar 313.15 1.01 8.46 7.32 293.15-533.15/ 333.15 1.01 8.72 5.92 Isdale p-xylene 1.01 373.15 1.01 9.01 4.90 (1981) 393.15 1.01 9.14 5.26 Cyclohexane 298.15 1.00 8.32 4.05 298.15 296.00 9.54 7.7 (0.4) 298.15 606.00 10.69 23.76 Tanaka 298.15-348.15/ 323.15 1.00 8.40 2.56 + (1991) 323.15 106.00 8.968.40 3.39 1.00-608.00 n-octane 323.15 603.00 10.99 19.28 348.15 1.00 8.41 2.30 (0.6) 348.15 204.00 9.54 5.92 348.15 608.00 11.36 16.98 ECN: Effective Carbon Number; N: No. of data points predicted; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N

42

8 25 606 P sat 7 603 sat P 20 608 6 P sat P sat 5 15 4

AAE, AAE, % 10

3 296 204 AAE, AAE, % 2 P =1 106 5 1 1 1 0 0 313.15 333.15 373.15 393.15 298.15 K 323.15 K 348.15 K Reference Viscosity Temperature (K) Reference Viscosity Temperature (K) p-Xylene Cyclohexane (x=0.6) + n-Octane(x=0.4)

sat P = Saturation P in bar; x= Mole fraction; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N Note: X-axis represents the temperature at which the viscosity datum was measured. P/Psat on each bar represents the pressure at which the viscosity datum was measured. Figure 4.2: Effect of viscosity datum on the predictive ability of the model

4.2.1. Evaluation of the Model to Predict Viscosities of Hydrocarbon Systems

Based on the above procedure, the developed model was extended to predict the viscosities of alicyclics, aromatics, olefins, defined mixtures, and undefined mixtures over a wide range of pressures(<700 bars) and temperatures. The developed method was extended to predict viscosities of liquid mixtures using the following mixing rule for ECN proposed by Allan and Teja (1991)

(also see equation 58):

nmix =∑xi ni

where ―xi‖ and ―ni‖ are mole fraction and effective carbon number of individual components of a mixture, respectively. Complete evaluation of the model with various hydrocarbon systems is shown in following sections of this chapter.

43

4.2.1.1. Evaluation of the Model with Defined Compounds

The n-alkane correlation was used in predicting viscosities of defined compounds. Experimental viscosity data of a wide range of compounds—alicyclics, aromatics, olefins and their mixtures— obtained from literature were used in evaluating the model. Figure 4.3 shows the predictability of the model for the wide range of defined compounds. The AAEs for all the liquids, except for aromatics, were found to be less than 5.00%. Summaries of results for various defined compounds are provided in Tables 4.6 through 4.10. Large errors for aromatics (>10%), especially at low temperatures (<340 K), can be attributed to their strong intermolecular forces. However, the model predicts all aromatic data points well within the acceptable viscosity errors of ±25% required for designing process equipment effectively. Therefore, it is reasonable to say that the model predicts all the defined compounds extremely well.

7.00 397 6.00 5.00 N=652 618 2083 4.00 281 135 3.00

AAE, AAE, % 2.00 1.00 0.00

N= No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N; DC= Defined Compounds Figure 4.3: Evaluation of defined compounds by the developed method

44

Table 4.6: Calculated results of alicyclics at atmospheric pressure

Compound Temperature ECN AAE, % N Reference range, K Cyclopentane 248.15-318.15 6.85 5.09 14 Methylcyclopentane 248.15-343.15 7.36 5.82 19 Ethylcyclopentane 253.15-373.15 8.19 5.98 24 Propylcyclopentane 253.15-383.15 8.92 7.02 26 n-Butylcyclopentane 253.15-383.15 9.90 5.07 26

n-Pentylcyclopentane 253.15-383.15 10.92 3.67 26

n-Hexylcyclopentane 253.15-383.15 12.03 2.66 26 n-Heptylcyclopentane 253.15-383.15 13.15 2.01 26 n-Octylcyclopentane 253.15-383.15 14.28 1.61 26 n-Nonylcyclopentane 253.15-383.15 15.43 1.45 26 n-Decylcyclopentane 253.15-383.15 16.64 1.62 26 n-Undecylcyclopentane 263.15-383.15 17.92 2.27 24 n-Dodecylcyclopentane 268.15-383.15 19.33 3.15 23 n-Tridecylcyclopentane 278.15-383.15 20.94 4.00 21 n-Tetradecylcyclopentane 283.15-383.15 23.00 5.00 20

n-Pentadecylcyclopentane 293.15-383.15 24.21 5.88 18 Rossini (1953) Cyclohexane 283.15-353.15 9.75 4.99 14 Methylcyclohexane 248.15-373.15 9.02 1.12 25 Ethylcyclohexane 248.15-383.15 9.77 6.02 27 n-Propylcyclohexane 248.15-383.15 10.44 4.40 27 n-Butylcyclohexane 253.15-383.15 11.46 2.97 26 n-Pentylcyclohexane 263.15-383.15 12.56 2.91 24 n-Hexylcyclohexane 263.15-383.15 13.74 3.14 24 n-Heptylcyclohexane 263.15-383.15 14.93 3.77 24 n-Octylcyclohexane 263.15-383.15 16.16 5.33 24 n-Nonylcyclohexane 263.15-383.15 17.46 6.76 24 n-Decylcyclohexane 273.15-383.15 18.87 6.97 22 n-Undecylcyclohexane 283.15-383.15 20.41 6.99 20 Total 4.09 652 ECN: Effective Carbon Number; N: No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N

45

Table 4.7: Calculated results of olefins at saturation pressures

Compound Temperature ECN AAE, % N Reference range, K 1-hexene 273.15-423.15 5.65 3.47 15 1-heptene 273.15-453.15 6.60 3.27 18 1-octene 273.15-473.15 7.55 3.31 20 1-nonene 273.15-503.15 8.55 3.63 23 1-decene 273.15-523.15 9.57 3.65 25 1-undecene 273.15-543.15 10.53 3.41 27 Isdale (1980) 1-dodecene 273.15-563.15 11.50 3.09 29 1-tridecene 273.15-573.15 12.43 3.17 30 1-tetradecene 283.15-593.15 13.35 3.41 31 1-pentadecene 283.15-593.15 14.54 3.77 31 1-hexadecene 303.15-623.15 15.55 3.62 32 Total 3.44 281 ECN: Effective Carbon Number; N: No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N

Table 4.8: Calculated results of aromatics at saturation pressures

Compound Temperature ECN AAE, % N Reference range, K o-xylene 253.15-543.15 9.53 4.76 29 m-xylene 253.15-543.15 8.62 7.64 29 p-xylene 293.15-533.15 8.72 5.92 24 2-Ethyltoluene 253.15-573.15 9.85 6.23 32 3-Ethyltoluene 273.15-573.15 9.12 8.80 30 4- Ethyltoluene 273.15-563.15 9.10 8.73 29 2-Propyltoluene 253.15-593.15 10.57 5.31 34 Isdale 3-Propyltoluene 273.15-583.15 9.95 7.58 31 (1981) 4-Propyltoluene 273.15-593.15 10.27 6.10 32 2-Phenylpropane 253.15-563.15 9.38 4.10 31 2-Phenylbutane 253.15-563.15 9.97 3.04 31 p-Cymene 253.15-583.15 9.827 7.80 33 Biphenyl 343.15-663.15 17.17 5.27 32 Total 6.28 397 ECN: Effective Carbon Number; N: No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N

46

Table 4.9: Calculated results of defined compounds at atmospheric pressure

Compound Temperature X ECN AAE, % N Reference range, K X1:0.15 8.37 4.40 8 Ethylbenzene (1) X1:0.34 8.50 5.11 8 + 273.15-353.15 X1:0.48 8.54 4.57 8 Irving (1977) Toluene (2) X1:0.63 8.65 5.27 8 X1:0.82 8.66 3.78 8 X1:0.20 9.17 2.58 7 Benzene (1) X1:0.40 8.73 0.70 7 + 283.15-393.20 X1:0.60 8.46 0.23 7 Dymond Cyclohexane(2) X1:0.79 8.36 0.30 7 (1981) X1:0.88 8.37 0.56 6 n-hexane (1) X1:0.20 14.39 2.46 5 + 283.15-378.29 X1:0.37 12.82 1.68 5 Dymond n-hexadecane (2) X1:0.60 10.75 4.41 6 (1980a) X1:0.80 8.61 4.62 6 Benzene (1) X1:0.25 11.09 2.00 7 + 283.15-393.20 X1:0.50 10.20 3.21 7 Dymond n-dodecane (2) X1:0.75 9.25 3.11 7 (1981) Benzene (1) + 283.15-373.28 X1:0.50 6.64 2.21 6 Dymond n-hexane (2) (1981) n-hexane (1) X :0.11 1 14.31 2.28 5 + X2:0.12 Dymond n-octane (2) 288.15-378.29 (1980b) X :0.33 + 1 10.61 2.55 3 n-hexadecane (3) X2:0.33 n-hexane (1) + X :0.26 n-octane (2) 1 X :0.30 + 288.15-358.28 2 10.37 2.59 4 Dymond X :0.25 n-dodecane (3) 2 (1980b)

+ n-hexadecane (4) Total 2.90 135 ECN: Effective Carbon Number; N: No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N

47

Table 4.10: Calculated results of defined compounds at various pressures and temperatures

Compound Temperature, K/ X ECN AAE, % N Reference Pressure range, Bar Benzene 298.15-348.15/ 8.51 5.13 14 V.dos Santos 1.01-617.00 (1997) Toluene 217.60-353.52/ 8.07 2.92 82 Assael 1.01-255.30 (1999) Cyclohexane 318.15-413.15/ 9.98 4.13 53 69.00-620.50 Rajagopal Cyclohexane (1) X :0.30 14.78 3.91 53 (2009) 318.15-413.15/ 1 + 69.00-620.50 hexadecane (2) X1:0.70 12.74 4.55 53

298.15-348.15/ X1:0.20 8.18 2.98 17 Cyclohexane (1) 1.00-615.00 + 298.15-348.15/ X1:0.40 8.40 2.56 16 n-octane (2) 1.00-608.00 Tanaka 298.15-348.15/ X1:0.60 8.71 2.22 15 (1991) 1.00-604.00 298.15-348.15/ X1:0.80 9.14 6.15 12 1.00-604.00 298.15-348.15/ X1:0.20 11.59 6.91 11 Cyclohexane (1) 1.00-602.00 + 298.15-348.15/ X1:0.40 11.26 6.03 11 n-dodecane (2) 1.00-613.00 298.15-348.15/ X1:0.60 10.85 7.50 09 1.00-613.00 298.15-348.15/ X1:0.80 10.38 7.64 11 1.00-612.00 X :0.60 1 6.36 3.60 33 n-pentane (1) X2:0.25 + 297.95-373.35/ X :0.15 Iglesias-Silva 1 7.95 3.13 35 n-octane (2) 1.01-246.26 X2:0.70 (1999) X :0.15 + 1 8.85 3.23 35 n-decane (3) X2:0.25 X :0.45 1 7.00 3.46 34 X2:0.40 X :0.10 1 13.36 9.37 31 Benzene (1) X2:0.15 X :0.10 + 1 11.94 2.69 31 Cyclohexane (2) 313.20-393.20/ X2:0.45 Galvan X :0.50 + 10.00-600.00 1 10.77 1.73 31 (2009) n-tetradecane(3) X2:0.14 X :0.50 1 9.51 1.85 31 X2:0.34 Total 3.90 618

48

4.2.1.2. Evaluation of the Model with Undefined Compounds (DCLOs)

To evaluate the developed method for coal liquid oils, in addition to the viscosity data of coal liquid oils available in the literature, liquid viscosities of two surrogate liquids were used. The n- alkane correlation was used in most of the cases for predicting viscosities of direct coal liquid oils, while the aromatic correlation was used only when the n-alkane correlation failed to calculate ECN or if the reference viscosity was over 2.5 mPa-s at temperatures greater than 300

K. The overall AAE for all coal liquid oils used in evaluating the model was found to be 9.99%.

Summary of results for coal liquid oils is provided in Table 4.11. The results for the viscosity predictions of 355 coal liquid data points based on their average boiling points (Tb) and temperatures (T) are shown in Figure 4.4. It is evident from Figure 4.4 that the model predicts both middle distillates and light distillates very well (<< 25% AAE). Moreover, the predictability of the model was found to be extremely good (<< 25% AAE) in the temperature range of 340-673

K. However, the model predicts viscosities of heavy distillates (Tb >573 K) and coal liquid oils at high temperatures (>673 K) with large errors (>20% AAE).

Poor predictability of viscosities of heavy distillates by the model, especially at low temperatures, can be attributed to their wide range of viscosities. Figure 4.5 shows the viscosity-temperature relationship of SRC-II (fraction 16) heavy distillate. It is clear from Figure 4.5 that a small increase in temperature significantly reduces the viscosity of SRC-II fraction. Such a wide range of viscosities of heavy distillates can be attributed to a substantial presence of solid asphaltenes and solid maltenes at low temperatures [Hasan et al (2009)]. Therefore, it is not surprising for a model that was designed specifically for liquid hydrocarbon systems to predict viscosities of heavy distillates, especially at low temperatures, poorly. However, this limitation can be addressed after additional viscosity data of heavy distillates or compounds having a wide range of

49

Table 4.11: Calculated results of direct coal liquid oils and fractions

Compound Temperature range, K/ ECN AAE, N Reference Pressure range, Bar % IHS –EDS_CLO 311.00-728.00/6.70-138.00 17.43 12.67 27 IA-3-EDS_ CLO 450.00-700.00/13.79-137.90 17.95 8.10 26 Thurner IA-6-EDS_CLO 366.50-700.00/13.79-137.90 16.60 8.14 77 (1984) IA-10-EDS_CLO 366.50-700.00/13.79-137.90 15.04 12.61 72 SRC-II;Cut-1 300.30-424.50/7.91-14.80 6.89 4.14 3 SRC-II;Cut-2 295.50-421.30/7.91-14.80 8.62 5.44 3 SRC-II;Cut-3 297.80-424.30/4.46-14.80 8.50 5.22 3 SRC-II;Cut-4 295.00-421.40/7.91-14.80 9.46 7.41 3 SRC-II;Cut-5 294.80-501.80/7.91-14.80 12.42 3.35 5 SRC-II;Cut-6 295.80-502.00/7.91 15.73 10.30 5 SRC-II;Cut-7 296.80-505.00/7.91 16.43 10.36 5 Gray SRC-II;Cut-8 295.80-503.70/7.91-42.38 20.44 9.56 5 (1983) SRC-II;Cut-9 296.80-504.80/7.91-14.80 19.85 10.97 5 SRC-II;Cut-10 341.40-500.20/7.91 24.90 8.90 4 SRC-II;Cut-11$ 296.90-504.00/7.91-44.61 17.30 30.16 4 SRC-II;Cut-12$ 342.60-506.90/28.59-42.38 18.40 24.14 4 SRC-II;Cut-13$ 342.90-496.30/7.91 18.92 22.87 4 SRC-II;Cut-15$ 340.40-501.50/7.91 18.06 14.50 4 SRC-II;Cut-16$ 341.90-500.00/56.17 19.29 25.11 4 Surrogate CLO-1 314.35-333.35/1.01 17.67 3.05 17 Current Surrogate CLO-2 311.75-333.25/1.01 16.92 5.49 20 work Shenhua-1-CLO 293.15-353.15/1.01 11.30 14.02 6 Shenhua-2-CLO 293.15-353.15/1.01 16.77 6.71 6 Zhang Shenhua-3-CLO 293.15-353.15/1.01 20.52 9.68 6 (2006) Shenhua-4-CLO$ 293.15-353.15/1.01 15.72 20.85 6 Utah Distillate 294.26-343.15/1.01 14.92 4.77 5 Western Kentucky 300.93-330.93/1.01 13.60 7.12 3 Whole Oil$

Western Kentucky 298.71-348.71/1.01 15.01 1.92 5

Distillate

SRC-1 Naphtha 289.82-331.48/1.01 8.81 1.94 4 Sharma 1046 Naphtha 289.82-332.04/1.01 9.85 1.25 4 (1980) 878 Middle Distillate 297.59-359.82/1.01 18.53 9.72 5 Synthoil Distillate$ 300.93-359.82/1.01 14.43 16.15 5 Total 9.99 355 $ Predicted using aromatic correlation; ECN: Effective Carbon Number; N= No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N

50

Light Dis.(Tb<423 K) Middle Dis.(Tb=423-573 K) Heavy Dis.(Tb>573 K) 99 99.9 99 99 90 90 90

50 N=26; AAE= 6.29% 50 50

N=303; AAE= 9.23% N=26; AAE= 22.39%

%

, s

t (Cumulative) 10

n 10 (Cumulative) 10 (Cumulative) i

o 1

P

a 1 0.1 1 t

a 0 40 80 0 40 80 0 40 80

D

e

v T<340 K T =340-673 K T>673 K

i 99.9 99.9 99

t a

l 99 99 u

m 90

u 90 90 C

50 N=93; AAE=8.79% 50 N=238; AAE=8.94 % 50 N=24; AAE= 25.18 %

10 10 (Cumulative) (Cumulative) 10 (Cumulative) 1 1 0.1 0.1 1 0 40 80 0 40 80 0 40 80 Absolute Error, %

N= No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N; Absolute Error= 100×(|μcal –μexp|/|μexp|) Figure 4.4: Probability plots of absolute error in predicting the viscosities of coal liquid oils and fractions

60 53.4600

50 s)

- Experimental Vis. Calculated Vis. 40

30

20 17.1473 Viscosity (mPa Viscosity 8.7925 10 6.9635 3.1453 3.1504 1.5671 1.6642 1.0300 0.9731 0 341.9 379.6 420.4 460.2 500

Temperature , K

Note: Viscosity datum at 420.4 K was used in calculating ECN for this coal liquid fraction Figure 4.5: A comparison between experimental and calculated viscosities of a coal liquid f fraction (SRC-II cut 16 fraction) (AAE=25.11%)

51

viscosities becomes available. The other limitation of the model is that the viscosities of light and middle distillates at high temperatures (>673 K) are too small, and a slight difference in viscosity prediction significantly magnifies the error. However, additional high temperature (>673 K) viscosity data of light and middle distillates are needed to evaluate the reliability of the model accurately. Despite all these limitations, the developed model compares favorably in terms of its accuracy with the GCSP model of Teja et al (1985), method of Kabadi and Palakkal (1996) and the method of Sharma and Goel (1997) for limited viscosity data of coal-derived liquids. Figures

4.6 and 4.7 show the comparison of the developed method with the method of Sharma and Goel for the CLO data compiled by Sharma (1980), and the method of Kabadi and Palakkal for the

CLO data compiled by Gray et al (1983), respectively. In conclusion, the developed method has been shown to predict viscosities of light and middle distillates of aromatic-rich coal-derived liquids with reasonably good accuracy (AAE<25%) over a wide range of temperatures (289-673

K) and pressures (<150 bars), while caution should be applied when predicting viscosities of heavy distillates, especially at low temperatures (<340 K).

30 Developed Method Method of Sharma and Goel 25

20

15

AAE, % AAE, 10

5

0 Utah Dis. W. Kentucky W. Kentucky SRC-I Naph. 1046 Naph. Middle Dis. Synthoil Dis. Oil Dis.

AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N Figure 4.6: Comparison of the developed method with the method of Sharma and Goel

52

60 Developed Method Method of Kabadi and Palakkal 50

40

30

20 AAE, % AAE,

10

0

AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N Figure 4.7: Comparison of the developed method with the method of Kabadi and Palakkal for SRC- II coal liquid fractions

4.2.1.3. Evaluation of the Model with Undefined Compounds (Light Crudes and Fractions)

Viscosity data of light crude oils, obtained from the literature, were used in evaluating the model‘s applicability over a wide range of compositions. It was found that this model predicted

212 light crude oil data points at an AAE of 4.69%. A summary of results for various crude oils and fractions is provided in Table 4.12. Predictability of the model for individual light crude oils and fractions is shown in Figure 4.8. It is obvious from Figure 4.8 that the model predicts viscosities of light crude oils and fractions, except Kuwaiti fraction 6, extremely well. However, no explanation could be found for the poor predictability of the model for Kuwaiti fraction 6.

Figure 4.9, a probability plot of crude oils and fractions, shows that the temperature has a limited effect on the predictability of the model. This might be due to the similarity of light crude oils and fractions with that of n-alkanes used in developing the model. In conclusion, the model has been

53

shown to predict viscosities of light crude oils extremely well (<<25% AAE) over a wide range of temperatures and pressures.

Table 4.12: Calculated results of light crude oils and fractions

Compound Temperature range, K/ ECN AAE, % N Reference Pressure range, Bar ALC-429.40 K 298.15-333.15/ 9.13 2.25 11 1.00-600.00 ALC-446.90 K 298.15-373.15/ 10.01 3.98 19 1.00-600.00 Kanti ALC-468.70 K 298.15-353.15/ 11.43 4.27 15 (1989) 1.00-600.00 ALC-489.15 K 298.15-373.15/ 12.19 4.25 19 1.00-600.00 ALC-508.35 K 298.15-353.15/ 13.36 3.78 15 1.00-600.00 ALC-526.50 K 298.15-353.15/ 14.62 1.94 19 1.00-600.00 ALC-543.60 K 298.15-353.15/ 15.82 4.78 19 1.00-600.00 ALC-559.80 K 298.15-353.15/ 17.27 8.28 19 1.00-600.00 K.Frac.-364.25 K 310.95-372.05/1.00 6.56 1.88 5 K.Frac.-402.05 K 310.95-372.05/1.00 8.64 2.51 5 K.Frac.-424.85 K 310.95-372.05/1.00 11.95 6.77 5 Riazi K.Frac.-475.95 K 310.95-372.05/1.00 11.93 1.97 5 (2001) K.Frac.-502.55 K 310.95-372.05/1.00 12.96 3.20 5 K.Frac.-550.35 K 310.95-372.05/1.00 18.28 35.42 5 ADC-1 374.80/86.90-344.60 16.34 1.46 10 ADC-2 360.90/78.60-344.60 12.92 2.76 6 ADC-3 388.20/102.70-344.60 15.26 7.90 7 Moharam ADC-4 388.20/109.70-344.60 14.08 2.12 7 (1995) ADC-5 383.20/68.50-344.60 15.68 4.56 5 ADC-6 385.90/62.10-344.60 16.67 1.36 5 ADC-7 385.40/82.10-344.60 15.03 3.04 6 Total 4.69 212

N= No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N; ALC = Arabian Light Crude; K.Frac= Kuwaiti Fraction; ADC= Abu Dhabi Crude

54

40 35 Arabian Light Crude Kuwaiti Fractions Abu Dhabi Crude Oils 30 N= 46; AAE= 3.24% 25 N=136; AAE= 4.32% N= 30; AAE= 8.63% (Cumulative) (Cumulative) (Cumulative) 20

15 AAE, % AAE, 10 5 0

N= No. of data points predicted; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N Note: X-axis represents light crude boiling cuts and whole crude oils Figure 4.8: Evaluation of light crude oils and fractions by the developed method

T<=330 K T>330 K 99.9 99.9

99 99

%

, 95 95

s t

n 90 90

i o

P 80 80

a 70 70 t

a 60 N=77; AAE=5.85%; 60 N=135; AAE=3.95%; D

50 50

e 40 40 v

i 30 30

t (Cumulative) (Cumulative) a

l 20 20 u

m 10 10 u

5 5 C

1 1

0.1 0.1 0 10 20 30 40 0 10 20 30 40 Absolute Error, %

N= No. of data points predicted; AAE= Average Absolute Error= (∑100×|μcal –μexp|/|μexp|)/N; AE= Absolute Error = 100×(|μcal –μexp|/|μexp|) Figure 4.9: Probability plots of absolute error in predicting the viscosities of light crude oils and fractions

55

4.2.3. Summary of the Results

The model has been shown to predict viscosities of defined and undefined compounds with good accuracy (<<25% AAE) over a wide range of temperatures, pressures and compositions.

However, the model should be used with caution when predicting viscosities of heavy distillates, especially at low temperatures (<340 K). In addition, predicting viscosities of light and middle distillates at high temperatures (>673 K) may significantly affects the predictive ability of the model. Despite these limitations, the model compares favorably with the method of Sharma and

Goel, and the method of Kabadi and Palakkal for limited coal liquid data set. Overall, the predictive ability of the model for a wide range of petroleum mixtures, defined compounds and coal liquid oils was found to be good.

56

CHAPTER 5

COMPARISON WITH THE GCSP MODEL

The GCSP model proposed by Teja et al (1985) and explained in chapter 2 was compared with the developed method using 32 coal liquids and fractions. The GCSP model was chosen over other models due to its applicability over a wide range of temperatures and pressures. Moreover, the method of GCSP was specifically designed for coal liquids. The method of Sharma and Goel

(1997) was not considered due to its limitation in predicting viscosities at various pressures, while the group contribution method of Kabadi and Palakkal (1996) needs comprehensive analytical information of the coal liquids. However, the developed method was shown to compare favorably with the method of Kabadi and Palakkal, and the method of Sharma and Goel for limited coal liquid data set.

The GCSP model requires molecular weight, critical temperature, critical pressure and acentric factor as input parameters. Critical parameters and acentric factor were obtained from the Wilson correlations and the Starling correlations as described in the work of Teja et al (1985). Molecular weights were calculated using the equation given in Brule et al (1982). In some cases, specific gravity at 288.71 K was estimated from boiling points using the following equation given in the work of Tsonopoulos et al (1986) (also see equation 39):

2 3 SG = 0.553461 + (1.15156*(Tb/1000)) - (0.708142*(Tb/1000) ) + (0.196237*(Tb/1000) ))

The Starling correlations use specific gravity measured at 293.15 K, while the Wilson correlations uses specific gravity measured at 288.71 K. In most of the cases, specific gravity at 293.15 K was extrapolated from specific gravity measured at 288.71 K using petroleum standards. Figure 5.1

57

shows the comparison between the two methods. The reference viscosity datum was not included when calculating the AAE for each coal liquid fraction. Summary of results for DCLOs is shown in Table 5.1. It is very clear that the developed method is much better at predicting viscosities of coal liquid oils than the GCSP+Wilson and the GCSP+Starling method.

60 Developed Method GCSP+ Wilson Method GCSP+ Starling Method 50

40

30

AAE, % AAE, 20

10

0

N= No. of data points predicted; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N Figure 5.1: Comparison of the developed method with the GCSP method for DCLOs

According to Riazi and Al-Otaibi, small errors in estimating input parameters may significantly increase the error in predicting viscosities [Riazi and Al-Otaibi (2001)]. In the case of the GCSP model, all three parameters are usually estimated. However, in the case of the developed model,

ECN is the only input parameter, which can be obtained from a single viscosity datum. The only source of error is the experimental error in the input viscosity datum. This might be one of the reasons behind better predictive results of the developed model over the GCSP method.

The prediction of coal liquids by the GCSP method strongly depends upon the reference fluids used in the model [Monnery et al (1995)]. The possible reason for the poor prediction of Dietz

58

surrogate liquids and other coal liquids by the GCSP method might be due to poor selection of reference fluids. Dietz surrogate coal liquids were found to contain a significant quantity of tetralin and therefore the GCSP method was tested with tetralin data. When the GCSP method was tested with pure tetralin data, compiled by Caudwell et al (2009) over a temperature range of

298.15-398.15 K and pressure range of 1-1100 bars (approx), the method yielded an AAE of

21.45%. The average absolute error in predicting the viscosities of tetralin, obtained from the same source [Caudwell et al (2009)], using the GCSP method at 1 bar was 47.57%. Hence, the error in predicting these surrogate coal liquids at 1 bar might be partly due to the reference fluids.

Also, the GCSP method was found to predict viscosities of coal liquids oils having a wide range of boiling points with significant errors. This may also be due to poor representation of coal liquid oils by reference fluids.

Table 5.1: Comparison of the developed method with the GCSP method for DCLOs

AAE of the AAE of the AAE of the Coal Liquids and Fractions N developed GCSP+Wilson GCSP+Starling method, % method, % Method, % IHS 27 12.67 13.19 14.48 IA-3 26 8.10 10.13 11.46 IA-6 77 8.14 19.59 14.40 IA-10 72 12.61 17.90 11.74 SRC-II 61 12.99 24.02 27.39 Shenhua CLOs 24 12.82 16.07 25.10 Surrogate CLOs (1&2) 37 4.37 48.59 50.83 Utah Distillate 5 4.77 35.80 28.79 Western Kentucky whole oil 3 7.12 39.19 41.56 Western Kentucky Distillate 5 1.92 29.65 23.22 SRC-1 Naphtha 4 1.94 17.45 11.02 1046 Naphtha 4 1.25 11.38 9.85 878 Middle distillate 5 9.72 30.14 35.81 Synthoil Distillate 5 16.15 51.89 55.86 Overall 355 9.99 22.62 21.73 N= No. of data points predicted; AAE= Average Absolute Error = (∑100×|μcal –μexp|/|μexp|)/N

59

When comparing the GCSP method with the newly developed model, it is observed that the developed model is very simple and reliable over a pressure range that is beyond the practical limit normally used in coal liquefaction process. This method can also be used to predict the viscosities of bitumen, tar sands and other synthetic fuels with little or no modifications. The developed model is simple such that the viscosities can be calculated using a hand-held calculator.

60

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Two simple and reliable single parameter correlations, n-alkane and aromatic correlations, based on the effective carbon number concept, were developed for predicting viscosities of pure compounds, defined mixtures, and undefined mixtures such as petroleum fractions and coal liquids, at pressures up to 700 bars. The only input parameter for the newly developed model is

ECN, which can be obtained from a single viscosity datum in the liquid range. The correlations were based on the viscosity data of n-alkane and coal liquid model compounds. The correlations were further extended to predict viscosities at high pressures using n-alkane and synthetic crude oil data.

The newly developed method was found to successfully predict viscosities of various compositions of defined liquids and mixtures over a wide range of temperatures and pressures up to 700 bars. All of the defined compounds were predicted with an AAE well below 25.00%. Also, agreement between experimental and predicted viscosities of 355 direct coal liquid data points was good in most cases with an overall AAE of 9.99%. When the correlations were tested on 212 light crude oil and petroleum fraction data points, the overall AAE was less than 5.00%.

The developed correlations performed better than Generalized Corresponding States method for all coal liquids considered in this work. It was also found that the correlation compared favorably over other models specifically designed for coal liquids for a limited coal liquid data set.

61

Recommendations for future work

 Dynamic viscosity data of heavy distillates or defined compounds having a wide range of

viscosities need to generated to enhance the predictive ability of the model for heavy

distillates, especially at low temperatures (<340 K).

 A similar approach for predicting kinematic viscosities needs to be developed, as

kinematic viscosities are more useful than dynamic viscosities. However, kinematic

viscosity data of coal-derived oils and defined compounds over a wide range of

temperatures and pressures have to be generated for evaluation of such a kind of method.

 The developed method should to be tested with more coal liquid oils obtained from

indirect coal liquefaction process and other synthetic fuels.

62

BIBLIOGRAPHY

Allan, J. M., Teja, A. S., Can. J. Chem. Eng., 1991, 69, 986

Amin, M. B., Maddox, R. N., Hydrocarbon Processing, 1980, 59, 131

Assael, M. J., Papadika, M., Int. J. Thermophys., 1991, 12, 801

Assael, M. J., Dalaouti, N. K., Polimatidou, S., Int. J. Thermophys., 1999, 20, 1367

ASTM standard D2887, Standard test method for boiling range distribution of petroleum fractions by gas chromotgraphy, Annual Book of ASTM Standards, West Conshohocken, PA, 2000.

ASTM standard D153-84, Standard test methods for specific gravity of pigments, Annual book of ASTM standards, West Conshohocken, PA, 2008.

ASTM standard D2887, Procedure 2B1.3, API Technical Data Book, 2008

Audonnet, F., Padua, A. A. H., Fluid Phase Equilibria, 2001, 181, 147

Baltatu, M. E., Ind. Eng. Chem. Process Des. Dev., 1982, 21, 192

Baltatu, M. E., Chong, R. A., Huber, M. L., Int. J. Thermophys., 1996, 17, 213

Bird, R. B., Stewart, W. E., Lightfoot, E. N., Transport Phenomena, Wiley Edition-New Delhi, 2002

Boned, C., Mikkelsen, C. K. Z., Baylaucq, A., Dauge, P., Fluid Phase Equilibria, 2003, 212, 143

Brule, M. R., Lin, C. T., Lee, L. L., Starling, K. E., AIChE J, 1982, 28, 616

Burgess, C. E., Schobert, H. H., Fuel, 1991, 70, 372

Burgess, C. E., Direct coal liquefaction: a potential route to thermally stable jet fuel, PhD. Dissertation, Pennsylvania State University, University Park, PA, 1994

C. H. Byers, D. F. Williams, J. Chem. Eng. Data, 1987, 32, 344

Caudwell, D. R., Trusler, J. P. M., Vesovic, V., Wakeham, W. A., Int. J. Thermophys., 2004, 25, 1339

Caudwell, D. R., Trusler, J. P. M., Vesovic, V., Wakeham, W. A., J. Chem. Eng. Data, 2009, 54, 359

Dymond, J. H., Young, K. J., Isdale, J. D., Int. J. Thermophys., 1980a, 1, 345

63

Dymond, J. H., Young, K. J., Int. J. Thermophys., 1980b, 1, 331

Dymond, J. H., Young, K. J., Int. J. Thermophys., 1981, 2, 237

Ely, J. F., Hanley, H. J. M., Ind. Eng. Chem. Fundam., 1981, 20, 323

Galvan, M. A. H., Sanchez, F. G., Salinas, R. M., Fluid Phase Equilibria, 2007, 51, 262

Galvan, M. A. H., Sanchez, F. G., Salinas, R. M., J. Chem. Eng. Data, 2009, 54, 1329

Given, P. H., Cronauer, D. C., Spackman.W., Lovell, H. L., Davis, A., Biswas, B., Fuel, 1975, 54, 40

Gray, J. A., Brady, C. J., Cunningham, J. R., Freeman, J. R., Wilson, G. M., Ind. Eng. Chem. Process Des. Dev., 1983, 22, 410

Gregory, G. A., Can. J. Chem. Eng., 1992, 70, 1037

Hasan, A. M. D., Fulem M., Bazyleva, A., Shaw, J. M., Energy & Fuels, 2009, 23, 5012

Hochman, J. M., Synthetic Fuels: Are they different? CHEMTECH, 1982, 12, 500

Hogenboom, D. L., Webb, W., Dixon, J. A., J. Chem. Phys., 1967, 46, 2586

Hougen, O. A., Watson, K. M., Chemical Process Principles Part 2, Thermodynamics, John Wiley and Sons Edition-New York, 1947

Huang, L., Schobert, H. H., Energy & Fuels, 2005, 19, 200

Iglesias-Silva, G. A., Baltazar, A. E., Hall, K. R., Barrufet, M. A., J. Chem. Eng. Data, 1999, 44, 1304

Irving, J.B., The Effectiveness of Mixture Equations; National Engineering Laboratory Report 630; National Engineering Laboratory: East Kilbride, Glasgow, Scotland, 1977

Isdale, J. D., Viscosity of Liquid Aliphatic Hydrocarbons: Alkanes, Item 79027, ESDU International plc, London, UK, 1979

Isdale, J. D., Viscosity of Liquid Aliphatic hydrocarbons: Alkenes, Item 80015, ESDU International plc, London, UK, 1980

Isdale, J. D., Viscosity of Liquid Aromatic Hydrocarbons, Item 81016, ESDU International plc, London, UK, 1981

Johnson, S. E., Svrcek, W. Y., Mehrotra, A. K., Ind. Eng. Chem. Res., 1987, 26, 2290

64

Kabadi, V. N., Palakkal, M., Energy & Fuels, 1996, 10, 341

Kamiya, Y., Sato, H., Yao, T., Fuel, 1978, 57, 1981

Kanti, M., Zhou, H., Ye, S., Boned, C., Lagourette, B., Saint-Guirons, H., Xans, P., Montel, F., J. Phys. Chem., 1989, 93, 3860

Kiran, E., Sen, Y. L., Int. J. Thermophys., 1992, 13, 411

Lee, B. I., Kesler, M. G., AIChE J, 1975, 21, 510

Lohrenz, J., Bray, B. G., Aime, M., Clark, C. R., Journal of Petroleum Technology, 1964, October, 1171

Marsh, H., Neavel, R. C., Fuel, 1980, 59, 511

McCabe, W. L., Smith, J. C., Harriott, P., Unit operations of Chemical Engineering (5th edn.), McGraw-Hill New York, 1993

Mehrotra, A. K., Monnery, W. D., Svrcek, W. Y., Fluid Phase Equilibria, 1996, 117, 344

Mo, K. C., Gubbins, K. E., Mol. Phys., 1976, 31, 825

Moharam, H. M., Fahim, M. A., Ind. Eng. Chem. Res., 1995, 34, 4140

Monnery, W. D., Mehrotra, A. K., Svrcek, W. Y., Can. J. Chem. Eng., 1991, 69, 1213

Monnery, W. D., Svrcek, W. Y., Mehrotra, A. K., Can. J. Chem. Eng., 1995, 73, 3

Naake, L-D., Wiegand, G., Franck, E. U., Z. Phys. Chem., 2002, 216, 1295

Neavel, R. C., Fuel, 1976, 55, 237

Neavel, R. C., Coal Science, 1982, 1, 1

Orbey, H., Sandler, S. I., Can. J. Chem. Eng., 1993, 71, 437

Pedersen, K. S., Fredenslund, A., Christensen, P. L., Thomassen, P., Chemical Engineering Science, 1984, 39, 1011

Pedersen, K. S., Thomassen, P., Fredenslund, A., Ind. Eng. Chem. Process Des. Dev., 1984a, 23, 163

Pedersen, K. S., Fredenslund, A., Christensen, P. L., Thomassen, P., Chemical Engineering Science, 1986, 42, 182

65

Pitzer, K. S., J. Chem. Phys., 1939, 7, 583

Pitzer, K.S., Lippmann, D. Z., Curl Jr. R. F., Huggins, C. M., Petersen, D. E., J. Am. Chem. Soc., 1955, 77, 3433

Poling, B. E., Prausnitz, J. M., O‘Conell, J. P., The properties of gases and liquids (5th Edn.) McGraw-Hill New York, 2001

Pott, A., Broche, H., Fuel, 1934, 13, 125

Probstein, R. F., Hicks, R. E., Synthetic Fuels, Dover Publications, Inc New York, 2006

Rajagopal, K., Andrade, L. L. P. R., Paredes, M. L. L., J. Chem. Eng. Data, 2009, 54, 2967

Riazi, M. R., Al-Otaibi, G. N., Fuel, 2001, 80, 27

Rossini, F. D., Pitzer, K. S., Arnett, R. L., Braun, R. M., Pimentel, G. C., Selected values of physical and thermodynamic properties of hydrocarbons and related compounds, Carnegie Press, Pittsburgh, PA, 1953

Reid, R. C., Prausnitz, J. M., Poling, B. E., The Properties of Gases and Liquids (4th edition), McGraw-Hill book company, 1987

Sharma, R., Enthalpy measurements for a coal-derived naphtha and middle distillate and characterization of coal liquids for their extent of association, PhD. Dissertation, Colorado School of Mines- Golden, CO, 1980

Sharma, R., Goel, S., Ind. Eng. Chem. Res., 1997, 36, 3999

Sharma, R., Kidnay, A. J.,Yesavage, V. F., Energy Prog., 1982, 2, 1

Shibaoka, M., Ueda, S., Fuel, 1978, 57, 667

Smith, J. M. Van Ness, H. C., Abbott, M. M., Introduction to Chemical Engineering Thermodynamics (5th edition), McGraw-Hill, New York, 1996.

Tanaka, Y., Hosokawa, H., Kubota, H., Makita, T., Int. J. Thermophys., 1991, 12, 245

Teja, A. S., Rice, P., Ind. Eng. Chem. Fundamen., 1981, 20, 77

Teja, A. S., Thurner, P. A., Pasumarti, B., Ind. Eng. Chem. Process Des. Dev., 1985, 24, 344

Tham, M. J., Gubbins, K. E., Ind. Eng. Chem. Fundam., 1970, 9, 63

Thurner, P. A., A corresponding states approach for the calculation of viscosity over a wide range of temperature and pressure, MS dissertation, Georgia Institute of Technology-Atlanta, GA, 1984

66

Tomic, J., Schobert, H. H., Energy&Fuels, 1996, 10, 709

Tsonopoulos, C., Heidman, J. L., Hwang, S. C., Thermodynamic and transport properties of coal liquids: An Exxon Monograph, John Wiley and Sons-New York, 1986

Twu, C. H., Ind. Eng. Chem. Process Des. Dev., 1985, 24, 1287

Twu, C. H., AIChE J, 1986, 32, 2091

Vieira dos Santos, F. J., Nieto de Castro, C. A., Int. J. Thermophys., 1997, 18, 367

Volker, E. J., Bockrath, B. C., Fuel, 1984, 63, 285

Wong, D., Sandler, S. I., Teja, A. S., Fluid Phase Equilibria, 1983, 14, 79

Wauquier, J. P., Petroleum Refining, Technip Ed., Vol-1, 1995

Whitehurst, D. D., Mitchell, T. O., Farcasiu, M., The Chemistry and Technology of Thermal Processes, Academic Press, 1980

Wilson, G. M., Johnston, R. H., Hwang, S. C., Tsonopoulos, C., Ind. Eng. Chem. Des. Dev., 1981, 20, 94

Zhang, H., Ling, K., Shen, J., Sheng, Q., Wang, Y., Coal conversion, 2006, 29, 41

67

APPENDIX A

Liquefaction Conversion Data, GC-MS Operating Conditions and Compositional

Information of Surrogate Coal Liquid Oils

Table A.1: Liquefaction conversion of the Dietz coal

Solvent Exp Total Conv., PA, % A, % Oil+Gas, Temp. (K) / Id Tetralin, Phenol, % % Press.(Bar) wt% wt% Surrogate CLO- 1 1#1 100 0 70.75 16.21 29.24 25.30 703.15/68.95 2#2 100 0 80.04 13.77 19.63 46.64 703.15/68.95 2#3 100 0 72.13 09.43 34.71 27.99 703.15/68.95 3#3 100 0 67.03 12.79 19.41 34.82 703.15/68.95 Surrogate CLO- 2 2#1 75.82 24.18 74.95 19.41 27.67 27.87 703.15/68.95 3#1 75.82 24.18 73.96 11.61 30.59 31.76 703.15/68.95 3#2 74.82 24.18 74.83 20.72 30.69 23.42 703.15/68.95 Reaction time= 60 mins; PA- Preasphaltenes; A- Asphaltenes; Total Conv.- Total Conversion; wt= Weight

GC-MS Operating Conditions:

Name of the GC-MS instrument: Waters micromass GCT premier time of flight with electron impact ionization

Column: VF5-MS (Varian capillary column of fused silica coated with 5% Phenyl arylene and

95% dimethyl poly siloxane)

Dimensions of the column: 20m *0.15mm*0.15 μm

Injection temperature of sample: 553 K

Temperature of the column: 323 K maintained for a minute and the temp was increased at the rate of 5 K/min to 593 K

Carrier gas: Helium

68

Table A.2: Major constituents of surrogate coal liquid oils

Lab generated CLOs: Surrogate CLO-1 Surrogate CLO-2

Solvent: Tetralin+Phenol Tetralin

Compound Area, % Area, %

Tetralin + Naphthalene: 59.97 76.20

Phenol: 12.50 4.53

Butylhydroxytoluene: 20.24 14.53

Total: 92.71 95.26

69

APPENDIX B

Physical Properties and Viscosity Data of Surrogate Coal Liquid Oils

Table B.1: Boiling cuts of surrogate coal liquid oils

Recovered, Temp. (K) Recovered, Temp. (K) Recovered, Temp. (K) wt% wt% wt% Surrogate CLO-1 IBP 338.45 35 478.05 70 478.95 5 343.35 40 478.25 75 479.15 10 382.45 45 478.35 80 479.95 15 417.45 50 478.55 85 481.65 20 466.75 55 478.65 90 482.15 25 477.55 60 478.75 95 485.55 30 477.85 65 478.85 IBP 512.65 Surrogate CLO-2 IBP 339.05 35 444.85 70 479.75 5 342.85 40 478.25 75 479.85 10 383.35 45 478.75 80 480.25 15 383.75 50 479.05 85 482.45 20 384.05 55 479.25 90 483.05 25 384.45 60 479.45 95 485.85 30 438.95 65 479.55 FBP 512.75 IBP: Initial boiling point; FBP: Final boiling point; wt%= Weight %; CLO= Coal liquid oil

Table B.2: Specific gravity and MeABP of surrogate coal liquid oils

Surrogate Coal Solvent Mean Average Boiling Specific Gravity Liquid Oil Point (K) at 288.71 K 1 Tetralin 455.55 0.9412 2 Tetralin+Phenol 447.78 0.9482

70

Table B.3: Viscosity data of surrogate coal liquid oils

Temperature (K) Viscosity (mPa-s) Temperature (K) Viscosity (mPa-s)

Surrogate CLO-1 Surrogate CLO-2 314.35 2.4520 311.75 2.2740 315.95 2.4130 314.85 2.1490 317.45 2.3970 316.25 2.1370 318.85 2.3470 317.35 2.1260 320.05 2.2830 318.35 2.1140 321.25 2.2500 319.35 2.1030 322.45 2.2213 320.25 2.0910 323.45 2.1986 321.15 2.0820 324.65 2.1865 321.95 2.0710 325.55 2.1532 322.75 2.0600 326.65 2.1217 323.55 2.0490 327.65 2.0997 324.25 2.0380 328.65 2.0643 325.05 2.0280 329.65 2.0599 326.55 2.0090 330.65 2.0425 327.25 2.0000 331.65 2.0198 328.05 1.9910 332.65 2.0030 329.45 1.9720 333.55 1.9930 330.25 1.9630 331.75 1.9450 332.45 1.9370 333.25 1.9290

71

APPENDIX C

Repeatability Study

To test the integrity and the reliability of the Penn State viscosity data presented in this thesis, a repeatability study was performed on the coal liquids on the same day.

Table C.1: Repeatability studies on surrogate coal liquid oils

Temperature (K) Viscosity (mPa-s) Temperature (K) Viscosity (mPa-s) Test-I Test-II Surrogate CLO- 1 314.35 2.4520 314.55 2.4290 315.95 2.4130 315.05 2.4140 317.45 2.3970 317.20 2.3539 318.85 2.3470 318.35 2.3301 320.05 2.2830 319.85 2.2905 321.25 2.2500 321.05 2.2520 322.45 2.2213 322.55 2.2236 323.45 2.1986 323.55 2.1966 324.65 2.1865 324.75 2.1668 325.55 2.1532 326.05 2.1325 326.65 2.1217 326.85 2.1106 327.65 2.0997 327.65 2.0992 328.65 2.0643 328.35 2.0839 329.65 2.0599 330.55 2.0313 330.65 2.0425 331.55 2.0060 331.65 2.0198 332.35 1.9970 332.65 2.0030 333.55 1.9930 Surrogate CLO-2 311.75 2.2740 314.55 2.1460 314.85 2.1490 315.85 2.1300 316.25 2.1370 316.55 2.1210 317.35 2.1260 317.45 2.1100 318.35 2.1140 320.35 2.0740 319.35 2.1030 321.15 2.0710 320.25 2.0910 322.35 2.0490 321.15 2.0820 323.15 2.0390 321.95 2.0710 324.65 2.0200 322.75 2.060 325.35 2.0110 323.55 2.0490 326.45 1.9970

72

324.25 2.0380 327.35 1.9860 325.05 2.0280 328.15 1.9760 326.55 2.0090 329.35 1.9610 327.25 2.0000 330.15 1.9510 328.05 1.9910 331.55 1.9340 329.45 1.9720 333.05 1.9150 330.25 1.9630 331.75 1.9450 332.45 1.9370 333.25 1.9290

The repeatability study clearly shows that the deviations were less than 1% for Test-I and Test-II.

73

APPENDIX D

Sample Calculations

Sample viscosity datum from SRC-II (fraction-1) [Gray et al (1983)] =0.2557 mPa-s

Sample viscosity datum T= 339.60 K

Sample viscosity datum pressure (Po) = 7.9 bar

ECN can be calculated from equation 63 with A and B obtained from equation 64 and equation

65, respectively: ln μ = A/T + B --63

A =-2.9× (n2) + (142.55× n) +196.99 --64

B= 0.0027× (n2) – (0.1× n) -3.8700 --65

Substituting viscosity datum, A and B into equation 63 yield the following quadratic equation: ln (0.2557) = ((-2.9× (n2) + (142.55× n) +196.99)/339.60) + (0.0027× (n2) – (0.1× n) -3.8700)

Solving the above quadratic equation results in ―n‖ (ECN) = 6.89 for SRC-II (fraction-1) CLO.

A and B for SRC-II (fraction-1) can be obtained by substituting ECN (n) into equations 64 and

65:

A = 1041.49; B = -4.43

ECN is less than 12 in this case; therefore, equation 69 should be used:

μ = exp (A/T+B) × (1 + ((P-Po)×0.00112) --69

74

Viscosities at various pressures and temperatures can be obtained by substituting T and P in equation 69:

Viscosity at T=300.3 K and P =7.91 bar is 0.3819 mPa-s (Exp. viscosity= 0.3545 mPa-s)

Viscosity at T=424.5 K and P=14.80 bar is 0.1395 mPa.s (Exp. viscosity= 0.1342 mPa-s)

75

APPENDIX E

RESULTS OF VARIOUS HYDROCARBON SYSTEMS

Table E.1: Results

Results for pure compounds used in developing the n-alkane correlation:

Name of the compound: n-hexane

Reference for experimental viscosity data: Isdale (1979)

Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 253.15 0.4955 0.5334 7.66 263.15 0.4359 0.4627 6.14 273.15 0.3869 0.4055 4.81 283.15 0.3461 0.3587 3.65 293.15 0.3116 0.3200 2.71 303.15 0.2821 0.2877 1.97 313.15 0.2567 0.2603 1.41 323.15 0.2345 0.2370 1.08 333.15 0.2149 0.2171 1.01 343.15 0.1976 0.1998 1.11 353.15 0.1821 0.1848 1.46 363.15 0.1681 0.1716 2.08 373.15 0.1554 0.1600 2.96 383.15 0.1439 0.1497 4.06 393.15 0.1332 0.1406 5.56 403.15 0.1233 0.1324 7.42 413.15 0.1141 0.1251 9.66 423.15 0.1055 0.1185 12.34 AAE= 4.28 %

76

n-heptane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 253.15 0.6964 0.7564 8.62 263.15 0.6022 0.6459 7.25 273.15 0.5267 0.5579 5.92 283.15 0.4651 0.4869 4.68 293.15 0.4142 0.4289 3.55 303.15 0.3715 0.3810 2.55 313.15 0.3353 0.3410 1.69 323.15 0.3042 0.3073 1.02 333.15 0.2773 0.2787 0.49 343.15 0.2538 0.2542 0.14 353.15 0.2330 0.2330 0.00 363.15 0.2146 0.2146 0.02 373.15 0.1981 0.1986 0.25 383.15 0.1833 0.1845 0.65 393.15 0.1698 0.1720 1.32 403.15 0.1575 0.1610 2.22 413.15 0.1462 0.1511 3.37 423.15 0.1358 0.1423 4.78 433.15 0.1261 0.1344 6.55 443.15 0.1170 0.1272 8.70 453.15 0.1084 0.1207 11.34 AAE= 3.58 %

77

n-octane Isadle (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 253.15 0.9902 1.0540 6.45 263.15 0.8378 0.8867 5.83 273.15 0.7191 0.7554 5.05 283.15 0.6249 0.6509 4.16 293.15 0.5487 0.5666 3.25 303.15 0.4861 0.4977 2.38 313.15 0.434 0.4408 1.57 323.15 0.3901 0.3934 0.84 333.15 0.3527 0.3535 0.22 343.15 0.3206 0.3196 -0.31 353.15 0.2926 0.2906 -0.68 363.15 0.2682 0.2657 -0.95 373.15 0.2465 0.2440 -1.01 383.15 0.2273 0.2251 -0.96 393.15 0.2101 0.2086 -0.74 403.15 0.1946 0.1939 -0.34 413.15 0.1805 0.1810 0.27 423.15 0.1677 0.1694 1.04 433.15 0.1559 0.1591 2.07 443.15 0.145 0.1499 3.35 453.15 0.1349 0.1415 4.89 463.15 0.1255 0.1339 6.73 473.15 0.1166 0.1271 8.99 483.15 0.1082 0.1208 11.68 AAE= 3.07 % `

78

n-nonane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 253.15 1.3810 1.4432 4.51 263.15 1.1435 1.1972 4.70 273.15 0.9635 1.0068 4.49 283.15 0.8239 0.8571 4.03 293.15 0.7134 0.7377 3.41 303.15 0.6244 0.6413 2.70 313.15 0.5517 0.5625 1.95 323.15 0.4913 0.4973 1.23 333.15 0.4406 0.4430 0.55 343.15 0.3976 0.3973 -0.07 353.15 0.3607 0.3585 -0.60 363.15 0.3288 0.3253 -1.05 373.15 0.3009 0.2968 -1.37 383.15 0.2764 0.2720 -1.58 393.15 0.2547 0.2505 -1.67 403.15 0.2353 0.2315 -1.60 413.15 0.2179 0.2149 -1.40 423.15 0.2022 0.2001 -1.04 433.15 0.1879 0.1869 -0.51 443.15 0.1748 0.1752 0.23 453.15 0.1628 0.1647 1.15 463.15 0.1517 0.1552 2.30 473.15 0.1414 0.1466 3.69 483.15 0.1318 0.1388 5.35 493.15 0.1227 0.1318 7.40 503.15 0.1142 0.1253 9.75 AAE= 2.63 %

79

n-decane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 253.15 1.9332 1.9418 0.45 263.15 1.5632 1.5898 1.70 273.15 1.2906 1.3208 2.34 283.15 1.0843 1.1118 2.53 293.15 0.9247 0.9469 2.40 303.15 0.7987 0.8150 2.05 313.15 0.6974 0.7083 1.56 323.15 0.6148 0.6209 0.99 333.15 0.5465 0.5486 0.39 343.15 0.4893 0.4883 -0.21 353.15 0.4408 0.4374 -0.77 363.15 0.3993 0.3943 -1.26 373.15 0.3635 0.3573 -1.70 383.15 0.3324 0.3255 -2.06 393.15 0.3050 0.2980 -2.30 403.15 0.2809 0.2740 -2.47 413.15 0.2594 0.2529 -2.51 423.15 0.2401 0.2343 -2.40 433.15 0.2227 0.2179 -2.16 443.15 0.2070 0.2033 -1.79 453.15 0.1927 0.1902 -1.28 463.15 0.1796 0.1785 -0.59 473.15 0.1675 0.1680 0.30 483.15 0.1563 0.1585 1.40 493.15 0.1459 0.1499 2.72 503.15 0.1361 0.1420 4.36 513.15 0.1270 0.1349 6.21 523.15 0.1183 0.1284 8.50 AAE= 2.12 %

80

n-undecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 263.15 2.1131 2.0763 -1.74 273.15 1.7082 1.7055 -0.16 283.15 1.4096 1.4205 0.77 293.15 1.1835 1.1980 1.22 303.15 1.0084 1.0218 1.32 313.15 0.8702 0.8803 1.17 323.15 0.7592 0.7655 0.83 333.15 0.6687 0.6713 0.39 343.15 0.5938 0.5932 -0.10 353.15 0.5312 0.5279 -0.63 363.15 0.4782 0.4727 -1.14 373.15 0.4330 0.4259 -1.64 383.15 0.3939 0.3858 -2.06 393.15 0.3600 0.3512 -2.44 403.15 0.3302 0.3212 -2.71 413.15 0.3040 0.2951 -2.93 423.15 0.2807 0.2722 -3.04 433.15 0.2598 0.2520 -3.02 443.15 0.2410 0.2341 -2.88 453.15 0.2240 0.2181 -2.62 463.15 0.2086 0.2039 -2.24 473.15 0.1945 0.1912 -1.71 483.15 0.1815 0.1797 -0.98 493.15 0.1696 0.1694 -0.14 503.15 0.1584 0.1600 1.00 513.15 0.1481 0.1515 2.26 523.15 0.1384 0.1437 3.81 533.15 0.1292 0.1366 5.71 AAE= 1.81 %

81

n-dodecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 273.15 2.2381 2.1676 -3.15 283.15 1.8135 1.7878 -1.42 293.15 1.4989 1.4940 -0.32 303.15 1.2600 1.2634 0.27 313.15 1.0745 1.0799 0.50 323.15 0.9278 0.9320 0.46 333.15 0.8098 0.8116 0.22 343.15 0.7135 0.7124 -0.15 353.15 0.6338 0.6300 -0.60 363.15 0.5670 0.5609 -1.08 373.15 0.5105 0.5025 -1.57 383.15 0.4622 0.4528 -2.04 393.15 0.4206 0.4101 -2.49 403.15 0.3844 0.3733 -2.88 413.15 0.3526 0.3414 -3.18 423.15 0.3246 0.3135 -3.43 433.15 0.2998 0.2890 -3.60 443.15 0.2776 0.2674 -3.67 453.15 0.2576 0.2483 -3.61 463.15 0.2395 0.2313 -3.43 473.15 0.2231 0.2161 -3.15 483.15 0.2081 0.2024 -2.72 493.15 0.1944 0.1902 -2.17 503.15 0.1817 0.1791 -1.44 513.15 0.1700 0.1690 -0.56 523.15 0.1590 0.1599 0.58 533.15 0.1488 0.1516 1.88 543.15 0.1392 0.1440 3.45 553.15 0.1301 0.1370 5.33 AAE= 2.05 %

82

n-tridecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 273.15 2.8930 2.7117 -6.27 283.15 2.3021 2.2164 -3.72 293.15 1.8737 1.8367 -1.98 303.15 1.5542 1.5410 -0.85 313.15 1.3103 1.3074 -0.22 323.15 1.1202 1.1206 0.04 333.15 0.9692 0.9695 0.03 343.15 0.8473 0.8458 -0.18 353.15 0.7475 0.7436 -0.52 363.15 0.6648 0.6585 -0.95 373.15 0.5954 0.5869 -1.43 383.15 0.5366 0.5262 -1.94 393.15 0.4862 0.4744 -2.42 403.15 0.4427 0.4300 -2.88 413.15 0.4048 0.3915 -3.28 423.15 0.3717 0.3581 -3.66 433.15 0.3423 0.3289 -3.92 443.15 0.3163 0.3032 -4.14 453.15 0.2930 0.2805 -4.25 463.15 0.2721 0.2604 -4.28 473.15 0.2532 0.2425 -4.21 483.15 0.2360 0.2265 -4.01 493.15 0.2203 0.2122 -3.68 503.15 0.2059 0.1993 -3.23 513.15 0.1926 0.1876 -2.61 523.15 0.1803 0.1770 -1.84 533.15 0.1689 0.1674 -0.91 543.15 0.1582 0.1586 0.24 553.15 0.1482 0.1506 1.59 563.15 0.1387 0.1432 3.25 573.15 0.1298 0.1364 5.12 AAE= 2.50 %

83

n-tetradecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 283.15 2.9067 2.7066 -6.88 293.15 2.3296 2.2256 -4.47 303.15 1.9072 1.8538 -2.80 313.15 1.5898 1.5623 -1.73 323.15 1.3458 1.3306 -1.13 333.15 1.1545 1.1443 -0.89 343.15 1.0018 0.9927 -0.91 353.15 0.8780 0.8682 -1.12 363.15 0.7763 0.7649 -1.47 373.15 0.6917 0.6785 -1.91 383.15 0.6205 0.6056 -2.40 393.15 0.5600 0.5437 -2.91 403.15 0.5081 0.4908 -3.41 413.15 0.4632 0.4452 -3.89 423.15 0.4241 0.4057 -4.35 433.15 0.3897 0.3713 -4.73 443.15 0.3593 0.3411 -5.06 453.15 0.3323 0.3146 -5.32 463.15 0.3081 0.2912 -5.49 473.15 0.2863 0.2704 -5.56 483.15 0.2666 0.2518 -5.53 493.15 0.2487 0.2353 -5.41 503.15 0.2324 0.2203 -5.19 513.15 0.2174 0.2069 -4.82 523.15 0.2035 0.1948 -4.29 533.15 0.1907 0.1837 -3.65 543.15 0.1788 0.1737 -2.84 553.15 0.1677 0.1646 -1.86 563.15 0.1573 0.1562 -0.69 573.15 0.1474 0.1486 0.78 583.15 0.1381 0.1415 2.46 AAE= 3.35 %

84

n-pentadecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 293.15 2.8159 2.6583 -5.60 303.15 2.2783 2.1998 -3.45 313.15 1.8801 1.8424 -2.00 323.15 1.5778 1.5602 -1.12 333.15 1.3433 1.3344 -0.66 343.15 1.1580 1.1518 -0.54 353.15 1.0092 1.0024 -0.67 363.15 0.8878 0.8792 -0.97 373.15 0.7876 0.7765 -1.41 383.15 0.7038 0.6903 -1.92 393.15 0.6330 0.6173 -2.48 403.15 0.5725 0.5551 -3.03 413.15 0.5205 0.5018 -3.59 423.15 0.4754 0.4558 -4.13 433.15 0.4360 0.4158 -4.64 443.15 0.4012 0.3809 -5.07 453.15 0.3704 0.3503 -5.44 463.15 0.3430 0.3233 -5.75 473.15 0.3184 0.2994 -5.97 483.15 0.2962 0.2781 -6.10 493.15 0.2761 0.2592 -6.13 503.15 0.2578 0.2422 -6.06 513.15 0.2411 0.2269 -5.89 523.15 0.2258 0.2131 -5.62 533.15 0.2116 0.2006 -5.18 543.15 0.1985 0.1893 -4.63 553.15 0.1862 0.1790 -3.87 563.15 0.1748 0.1696 -2.98 573.15 0.1641 0.1610 -1.91 583.15 0.1540 0.1531 -0.61 593.15 0.1444 0.1458 0.97 AAE= 3.50 %

85

n-hexadecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 293.15 3.4160 3.1299 -8.38 303.15 2.7287 2.5747 -5.64 313.15 2.2274 2.1445 -3.72 323.15 1.8519 1.8066 -2.45 333.15 1.5642 1.5376 -1.70 343.15 1.3391 1.3211 -1.35 353.15 1.1599 1.1448 -1.30 363.15 1.0150 0.9999 -1.49 373.15 0.8962 0.8797 -1.84 383.15 0.7976 0.7792 -2.31 393.15 0.7147 0.6944 -2.84 403.15 0.6444 0.6224 -3.42 413.15 0.5842 0.5608 -4.01 423.15 0.5323 0.5078 -4.60 433.15 0.4870 0.4619 -5.15 443.15 0.4473 0.4220 -5.66 453.15 0.4123 0.3871 -6.12 463.15 0.3812 0.3563 -6.52 473.15 0.3534 0.3292 -6.85 483.15 0.3285 0.3051 -7.11 493.15 0.3060 0.2837 -7.28 503.15 0.2855 0.2645 -7.34 513.15 0.2669 0.2473 -7.33 523.15 0.2498 0.2319 -7.18 533.15 0.2342 0.2179 -6.97 543.15 0.2197 0.2052 -6.60 553.15 0.2062 0.1937 -6.07 563.15 0.1937 0.1832 -5.43 573.15 0.1820 0.1736 -4.61 583.15 0.1711 0.1648 -3.67 593.15 0.1607 0.1568 -2.46 603.15 0.1509 0.1493 -1.04 AAE= 4.64 %

86

n-heptadecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 303.15 3.2109 2.9724 -7.43 313.15 2.5939 2.4636 -5.02 323.15 2.1377 2.0658 -3.36 333.15 1.7918 1.7506 -2.30 343.15 1.5239 1.4979 -1.71 353.15 1.3124 1.2930 -1.48 363.15 1.1428 1.1253 -1.53 373.15 1.0046 0.9866 -1.79 383.15 0.8905 0.8710 -2.19 393.15 0.7953 0.7738 -2.71 403.15 0.7149 0.6915 -3.28 413.15 0.6464 0.6213 -3.88 423.15 0.5875 0.5611 -4.49 433.15 0.5364 0.5091 -5.09 443.15 0.4918 0.4640 -5.66 453.15 0.4525 0.4246 -6.17 463.15 0.4178 0.3900 -6.65 473.15 0.3869 0.3595 -7.07 483.15 0.3592 0.3326 -7.41 493.15 0.3342 0.3086 -7.66 503.15 0.3116 0.2872 -7.83 513.15 0.2911 0.2681 -7.92 523.15 0.2724 0.2508 -7.92 533.15 0.2552 0.2353 -7.79 543.15 0.2394 0.2213 -7.58 553.15 0.2247 0.2085 -7.20 563.15 0.2111 0.1969 -6.71 573.15 0.1985 0.1863 -6.12 583.15 0.1866 0.1767 -5.32 593.15 0.1755 0.1678 -4.39 603.15 0.1649 0.1596 -3.19 613.15 0.1550 0.1521 -1.85 AAE= 5.02 %

87

n-octadecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 303.15 3.8930 3.3848 -13.06 313.15 3.1045 2.7933 -10.02 323.15 2.5305 2.3327 -7.82 333.15 2.1012 1.9693 -6.28 343.15 1.7727 1.6790 -5.29 353.15 1.5160 1.4445 -4.72 363.15 1.3120 1.2530 -4.49 373.15 1.1472 1.0953 -4.53 383.15 1.0122 0.9641 -4.75 393.15 0.9002 0.8542 -5.11 403.15 0.8063 0.7614 -5.57 413.15 0.7267 0.6825 -6.09 423.15 0.6585 0.6149 -6.63 433.15 0.5998 0.5566 -7.19 443.15 0.5486 0.5062 -7.73 453.15 0.5039 0.4623 -8.26 463.15 0.4644 0.4238 -8.74 473.15 0.4293 0.3900 -9.16 483.15 0.3981 0.3601 -9.55 493.15 0.3700 0.3335 -9.85 503.15 0.3447 0.3099 -10.09 513.15 0.3218 0.2888 -10.26 523.15 0.3009 0.2698 -10.33 533.15 0.2818 0.2527 -10.31 543.15 0.2643 0.2373 -10.21 553.15 0.2482 0.2234 -10.01 563.15 0.2332 0.2107 -9.67 573.15 0.2193 0.1991 -9.22 583.15 0.2063 0.1885 -8.62 593.15 0.1942 0.1788 -7.91 603.15 0.1828 0.1699 -7.03 613.15 0.1720 0.1618 -5.95 623.15 0.1618 0.1542 -4.68 633.15 0.1521 0.1473 -3.18 AAE= 7.71 %

88

n-nonadecane Isdale (1979) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 313.15 3.5358 3.1258 -11.60 323.15 2.8574 2.6013 -8.96 333.15 2.3555 2.1889 -7.07 343.15 1.9749 1.8604 -5.80 353.15 1.6800 1.5959 -5.00 363.15 1.4472 1.3806 -4.60 373.15 1.2603 1.2037 -4.49 383.15 1.1081 1.0569 -4.62 393.15 0.9825 0.9343 -4.91 403.15 0.8776 0.8309 -5.32 413.15 0.7890 0.7432 -5.81 423.15 0.7135 0.6682 -6.35 433.15 0.6486 0.6038 -6.91 443.15 0.5923 0.5481 -7.47 453.15 0.5432 0.4996 -8.02 463.15 0.5000 0.4573 -8.55 473.15 0.4617 0.4201 -9.01 483.15 0.4277 0.3873 -9.45 493.15 0.3972 0.3582 -9.81 503.15 0.3697 0.3324 -10.10 513.15 0.3449 0.3093 -10.32 523.15 0.3224 0.2886 -10.48 533.15 0.3018 0.2700 -10.54 543.15 0.2830 0.2532 -10.53 553.15 0.2656 0.2380 -10.38 563.15 0.2496 0.2242 -10.16 573.15 0.2347 0.2117 -9.80 583.15 0.2209 0.2002 -9.35 593.15 0.2079 0.1898 -8.72 603.15 0.1958 0.1802 -7.99 613.15 0.1844 0.1713 -7.09 623.15 0.1736 0.1632 -5.99 633.15 0.1633 0.1557 -4.66 AAE= 7.87 %

89

n-eicosane Rossini et al (1953) Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 353.15 1.8080 1.7439 -3.54 363.15 1.5551 1.5052 -3.21 373.15 1.3548 1.3094 -3.35 383.15 1.1900 1.1475 -3.58 393.15 1.0530 1.0123 -3.87 403.15 0.9381 0.8986 -4.21 413.15 0.8410 0.8023 -4.60 423.15 0.7583 0.7202 -5.03 433.15 0.6873 0.6497 -5.47 443.15 0.6261 0.5888 -5.95 453.15 0.5729 0.5360 -6.44 463.15 0.5264 0.4899 -6.94 473.15 0.4857 0.4494 -7.46 483.15 0.4497 0.4138 -7.98 493.15 0.4178 0.3823 -8.50 503.15 0.3894 0.3543 -9.02 513.15 0.3640 0.3293 -9.53 523.15 0.3413 0.3069 -10.07 533.15 0.3208 0.2868 -10.58 543.15 0.3023 0.2687 -11.10 553.15 0.2855 0.2524 -11.60 563.15 0.2702 0.2375 -12.09 573.15 0.2563 0.2240 -12.59 583.15 0.2436 0.2117 -13.08 593.15 0.2320 0.2005 -13.58 603.15 0.2212 0.1902 -14.02 AAE= 7.98 %

90

Results for pure compounds used in the aromatic correlation:

Naphthalene Isdale (1981) Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 353.15 0.9359 1.0002 6.87 363.15 0.8486 0.8964 5.63 373.15 0.7738 0.8081 4.44 383.15 0.709 0.7325 3.31 393.15 0.6525 0.6673 2.26 403.15 0.6029 0.6107 1.29 413.15 0.5589 0.5613 0.42 423.15 0.5198 0.5179 -0.36 433.15 0.4847 0.4797 -1.03 443.15 0.4531 0.4459 -1.60 453.15 0.4244 0.4157 -2.04 463.15 0.3984 0.3888 -2.41 473.15 0.3746 0.3647 -2.65 483.15 0.3528 0.3429 -2.80 493.15 0.3326 0.3233 -2.80 503.15 0.3141 0.3055 -2.74 513.15 0.2968 0.2893 -2.52 523.15 0.2807 0.2746 -2.19 533.15 0.2657 0.2611 -1.74 543.15 0.2516 0.2487 -1.15 553.15 0.2384 0.2374 -0.44 563.15 0.226 0.2269 0.39 573.15 0.2142 0.2172 1.41 583.15 0.203 0.2083 2.60 593.15 0.1923 0.2000 4.00 603.15 0.1822 0.1923 5.54 AAE= 2.49 %

91

1-Methylnaphthalene Byers and Williams (1987) Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 303.20 2.5800 2.3335 -9.55 308.20 2.3200 2.1456 -7.52 313.20 2.0800 1.9781 -4.90 318.20 1.8900 1.8284 -3.26 323.20 1.7200 1.6941 -1.51 328.20 1.5700 1.5733 0.21 333.20 1.4400 1.4644 1.69 338.20 1.3300 1.3659 2.70 343.20 1.2500 1.2766 2.13 348.20 1.1400 1.1955 4.87 353.20 1.0900 1.1216 2.90 358.20 1.0100 1.0542 4.38 363.20 0.9730 0.9925 2.00 373.20 0.8640 0.8840 2.32 383.20 0.7700 0.7921 2.88 393.20 0.6910 0.7138 3.30 403.20 0.6280 0.6465 2.95 413.20 0.5720 0.5884 2.87 423.20 0.5210 0.5379 3.25 433.20 0.4790 0.4938 3.09 443.20 0.4430 0.4551 2.72 453.20 0.4110 0.4209 2.40 463.20 0.3820 0.3905 2.24 473.20 0.3550 0.3636 2.41 483.20 0.3310 0.3395 2.55 493.20 0.3100 0.3178 2.52 503.20 0.2910 0.2984 2.53 AAE= 3.17 %

92

Phenyl Ether Byers and Williams (1987) Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 303.2 3.2300 2.9435 -8.87 308.2 2.8700 2.6822 -6.54 313.2 2.5600 2.4513 -4.24 318.2 2.3100 2.2467 -2.74 323.2 2.0900 2.0647 -1.21 333.2 1.7500 1.7570 0.40 338.2 1.6000 1.6267 1.67 343.2 1.4800 1.5093 1.98 353.2 1.2800 1.3078 2.17 363.2 1.1100 1.1421 2.89 373.2 0.9810 1.0047 2.42 383.2 0.8700 0.8897 2.27 393.2 0.7800 0.7928 1.65 403.2 0.7020 0.7105 1.21 413.2 0.6360 0.6402 0.65 423.2 0.5790 0.5796 0.10 433.2 0.5300 0.5272 -0.53 443.2 0.4860 0.4816 -0.91 453.2 0.4490 0.4417 -1.63 463.2 0.4160 0.4066 -2.26 473.2 0.3870 0.3756 -2.95 483.2 0.3600 0.3481 -3.30 AAE= 2.39 %

93

BiPhenyl Isdale (1981) Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 343.15 1.4863 1.5105 1.63 353.15 1.2672 1.3087 3.27 363.15 1.0949 1.1429 4.38 373.15 0.9571 1.0053 5.04 383.15 0.8451 0.8903 5.35 393.15 0.7528 0.7933 5.38 403.15 0.6759 0.7109 5.18 413.15 0.611 0.6405 4.83 423.15 0.5557 0.5799 4.35 433.15 0.5082 0.5274 3.79 443.15 0.4671 0.4818 3.14 453.15 0.4311 0.4419 2.49 463.15 0.3995 0.4067 1.81 473.15 0.3715 0.3757 1.14 483.15 0.3465 0.3482 0.50 493.15 0.3242 0.3237 -0.14 503.15 0.3041 0.3018 -0.74 513.15 0.2859 0.2822 -1.29 523.15 0.2693 0.2645 -1.78 533.15 0.2542 0.2485 -2.23 543.15 0.2404 0.2341 -2.64 553.15 0.2276 0.2209 -2.94 563.15 0.2158 0.2089 -3.19 573.15 0.2048 0.1980 -3.33 583.15 0.1946 0.1879 -3.42 593.15 0.1851 0.1787 -3.44 603.15 0.1762 0.1703 -3.37 613.15 0.1677 0.1624 -3.13 623.15 0.1598 0.1552 -2.86 633.15 0.1523 0.1485 -2.47 643.15 0.1451 0.1423 -1.91 653.15 0.1382 0.1366 -1.18 663.15 0.1316 0.1312 -0.31 AAE= 2.81 %

94

o -terphenyl Isdale (1981) Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 333.15 18.2161 11.9389 -34.46 343.15 12.2591 9.3121 -24.04 353.15 8.6314 7.3662 -14.66 363.15 6.3123 5.9027 -6.49 373.15 4.7672 4.7864 0.40 383.15 3.7007 3.9239 6.03 393.15 2.9415 3.2495 10.47 403.15 2.3865 2.7163 13.82 413.15 1.971 2.2904 16.21 423.15 1.6536 1.9469 17.74 433.15 1.4064 1.6674 18.56 443.15 1.2109 1.4380 18.76 453.15 1.0538 1.2483 18.46 463.15 0.926 1.0903 17.74 473.15 0.8208 0.9578 16.69 483.15 0.7332 0.8458 15.36 493.15 0.6594 0.7508 13.86 503.15 0.5969 0.6696 12.17 513.15 0.5434 0.5998 10.38 523.15 0.4972 0.5396 8.52 533.15 0.4571 0.4873 6.61 543.15 0.422 0.4418 4.69 553.15 0.3912 0.4019 2.74 563.15 0.3639 0.3669 0.83 573.15 0.3396 0.3360 -1.06 583.15 0.3178 0.3086 -2.89 593.15 0.2983 0.2843 -4.70 603.15 0.2807 0.2626 -6.45 613.15 0.2647 0.2432 -8.13 623.15 0.2502 0.2257 -9.77 633.15 0.2369 0.2101 -11.33 643.15 0.2248 0.1959 -12.85 653.15 0.2135 0.1831 -14.24 663.15 0.2032 0.1715 -15.61 673.15 0.1936 0.1609 -16.89 AAE=11.82 %

95

Results of pure compounds used in high pressure correlation for liquids having carbon number < 12:

n-pentane Audonnet et al (2001) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 303.15 1.1 0.2074 0.2142 3.29 303.15 50.8 0.2184 0.2262 3.55 303.15 100.2 0.2301 0.2380 3.44 303.15 150.0 0.2414 0.2500 3.55 303.15 200.8 0.2528 0.2621 3.70 303.15 299.1 0.2746 0.2857 4.05 303.15 400.3 0.2964 0.3100 4.59 303.15 600.8 0.3423 0.3581 4.62 323.15 5.9 0.1748 0.1815 3.86 323.15 50.0 0.1842 0.1905 3.40 323.15 99.8 0.1951 0.2005 2.78 323.15 150.0 0.2052 0.2107 2.67 323.15 199.9 0.2155 0.2208 2.45 323.15 300 0.2364 0.2410 1.95 323.15 399.7 0.2553 0.2612 2.30 323.15 600.3 0.2940 0.3018 2.64 353.15 6.1 0.1346 0.1457 8.25 353.15 49.6 0.1439 0.1528 6.16 353.15 100.2 0.1540 0.1610 4.53 353.15 150.2 0.1655 0.1691 2.17 353.15 200.6 0.1747 0.1773 1.47 353.15 300.6 0.1919 0.1935 0.84 353.15 400.0 0.2090 0.2096 0.30 353.15 600.0 0.2425 0.2421 -0.17 383.15 11.6 0.1048 0.1218 16.19 383.15 50.4 0.1141 0.1270 11.30 383.15 99.9 0.1246 0.1337 7.28 383.15 50.6 0.1337 0.1270 -4.99 383.15 199.8 0.1428 0.1471 3.03 383.15 299.6 0.1595 0.1606 0.68 383.15 399.8 0.1752 0.1741 -0.63 383.15 600.0 0.2088 0.2011 -3.70 AAE= 3.89 %

96

n-hexane Kiran et al (1992) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 313 2.1 0.2578 0.2607 1.12 313 2.1 0.2581 0.2607 1.01 313 58.6 0.2764 0.2772 0.29 313 58.8 0.2770 0.2773 0.09 313 143.1 0.3000 0.3019 0.62 313 143.2 0.3004 0.3019 0.50 313 239.1 0.3263 0.3299 1.10 313 239.5 0.3264 0.3300 1.11 313 342.9 0.3569 0.3602 0.93 313 342.9 0.3573 0.3602 0.81 313 446.3 0.3874 0.3904 0.77 313 446.3 0.3868 0.3904 0.93 313 549.9 0.4183 0.4206 0.56 323 67 0.2538 0.2546 0.32 323 68.3 0.2538 0.2550 0.46 323 151.3 0.2798 0.2770 -0.99 323 151.3 0.2776 0.2770 -0.21 323 239.9 0.2997 0.3006 0.29 323 240.1 0.2995 0.3006 0.38 323 343.3 0.3281 0.3281 -0.01 323 343.9 0.3280 0.3282 0.07 323 446.4 0.3576 0.3555 -0.59 323 446.6 0.3576 0.3555 -0.58 323 549.9 0.3887 0.3830 -1.47 323 550 0.3900 0.3830 -1.79 323 639.2 0.4191 0.4067 -2.95 348 72.6 0.2062 0.2074 0.59 348 72.9 0.2053 0.2075 1.07 348 160.2 0.2292 0.2263 -1.27 348 160.5 0.2275 0.2264 -0.50 348 241.9 0.2532 0.2439 -3.68 348 342.1 0.2730 0.2655 -2.76 348 342.9 0.2729 0.2656 -2.67 348 448.2 0.2994 0.2883 -3.71 348 553.4 0.3338 0.3109 -6.85 348 554.3 0.3347 0.3111 -7.04 373 72.6 0.1812 0.1728 -4.63 373 74.3 0.1785 0.1731 -3.01

97

Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity(mPa-s) Viscosity(mPa-s) 373 155.2 0.2086 0.1876 -10.05 373 156.5 0.2092 0.1879 -10.2 373 254.4 0.2094 0.2054 -1.9 373 255.1 0.2133 0.2056 -3.63 373 348.9 0.2324 0.2224 -4.31 373 349.3 0.2321 0.2224 -4.16 373 448.4 0.2551 0.2402 -5.83 373 554.4 0.2855 0.2592 -9.2 373 554.9 0.2847 0.2593 -8.91 373 658.5 0.3086 0.2779 -9.94 398 77.4 0.1421 0.1481 4.19 398 150.8 0.1666 0.1593 -4.4 398 247.3 0.1928 0.174 -9.73 398 342.4 0.2058 0.1886 -8.37 398 445.4 0.2222 0.2043 -8.04 398 549.6 0.2401 0.2203 -8.26 398 653.4 0.2671 0.2361 -11.59 423 107.9 0.1316 0.1327 0.81 423 169.3 0.1460 0.1408 -3.55 423 240.1 0.1607 0.1502 -6.52 423 240.3 0.1618 0.1503 -7.14 423 342.1 0.1828 0.1638 -10.41 423 446.1 0.2100 0.1776 -15.43 423 446.3 0.2103 0.1776 -15.54 423 446.5 0.2106 0.1776 -15.65 423 556.4 0.2126 0.1922 -9.58 423 557.3 0.2105 0.1924 -8.62 423 632.5 0.2205 0.2024 -8.23 448 131.6 0.1140 0.1198 5.13 448 205.8 0.1299 0.1285 -1.04 448 274.4 0.1507 0.1366 -9.36 448 274.8 0.1514 0.1366 -9.75 448 342.6 0.1584 0.1446 -8.72 448 343 0.1586 0.1446 -8.81 448 411 0.1693 0.1526 -9.86 448 411.6 0.1696 0.1527 -9.98 448 523 0.188 0.1657 -11.85 448 524.9 0.1885 0.166 -11.96 AAE= 4.85 %

98

n-heptane Assael et al (1991) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 303.15 1 0.3707 0.3810 2.77 303.15 54.2 0.3909 0.4037 3.27 303.15 106.9 0.4119 0.4262 3.46 303.15 156.6 0.4327 0.4474 3.39 303.15 205.2 0.4526 0.4681 3.43 303.15 257.4 0.4742 0.4904 3.41 303.15 307 0.4949 0.5115 3.36 303.15 356.7 0.5161 0.5327 3.23 303.15 408.3 0.5382 0.5548 3.08 303.15 453.9 0.558 0.5742 2.91 303.15 509.7 0.5823 0.5980 2.70 303.15 558.3 0.6043 0.6188 2.39 303.15 610 0.6278 0.6408 2.07 303.15 659.6 0.6496 0.6620 1.91 303.15 694.1 0.6657 0.6767 1.65 323.15 1 0.3041 0.3073 1.05 323.15 56.7 0.3226 0.3265 1.20 323.15 105.4 0.3395 0.3432 1.10 323.15 156 0.3571 0.3606 0.99 323.15 207.2 0.375 0.3783 0.87 323.15 256.9 0.392 0.3954 0.86 323.15 306 0.409 0.4123 0.80 323.15 352.6 0.4253 0.4283 0.71 323.15 380 0.4363 0.4377 0.33 323.15 435.7 0.456 0.4569 0.20 323.15 526.9 0.4894 0.4883 -0.23 323.15 609 0.5201 0.5165 -0.68 323.15 639.4 0.5313 0.5270 -0.81 AAE= 1.89 %

99

n-octane Caudwell et al (2009) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 298.15 1 0.5100 0.5304 4.00 298.15 209 0.6310 0.6540 3.64 298.15 406 0.7530 0.7710 2.39 298.15 609 0.8890 0.8916 0.30 323.15 1 0.3870 0.3934 1.65 323.15 201 0.4770 0.4815 0.95 323.15 400 0.5700 0.5692 -0.14 323.15 606 0.6720 0.6600 -1.79 348.15 1 0.3040 0.3046 0.18 348.15 204 0.3810 0.3738 -1.89 348.15 408 0.4570 0.4434 -2.98 348.15 607 0.5340 0.5113 -4.26 373.15 1 0.2450 0.2440 -0.40 373.15 206 0.3120 0.3000 -3.83 373.15 399 0.3730 0.3528 -5.42 373.15 600 0.4370 0.4077 -6.70 398.15 216 0.2630 0.2494 -5.16 398.15 420 0.3200 0.2954 -7.70 423.15 214 0.2260 0.2099 -7.14 423.15 411 0.2760 0.2472 -10.42 448.15 210 0.1920 0.1796 -6.44 448.15 412 0.2390 0.2126 -11.06 473.15 193 0.1630 0.1544 -5.27 473.15 411 0.2100 0.1854 -11.69 AAE= 4.39 %

100

n-nonane Assael et al (1991) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 303.15 1.0 0.6170 0.6413 3.94 303.15 52.9 0.6505 0.6786 4.31 303.15 102.3 0.6843 0.7140 4.35 303.15 149 0.7184 0.7476 4.06 303.15 199.6 0.7555 0.7839 3.76 303.15 253.3 0.7961 0.8225 3.31 303.15 305 0.8353 0.8596 2.91 303.15 357.7 0.8765 0.8975 2.39 303.15 406.3 0.9160 0.9324 1.79 303.15 452.9 0.9566 0.9658 0.97 303.15 497.5 0.9973 0.9979 0.06 303.15 551.2 1.0453 1.0365 -0.85 303.15 588.7 1.0768 1.0634 -1.25 303.15 646.5 1.1287 1.1049 -2.11 323.15 1.0 0.4869 0.4973 2.14 323.15 54.7 0.5151 0.5273 2.36 323.15 104.4 0.5421 0.5549 2.37 323.15 156 0.5719 0.5837 2.06 323.15 204.7 0.6018 0.6108 1.50 323.15 256.4 0.6302 0.6396 1.49 323.15 280.7 0.6460 0.6531 1.11 323.15 458.5 0.7562 0.7522 -0.53 323.15 509.7 0.7885 0.7807 -0.99 323.15 554.3 0.8176 0.8055 -1.47 323.15 609.0 0.8541 0.8360 -2.12 323.15 657.1 0.8861 0.8628 -2.63 323.15 690.0 0.9085 0.8811 -3.01 AAE= 2.22 %

101

n-decane Naake et al (2002) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity(mPa-s) Viscosity(mPa-s) 289 100 1.1095 1.1228 1.20 290.8 200 1.1195 1.2012 7.30 293.3 200 1.1553 1.1552 0.01 291.6 300 1.3170 1.2949 1.68 293 300 1.2889 1.2669 1.71 293.1 400 1.4191 1.3711 3.38 319.5 1 0.6432 0.6509 1.19 319.4 100 0.7241 0.7240 0.02 319.4 200 0.8031 0.7970 0.76 319.2 300 0.8832 0.8722 1.24 319.3 400 0.9741 0.9442 3.07 319.4 500 1.0640 1.0159 4.52 319.1 600 1.1554 1.0932 5.38 348.4 1 0.4746 0.4605 2.97 348.5 100 0.5335 0.5110 4.21 348.3 200 0.5945 0.5638 5.17 348.4 300 0.6541 0.6147 6.02 348.4 400 0.7173 0.6663 7.11 348.3 600 0.8475 0.7703 9.11 370.2 1 0.3850 0.3677 4.51 369.9 100 0.4358 0.4096 6.01 370.3 200 0.4833 0.4492 7.06 370.1 300 0.5344 0.4912 8.07 370.3 400 0.5839 0.5314 8.99 370.2 600 0.6893 0.6143 10.88 419.2 1 0.2572 0.2414 6.15 418.8 100 0.2970 0.2690 9.44 419.1 200 0.3354 0.2954 11.92 418 300 0.3758 0.3252 13.47 419.2 400 0.4069 0.3493 14.17 419.2 600 0.4791 0.4033 15.82 470.1 100 0.2033 0.1901 6.51 470.1 200 0.2328 0.2092 10.12 470 300 0.2643 0.2285 13.53 470.2 400 0.2932 0.2474 15.62 470.2 600 0.3483 0.2857 17.97 520.5 300 0.2079 0.1736 16.51 519.8 400 0.2335 0.1888 19.15 519.8 600 0.2755 0.2180 20.87

102

Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity(mPa-s) Viscosity(mPa-s) 573.7 600 0.2228 0.1714 23.09 AAE= 7.99 %

n-undecane Assael et al (1991) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 303.15 1 0.9905 1.0218 3.16 303.15 53.2 1.0485 1.0815 3.15 303.15 106.4 1.1126 1.1424 2.68 303.15 156 1.1756 1.1991 2.00 303.15 205.7 1.2399 1.2560 1.30 303.15 256.4 1.3061 1.3140 0.61 303.15 309 1.3772 1.3742 -0.22 303.15 358.7 1.4508 1.4311 -1.36 303.15 408.3 1.5236 1.4879 -2.35 303.15 459 1.6007 1.5459 -3.43 303.15 509.7 1.679 1.6039 -4.47 303.15 559.3 1.7569 1.6607 -5.48 303.15 609 1.8428 1.7175 -6.80 323.15 1 0.7472 0.7655 2.45 323.15 55.7 0.7931 0.8124 2.44 323.15 105.4 0.8383 0.8550 2.00 323.15 156 0.8847 0.8984 1.55 323.15 205.7 0.9336 0.9410 0.80 323.15 256.4 0.983 0.9845 0.15 323.15 307 1.0328 1.0279 -0.48 323.15 358.7 1.0858 1.0722 -1.25 323.15 408.8 1.1381 1.1152 -2.01 323.15 459 1.1909 1.1582 -2.74 323.15 509.7 1.2487 1.2017 -3.77 323.15 559.3 1.3028 1.2442 -4.50 323.15 624.2 1.3784 1.2999 -5.70 AAE= 2.57 %

103

Results of synthetic mixtures and pure compounds used in high pressure correlation for liquids having carbon number ≥12:

Synthetic heavy distillates- Ternary mixtures Boned et al (2003) ECN = 13.92, calculated at 333.15 K/ 1 Bar Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity Viscosity (mPa-s) (mPa-s) 293.15 1 2.1200 2.1928 3.43 293.15 200 2.6500 2.8910 9.09 293.15 400 3.3100 3.5927 8.54 293.15 600 4.0300 4.2944 6.56 303.15 1 1.8200 1.8275 0.41 303.15 200 2.3300 2.4094 3.41 303.15 400 2.8300 2.9942 5.80 303.15 600 3.4100 3.5790 4.96 313.15 1 1.5600 1.5409 -1.22 313.15 200 1.9500 2.0315 4.18 313.15 400 2.3600 2.5246 6.98 313.15 600 2.8400 3.0177 6.26 323.15 1 1.3400 1.3130 -2.01 323.15 200 1.6800 1.7311 3.04 323.15 400 2.0400 2.1513 5.46 323.15 600 2.4400 2.5715 5.39 333.15 1 1.1300 1.1297 333.15 200 1.4400 1.4894 3.43 333.15 400 1.7300 1.8509 6.99 333.15 600 2.0600 2.2124 7.40 343.15 1 0.9830 0.9805 -0.26 343.15 200 1.2700 1.2927 1.78 343.15 400 1.5100 1.6064 6.38 343.15 600 1.8000 1.9202 6.68 353.15 1 0.8730 0.8578 -1.74 353.15 200 1.1100 1.1310 1.89 353.15 400 1.3200 1.4055 6.48 353.15 600 1.5700 1.6800 7.00 AAE= 4.69 % [Italicized viscosity was used in calculating ECN]

104

Synthetic heavy distillates- Quinary mixtures Boned et al (2003) ECN = 14.14, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 293.15 1 2.36 2.2836 -3.24 293.15 200 3.02 3.0107 -0.31 293.15 400 3.73 3.7415 0.31 293.15 600 4.63 4.4722 -3.41 303.15 1 1.91 1.9003 -0.51 303.15 200 2.51 2.5054 -0.18 303.15 400 3.1 3.1135 0.43 303.15 600 3.8 3.7216 -2.06 313.15 1 1.58 1.6 1.27 313.15 200 2.1 2.1095 0.45 313.15 400 2.59 2.6215 1.22 313.15 600 3.16 3.1335 -0.84 323.15 1 1.36 1.3616 0.12 323.15 200 1.79 1.7951 0.29 323.15 400 2.18 2.2309 2.33 323.15 600 2.63 2.6666 1.39 333.15 1 1.17 1.17 333.15 200 1.52 1.5425 1.48 333.15 400 1.85 1.9169 3.62 333.15 600 2.23 2.2913 2.75 343.15 1 1.02 1.0143 -0.56 343.15 200 1.33 1.3372 0.54 343.15 400 1.59 1.6618 4.51 343.15 600 1.9 1.9863 4.54 353.15 1 0.885 0.8864 0.16 353.15 200 1.15 1.1687 1.62 353.15 400 1.4 1.4523 3.74 353.15 600 1.67 1.736 3.95 AAE= 1.70 %

105

n-dodecane Caudwell et al (2004) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 298.15 1 1.3440 1.3720 2.08 298.15 416.2 2.1390 2.2834 6.75 323.15 1 0.9110 0.9320 2.31 323.15 422.1 1.4220 1.5600 9.71 348.15 1 0.6590 0.6693 1.57 348.15 414.5 1.0060 1.1122 10.55 373.15 1 0.5030 0.5025 -0.10 373.15 413 0.7770 0.8337 7.30 398.15 1 0.4010 0.3911 -2.48 398.15 408.2 0.6230 0.6458 3.66 423.15 1 0.3240 0.3135 -3.25 423.15 407.4 0.5120 0.5173 1.04 448.15 1 0.2640 0.2576 -2.43 448.15 407.2 0.4290 0.4250 -0.94 473.15 1 0.2180 0.2161 -0.88 473.15 404.4 0.3670 0.3555 -3.12 AAE= 3.64 %

106

n-tetradecane Galvan et al (2007) Temperature Pressure Experimental Calculated Viscosity Error, (K) (Bar) Viscosity (mPa-s) (mPa-s) % 313.2 6.9 1.6530 1.5610 -5.57 313.2 Bar50 1.7380 1.6686 -3.99 313.2 100 1.8310 1.7935 -2.05 313.2 200 2.0250 2.0433 0.90 313.2 300 2.2410 2.2930 2.32 313.2 400 2.4830 2.5428 2.41 313.2 500 2.7670 2.7925 0.92 313.2 600 3.0930 3.0423 -1.64 333.2 6.9 1.2180 1.1434 -6.12 333.2 50 1.2830 1.2223 -4.73 333.2 100 1.3450 1.3137 -2.32 333.2 200 1.4730 1.4967 1.61 333.2 300 1.6070 1.6796 4.52 333.2 400 1.7400 1.8626 7.04 333.2 500 1.8860 2.0455 8.46 333.2 600 2.0430 2.2285 9.08 353.2 6.9 0.8960 0.8676 -3.17 353.2 50 0.9570 0.9274 -3.09 353.2 100 1.0170 0.9968 -1.98 353.2 200 1.1280 1.1357 0.68 353.2 300 1.2290 1.2745 3.70 353.2 400 1.3250 1.4133 6.66 353.2 500 1.4230 1.5521 9.07 353.2 600 1.5180 1.6909 11.39 373.2 6.9 0.6600 0.6785 2.80 373.2 50 0.7080 0.7253 2.44 373.2 100 0.7570 0.7796 2.98 373.2 200 0.8520 0.8881 4.24 373.2 300 0.9430 0.9967 5.69 373.2 400 1.0310 1.1052 7.20 373.2 500 1.1170 1.2138 8.67 373.2 600 1.2020 1.3223 10.01 393.2 6.9 0.5270 0.5437 3.17 393.2 100 0.6090 0.6247 2.58 393.2 200 0.6870 0.7117 3.60 393.2 300 0.7670 0.7987 4.13 393.2 400 0.8390 0.8857 5.57 393.2 500 0.9080 0.9727 7.12 393.2 600 0.9760 1.0597 8.57 AAE= 4.61%

107

n-pentadecane Hogenboom et al (1967) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 310.93 1.01 1.9530 1.9145 -1.97 333.15 1.01 1.3350 1.3344 -0.04 352.59 1.01 1.0100 1.0101 0.01 372.04 1.01 0.7960 0.7870 -1.13 388.15 1.01 0.6700 0.6523 -2.64 408.15 1.01 0.5400 0.5275 -2.32 310.93 400.00 3.2000 3.1367 -1.98 333.15 400.00 2.1000 2.1863 4.11 352.59 400.00 1.5600 1.6549 6.08 372.04 400.00 1.2400 1.2895 3.99 388.15 400.00 1.0600 1.0688 0.83 408.15 400.00 0.8700 0.8642 -0.66 AAE= 2.15 %

n-hexadecane Dymond et al (1980) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 298.08 1 3.0780 2.8380 -7.80 298.08 7 3.1090 2.8652 -7.84 298.08 45 3.2760 3.0378 -7.27 298.08 151 3.7580 3.5191 -6.36 298.08 279 4.3950 4.1003 -6.70 323.09 1 1.8450 1.8084 -1.99 323.09 8 1.8720 1.8286 -2.32 323.09 43 1.9560 1.9299 -1.33 323.09 273 2.5810 2.5954 0.56 323.09 524 3.3870 3.3216 -1.93 348.11 1 1.2420 1.2292 -1.03 348.11 9 1.2530 1.2450 -0.64 348.11 41 1.3100 1.3079 -0.16 348.11 506 2.1660 2.2224 2.60 373.24 1 0.8950 0.8787 -1.82 373.24 511 1.5510 1.5958 2.89 AAE= 3.33 %

108

n-octadecane Caudwell et al (2004) Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 323.15 1 2.4600 2.3327 -5.17 323.15 207.8 3.1960 3.1046 -2.86 323.15 403.0 3.9990 3.8331 -4.15 323.15 622.3 5.0330 4.6517 -7.58 348.15 1 1.5950 1.5556 -2.47 348.15 216.0 2.0650 2.0908 1.25 348.15 420.9 2.5660 2.6008 1.35 348.15 610.9 3.0920 3.0737 -0.59 373.15 1 1.1230 1.0953 -2.47 373.15 226.9 1.4670 1.4912 1.65 373.15 433.0 1.8130 1.8523 2.17 373.15 628.1 2.1670 2.1942 1.26 398.15 1 0.8340 0.8059 -3.37 398.15 225.1 1.0880 1.0949 0.63 398.15 424.0 1.3320 1.3513 1.45 398.15 614.9 1.5840 1.5975 0.85 423.15 1 0.6460 0.6149 -4.82 423.15 216.3 0.8410 0.8267 -1.70 423.15 423.2 1.0350 1.0302 -0.46 423.15 625.5 1.2410 1.2292 -0.95 448.15 1 0.5160 0.4835 -6.30 448.15 213.6 0.6760 0.6480 -4.15 448.15 413.4 0.8290 0.8025 -3.19 448.15 604.0 0.9800 0.9500 -3.06 473.15 1 0.4200 0.3900 -7.15 473.15 211.5 0.5580 0.5213 -6.58 473.15 413.1 0.6890 0.6471 -6.08 473.15 607.1 0.8160 0.7681 -5.86 AAE= 3.20 %

109

Results for pure hydrocarbons:

Alicyclics- Cyclopentane Rossini et al (1953) ECN=6.85, calculated at 248.15 K Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 248.15 0.780 0.78 253.15 0.720 0.719 -0.19 258.15 0.670 0.664 -0.93 263.15 0.631 0.615 -2.54 268.15 0.591 0.571 -3.31 273.15 0.555 0.532 -4.08 278.15 0.522 0.497 -4.75 283.15 0.492 0.466 -5.38 288.15 0.464 0.437 -5.85 293.15 0.439 0.411 -6.42 298.15 0.416 0.387 -6.93 303.15 0.394 0.366 -7.22 308.15 0.374 0.346 -7.53 313.15 0.356 0.328 -7.94 318.15 0.339 0.311 -8.23 AAE= 5.09 %

110

Methylcyclopentane Rossini et al (1953) ECN=7.36, calculated at 248.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 248.15 0.930 0.9315 253.15 0.860 0.854 -0.68 258.15 0.800 0.786 -1.77 263.15 0.745 0.725 -2.64 268.15 0.695 0.671 -3.39 273.15 0.650 0.623 -4.10 278.15 0.609 0.580 -4.73 283.15 0.572 0.541 -5.34 288.15 0.538 0.507 -5.86 293.15 0.507 0.475 -6.34 298.15 0.478 0.446 -6.65 303.15 0.452 0.420 -7.06 308.15 0.427 0.396 -7.19 313.15 0.405 0.375 -7.51 318.15 0.384 0.355 -7.64 323.15 0.365 0.336 -7.85 328.15 0.347 0.320 -7.92 333.15 0.330 0.304 -7.88 338.15 0.315 0.290 -8.05 343.15 0.300 0.276 -7.88 AAE= 5.82 %

111

Ethylcyclopentane Rossini et al (1953) ECN=8.19, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 0.960 1.120 16.71 258.15 0.890 1.024 15.11 263.15 0.829 0.940 13.38 268.15 0.774 0.865 11.78 273.15 0.724 0.799 10.33 278.15 0.679 0.740 8.92 283.15 0.639 0.687 7.45 288.15 0.601 0.639 6.34 293.15 0.567 0.596 5.18 298.15 0.536 0.558 4.06 303.15 0.507 0.523 3.11 308.15 0.480 0.491 2.30 313.15 0.456 0.462 1.35 318.15 0.433 0.436 0.65 323.15 0.412 0.412 328.15 0.393 0.390 -0.86 333.15 0.376 0.369 -1.78 338.15 0.359 0.351 -2.33 343.15 0.343 0.333 -2.80 348.15 0.329 0.317 -3.51 353.15 0.320 0.303 -5.40 358.15 0.300 0.289 -3.66 363.15 0.290 0.276 -4.72 368.15 0.280 0.264 -5.54 373.15 0.270 0.253 -6.13 Overall AAE= 5.98 %

112

n-Propylcyclopentane Rossini et al (1953) ECN=8.92, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 1.240 1.408 13.57 258.15 1.140 1.281 12.37 263.15 1.049 1.170 11.49 268.15 0.960 1.071 11.59 273.15 0.898 0.985 9.63 278.15 0.835 0.907 8.68 283.15 0.779 0.839 7.69 288.15 0.727 0.778 6.96 293.15 0.682 0.723 5.97 298.15 0.641 0.673 5.04 303.15 0.604 0.629 4.09 308.15 0.571 0.588 3.05 313.15 0.540 0.552 2.20 318.15 0.513 0.519 1.10 323.15 0.488 0.488 328.15 0.465 0.461 -0.94 333.15 0.444 0.435 -1.96 338.15 0.424 0.412 -2.83 343.15 0.407 0.391 -4.02 348.15 0.390 0.371 -4.90 353.15 0.380 0.353 -7.19 358.15 0.360 0.336 -6.71 363.15 0.350 0.320 -8.50 368.15 0.340 0.306 -10.07 373.15 0.330 0.292 -11.43 378.15 0.310 0.280 -9.76 383.15 0.300 0.268 -10.65 Overall AAE= 7.02 %

113

n-Butylcyclopentane Rossini et al (1953) ECN= 9.90, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 1.710 1.887 10.32 258.15 1.560 1.705 9.28 263.15 1.430 1.547 8.15 268.15 1.310 1.408 7.48 273.15 1.207 1.286 6.57 278.15 1.111 1.179 6.12 283.15 1.030 1.084 5.24 288.15 0.956 0.999 4.55 293.15 0.890 0.924 3.84 298.15 0.830 0.857 3.22 303.15 0.777 0.796 2.47 308.15 0.728 0.742 1.89 313.15 0.684 0.693 1.25 318.15 0.644 0.648 0.63 323.15 0.608 0.608 328.15 0.575 0.571 -0.72 333.15 0.546 0.537 -1.59 338.15 0.518 0.507 -2.19 343.15 0.494 0.479 -3.13 348.15 0.471 0.453 -3.87 353.15 0.450 0.429 -4.66 358.15 0.430 0.407 -5.31 363.15 0.410 0.387 -5.62 368.15 0.400 0.368 -7.94 373.15 0.380 0.351 -7.65 378.15 0.370 0.335 -9.50 383.15 0.350 0.320 -8.60 Overall AAE= 5.07 %

114

n-Pentylcyclopentane Rossini et al (1953) ECN= 10.92, calculated at 323.15 K Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 253.15 2.320 2.512 8.29 258.15 2.120 2.256 6.40 263.15 1.940 2.034 4.83 268.15 1.780 1.841 3.40 273.15 1.630 1.672 2.57 278.15 1.494 1.524 2.01 283.15 1.373 1.394 1.51 288.15 1.257 1.279 1.71 293.15 1.155 1.176 1.84 298.15 1.065 1.085 1.90 303.15 0.984 1.004 2.03 308.15 0.915 0.931 1.76 313.15 0.856 0.866 1.12 318.15 0.802 0.807 0.57 323.15 0.753 0.753 328.15 0.708 0.705 -0.45 333.15 0.667 0.661 -0.92 338.15 0.631 0.621 -1.61 343.15 0.598 0.584 -2.30 348.15 0.569 0.551 -3.19 353.15 0.540 0.520 -3.67 358.15 0.520 0.492 -5.38 363.15 0.500 0.466 -6.78 368.15 0.470 0.442 -5.91 373.15 0.450 0.420 -6.64 378.15 0.440 0.400 -9.17 383.15 0.420 0.381 -9.35 Overall AAE= 3.67 %

115

n-Hexylcyclopentane Rossini et al (1953) ECN=12.03, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 3.120 3.361 7.72 258.15 2.840 2.998 5.57 263.15 2.790 2.686 -3.71 268.15 2.360 2.417 2.41 273.15 2.150 2.183 1.52 278.15 1.962 1.979 0.85 283.15 1.793 1.800 0.38 288.15 1.632 1.642 0.64 293.15 1.493 1.504 0.71 298.15 1.367 1.381 1.00 303.15 1.256 1.271 1.21 308.15 1.161 1.174 1.09 313.15 1.081 1.086 0.49 318.15 1.005 1.008 0.29 323.15 0.938 0.937 328.15 0.876 0.874 -0.26 333.15 0.822 0.816 -0.72 338.15 0.772 0.764 -1.07 343.15 0.729 0.716 -1.76 348.15 0.690 0.673 -2.49 353.15 0.650 0.633 -2.58 358.15 0.620 0.597 -3.72 363.15 0.590 0.564 -4.46 368.15 0.560 0.533 -4.81 373.15 0.540 0.505 -6.50 378.15 0.510 0.479 -6.10 383.15 0.490 0.455 -7.17 Overall AAE= 2.66 %

116

n-Heptylcyclopentane Rossini et al (1953) ECN=13.15, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 4.110 4.410 7.31 258.15 3.730 3.911 4.85 263.15 3.380 3.484 3.08 268.15 3.070 3.117 1.54 273.15 2.780 2.801 0.74 278.15 2.530 2.526 -0.17 283.15 2.300 2.286 -0.61 288.15 2.080 2.076 -0.18 293.15 1.890 1.892 0.11 298.15 1.727 1.730 0.15 303.15 1.577 1.586 0.55 308.15 1.449 1.458 0.61 313.15 1.342 1.344 0.15 318.15 1.241 1.242 0.09 323.15 1.151 1.151 328.15 1.069 1.069 -0.03 333.15 0.997 0.995 -0.24 338.15 0.932 0.928 -0.46 343.15 0.876 0.867 -1.03 348.15 0.825 0.812 -1.59 353.15 0.780 0.762 -2.35 358.15 0.740 0.716 -3.27 363.15 0.700 0.674 -3.73 368.15 0.660 0.635 -3.72 373.15 0.630 0.600 -4.74 378.15 0.600 0.568 -5.39 383.15 0.570 0.538 -5.66 Overall AAE= 2.01 %

117

n-Octylcyclopentane Rossini et al (1953) ECN=14.28, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 5.340 5.674 6.25 258.15 4.820 5.004 3.82 263.15 4.350 4.435 1.95 268.15 3.930 3.948 0.46 273.15 3.550 3.529 -0.58 278.15 3.210 3.168 -1.30 283.15 2.900 2.855 -1.56 288.15 2.620 2.581 -1.47 293.15 2.370 2.342 -1.16 298.15 2.150 2.133 -0.81 303.15 1.950 1.947 -0.13 308.15 1.782 1.784 0.10 313.15 1.642 1.638 -0.23 318.15 1.510 1.509 -0.08 323.15 1.393 1.393 0.00 328.15 1.287 1.289 0.18 333.15 1.193 1.196 0.25 338.15 1.111 1.112 0.09 343.15 1.040 1.036 -0.38 348.15 0.974 0.967 -0.69 353.15 0.920 0.905 -1.65 358.15 0.860 0.848 -1.39 363.15 0.820 0.796 -2.91 368.15 0.770 0.749 -2.76 373.15 0.730 0.705 -3.38 378.15 0.690 0.665 -3.55 383.15 0.660 0.629 -4.72 Overall AAE= 1.61 %

118

n-Nonylcyclopentane Rossini et al (1953) ECN= 15.43, calculated at 323.15 K Temperature (K) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 253.15 6.830 7.165 4.91 258.15 6.150 6.289 2.25 263.15 5.530 5.546 0.30 268.15 4.970 4.915 -1.11 273.15 4.460 4.375 -1.92 278.15 4.010 3.910 -2.49 283.15 3.610 3.509 -2.81 288.15 3.240 3.160 -2.46 293.15 2.920 2.857 -2.17 298.15 2.630 2.591 -1.48 303.15 2.380 2.358 -0.94 308.15 2.170 2.152 -0.83 313.15 1.980 1.970 -0.51 318.15 1.810 1.808 -0.10 323.15 1.665 1.664 -0.04 328.15 1.530 1.536 0.37 333.15 1.413 1.420 0.52 338.15 1.310 1.317 0.52 343.15 1.220 1.223 0.28 348.15 1.139 1.139 0.01 353.15 1.070 1.063 -0.67 358.15 1.000 0.993 -0.65 363.15 0.940 0.930 -1.02 368.15 0.890 0.873 -1.92 373.15 0.840 0.820 -2.34 378.15 0.790 0.772 -2.25 383.15 0.750 0.728 -2.93 Overall AAE= 1.45 %

119

n-Decylcyclopentane Rossini et al (1953) ECN= 16.64, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 8.630 8.934 3.52 258.15 7.730 7.805 0.97 263.15 6.920 6.854 -0.96 268.15 6.190 6.047 -2.30 273.15 5.540 5.361 -3.24 278.15 4.960 4.772 -3.78 283.15 4.450 4.266 -4.13 288.15 3.970 3.829 -3.56 293.15 3.560 3.449 -3.13 298.15 3.200 3.117 -2.59 303.15 2.870 2.827 -1.50 308.15 2.570 2.572 0.08 313.15 2.370 2.347 -0.96 318.15 2.160 2.148 -0.55 323.15 1.970 1.971 328.15 1.800 1.814 0.77 333.15 1.656 1.673 1.03 338.15 1.529 1.547 1.17 343.15 1.418 1.434 1.10 348.15 1.319 1.331 0.94 353.15 1.230 1.239 0.74 358.15 1.150 1.156 0.49 363.15 1.080 1.080 -0.02 368.15 1.020 1.011 -0.91 373.15 0.960 0.948 -1.27 378.15 0.900 0.890 -1.08 383.15 0.850 0.838 -1.45 Overall AAE= 1.62 %

120

n-Undecylcyclopentane Rossini et al (1953) ECN= 17.92, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 263.15 8.560 8.349 -2.47 268.15 7.630 7.338 -3.82 273.15 6.80 6.481 -4.69 278.15 6.060 5.749 -5.13 283.15 5.410 5.122 -5.33 288.15 4.810 4.581 -4.76 293.15 4.290 4.113 -4.12 298.15 3.840 3.706 -3.48 303.15 3.430 3.351 -2.29 308.15 3.090 3.040 -1.61 313.15 2.810 2.767 -1.54 318.15 2.540 2.525 -0.58 323.15 2.310 2.311 0.05 328.15 2.100 2.121 1.01 333.15 1.920 1.952 1.65 338.15 1.770 1.800 1.71 343.15 1.635 1.664 1.80 348.15 1.516 1.542 1.74 353.15 1.410 1.432 1.58 358.15 1.320 1.333 0.97 363.15 1.230 1.243 1.04 368.15 1.150 1.161 0.96 373.15 1.080 1.087 0.61 378.15 1.010 1.019 0.86 383.15 0.950 0.957 0.70 Overall AAE= 2.27 %

121

n-Dodecylcyclopentane Rossini et al (1953) ECN= 19.33, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 268.15 9.310 8.806 -5.41 273.15 8.260 7.751 -6.16 278.15 7.340 6.854 -6.62 283.15 6.520 6.088 -6.63 288.15 5.770 5.429 -5.91 293.15 5.120 4.860 -5.07 298.15 4.560 4.367 -4.22 303.15 4.060 3.938 -2.99 308.15 3.640 3.564 -2.10 313.15 3.290 3.235 -1.68 318.15 2.960 2.945 -0.51 323.15 2.690 2.689 -0.03 328.15 2.440 2.462 0.92 333.15 2.220 2.261 1.83 338.15 2.030 2.081 2.50 343.15 1.870 1.920 2.66 348.15 1.730 1.775 2.62 353.15 1.600 1.645 2.83 358.15 1.490 1.528 2.56 363.15 1.390 1.422 2.32 368.15 1.300 1.326 2.02 373.15 1.220 1.239 1.56 378.15 1.140 1.160 1.72 383.15 1.070 1.087 1.60 Overall AAE= 3.15 %

122

n-Tridecylcyclopentane Rossini et al (1953) ECN= 20.94, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 278.15 8.800 8.069 -8.30 283.15 7.780 7.148 -8.13 288.15 6.860 6.358 -7.32 293.15 6.060 5.678 -6.30 298.15 5.380 5.090 -5.38 303.15 4.770 4.580 -3.98 308.15 4.260 4.135 -2.94 313.15 3.830 3.745 -2.22 318.15 3.440 3.403 -1.08 323.15 3.100 3.101 328.15 2.800 2.834 1.20 333.15 2.540 2.597 2.23 338.15 2.320 2.386 2.82 343.15 2.130 2.197 3.15 348.15 1.960 2.028 3.48 353.15 1.810 1.877 3.68 358.15 1.680 1.740 3.58 363.15 1.560 1.617 3.65 368.15 1.450 1.505 3.82 373.15 1.360 1.404 3.26 378.15 1.270 1.312 3.34 383.15 1.180 1.229 4.12 Overall AAE= 4.00 %

123

n-Tetradecylcyclopentane Rossini et al (1953) ECN= 23.00, calculated at 323.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 283.15 9.210 8.292 -9.97 288.15 8.090 7.361 -9.01 293.15 7.130 6.562 -7.96 298.15 6.290 5.872 -6.64 303.15 5.560 5.274 -5.14 308.15 4.940 4.754 -3.77 313.15 4.430 4.299 -2.96 318.15 3.960 3.900 -1.52 323.15 3.550 3.548 328.15 3.190 3.238 1.50 333.15 2.890 2.963 2.52 338.15 2.630 2.718 3.35 343.15 2.400 2.500 4.17 348.15 2.200 2.305 4.77 353.15 2.030 2.130 4.92 358.15 1.880 1.973 4.92 363.15 1.740 1.831 5.21 368.15 1.620 1.702 5.09 373.15 1.510 1.586 5.05 378.15 1.400 1.481 5.77 383.15 1.310 1.385 5.72 Overall AAE= 5.00 %

124

n-Pentadecylcyclopentane Rossini et al (1953) ECN= 24.21, calculated at 373.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 293.15 8.320 6.944 -16.54 298.15 7.310 6.211 -15.03 303.15 6.440 5.577 -13.40 308.15 5.700 5.024 -11.85 313.15 5.080 4.542 -10.59 318.15 4.520 4.119 -8.87 323.15 4.050 3.747 -7.49 328.15 3.620 3.418 -5.59 333.15 3.270 3.126 -4.39 338.15 2.960 2.867 -3.13 343.15 2.700 2.636 -2.36 348.15 2.470 2.430 -1.62 353.15 2.270 2.245 -1.11 358.15 2.100 2.078 -1.03 363.15 1.940 1.928 -0.60 368.15 1.800 1.793 -0.39 373.15 1.670 1.670 378.15 1.550 1.559 0.57 383.15 1.440 1.457 1.21 Overall AAE= 5.88 %

125

Cyclohexane Rossini et al (1953) ECN= 9.75, calculated at 343.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 283.15 1.180 1.043 -11.59 288.15 1.073 0.963 -10.28 293.15 0.980 0.891 -9.10 298.15 0.898 0.826 -7.97 303.15 0.826 0.769 -6.95 308.15 0.761 0.717 -5.85 313.15 0.704 0.669 -4.91 318.15 0.653 0.627 -4.01 323.15 0.606 0.588 -2.95 328.15 0.565 0.553 -2.15 333.15 0.528 0.521 -1.39 338.15 0.494 0.491 -0.56 343.15 0.464 0.464 348.15 0.436 0.439 0.79 353.15 0.411 0.417 1.37 Overall AAE= 4.99 %

126

n-Methylcyclohexane Rossini et al (1953) ECN=9.02, calculated at 353.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 248.15 1.550 1.604 3.46 253.15 1.410 1.452 2.98 258.15 1.280 1.320 3.12 263.15 1.175 1.204 2.49 268.15 1.078 1.102 2.26 273.15 0.993 1.012 1.96 278.15 0.917 0.933 1.71 283.15 0.850 0.862 1.38 288.15 0.788 0.798 1.31 293.15 0.734 0.742 1.02 298.15 0.685 0.690 0.80 303.15 0.641 0.644 0.54 308.15 0.600 0.603 0.47 313.15 0.564 0.565 0.20 318.15 0.531 0.531 -0.03 323.15 0.500 0.500 -0.08 328.15 0.472 0.471 -0.19 333.15 0.446 0.445 -0.23 338.15 0.422 0.421 -0.23 343.15 0.400 0.399 -0.25 348.15 0.380 0.379 -0.34 353.15 0.360 0.360 358.15 0.340 0.343 0.79 363.15 0.330 0.327 -1.02 368.15 0.310 0.312 0.57 373.15 0.300 0.298 -0.69 Overall AAE= 1.12 %

127

n-Ethylcyclohexane Rossini et al (1953) ECN=9.77, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 248.15 1.800 2.017 12.04 253.15 1.630 1.817 11.44 258.15 1.480 1.643 11.01 263.15 1.356 1.492 10.00 268.15 1.242 1.359 9.43 273.15 1.142 1.243 8.81 278.15 1.053 1.140 8.24 283.15 0.976 1.049 7.44 288.15 0.905 0.968 6.91 293.15 0.843 0.895 6.19 298.15 0.787 0.830 5.52 303.15 0.737 0.772 4.78 308.15 0.692 0.720 4.02 313.15 0.651 0.673 3.30 318.15 0.614 0.630 2.54 323.15 0.581 0.591 1.67 328.15 0.550 0.555 0.95 333.15 0.523 0.523 338.15 0.497 0.493 -0.75 343.15 0.475 0.466 -1.87 348.15 0.450 0.441 -1.95 353.15 0.430 0.418 -2.73 358.15 0.420 0.397 -5.45 363.15 0.400 0.378 -5.61 368.15 0.380 0.359 -5.40 373.15 0.370 0.343 -7.38 378.15 0.360 0.327 -9.13 383.15 0.340 0.313 -8.05 Overall AAE= 6.02 %

128

n-Propylcyclohexane Rossini et al (1953) ECN=10.44, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 248.15 2.350 2.454 4.42 253.15 2.100 2.200 4.78 258.15 1.880 1.982 5.40 263.15 1.705 1.792 5.08 268.15 1.546 1.626 5.17 273.15 1.408 1.481 5.18 278.15 1.287 1.353 5.15 283.15 1.182 1.241 4.96 288.15 1.088 1.141 4.85 293.15 1.006 1.052 4.57 298.15 0.934 0.973 4.15 303.15 0.870 0.902 3.65 308.15 0.812 0.838 3.21 313.15 0.760 0.781 2.72 318.15 0.714 0.729 2.08 323.15 0.672 0.682 1.47 328.15 0.634 0.639 0.83 333.15 0.601 0.600 338.15 0.569 0.565 -0.69 343.15 0.542 0.533 -1.72 348.15 0.520 0.503 -3.27 353.15 0.490 0.476 -2.90 358.15 0.470 0.451 -4.10 363.15 0.450 0.428 -4.98 368.15 0.440 0.406 -7.67 373.15 0.420 0.387 -7.97 378.15 0.400 0.368 -7.95 383.15 0.390 0.351 -9.95 Overall AAE= 4.40 %

129

n-Butylcyclohexane Rossini et al (1953) ECN=11.46, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 2.940 2.902 -1.29 258.15 2.620 2.597 -0.86 263.15 2.350 2.335 -0.66 268.15 2.110 2.107 -0.16 273.15 1.910 1.908 -0.10 278.15 1.729 1.734 0.32 283.15 1.574 1.582 0.51 288.15 1.435 1.447 0.87 293.15 1.314 1.328 1.10 298.15 1.208 1.223 1.22 303.15 1.114 1.128 1.30 308.15 1.029 1.044 1.48 313.15 0.955 0.969 1.43 318.15 0.889 0.901 1.32 323.15 0.830 0.839 1.13 328.15 0.779 0.784 0.63 333.15 0.734 0.734 -0.05 338.15 0.693 0.688 -0.73 343.15 0.658 0.646 -1.79 348.15 0.630 0.608 -3.46 353.15 0.600 0.573 -4.44 358.15 0.570 0.541 -5.01 363.15 0.550 0.512 -6.89 368.15 0.530 0.485 -8.48 373.15 0.510 0.460 -9.78 378.15 0.490 0.437 -10.80 383.15 0.470 0.416 -11.54 Overall AAE= 2.97 %

130

n-Pentylcyclohexane Rossini et al (1953) ECN=12.56, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 263.15 3.330 3.046 -8.53 268.15 2.960 2.733 -7.66 273.15 2.640 2.462 -6.74 278.15 2.360 2.226 -5.67 283.15 2.120 2.020 -4.71 288.15 1.910 1.839 -3.70 293.15 1.723 1.680 -2.49 298.15 1.560 1.539 -1.32 303.15 1.418 1.414 -0.25 308.15 1.295 1.303 0.63 313.15 1.191 1.204 1.08 318.15 1.103 1.115 1.08 323.15 1.026 1.035 0.87 328.15 0.958 0.963 0.52 333.15 0.898 0.898 338.15 0.843 0.839 -0.48 343.15 0.790 0.785 -0.58 348.15 0.750 0.737 -1.78 353.15 0.710 0.692 -2.50 358.15 0.670 0.652 -2.74 363.15 0.630 0.614 -2.48 368.15 0.600 0.580 -3.30 373.15 0.570 0.549 -3.72 378.15 0.540 0.520 -3.73 383.15 0.510 0.493 -3.31 Overall AAE= 2.91 %

131

n-Hexylcyclohexane Rossini et al (1953) ECN= 13.74, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 263.15 4.490 3.962 -11.75 268.15 3.960 3.536 -10.72 273.15 3.520 3.168 -10.00 278.15 3.120 2.850 -8.66 283.15 2.770 2.573 -7.10 288.15 2.480 2.332 -5.97 293.15 2.220 2.120 -4.50 298.15 2.000 1.934 -3.31 303.15 1.800 1.769 -1.71 308.15 1.630 1.623 -0.41 313.15 1.492 1.493 0.10 318.15 1.371 1.378 0.49 323.15 1.268 1.274 0.48 328.15 1.177 1.181 0.34 333.15 1.097 1.097 338.15 1.023 1.022 -0.13 343.15 0.960 0.953 -0.70 348.15 0.900 0.891 -0.98 353.15 0.840 0.835 -0.62 358.15 0.790 0.783 -0.84 363.15 0.750 0.736 -1.81 368.15 0.700 0.693 -0.94 373.15 0.660 0.654 -0.91 378.15 0.630 0.618 -1.94 383.15 0.590 0.584 -0.94 Overall AAE= 3.14 %

132

n-Heptylcyclohexane Rossini et al (1953) ECN= 14.93, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 263.15 5.940 5.046 -15.05 268.15 5.200 4.480 -13.84 273.15 4.580 3.995 -12.77 278.15 4.030 3.577 -11.24 283.15 3.560 3.216 -9.68 288.15 3.160 2.901 -8.19 293.15 2.810 2.627 -6.52 298.15 2.510 2.386 -4.93 303.15 2.250 2.175 -3.35 308.15 2.020 1.988 -1.60 313.15 1.830 1.822 -0.43 318.15 1.679 1.675 -0.25 323.15 1.544 1.544 -0.03 328.15 1.425 1.426 0.07 333.15 1.320 1.321 338.15 1.226 1.226 -0.01 343.15 1.140 1.140 0.02 348.15 1.060 1.063 0.27 353.15 0.990 0.993 0.28 358.15 0.930 0.929 -0.11 363.15 0.870 0.871 0.11 368.15 0.820 0.818 -0.25 373.15 0.770 0.769 -0.07 378.15 0.720 0.725 0.70 383.15 0.680 0.684 0.62 Overall AAE= 3.77 %

133

n-Octylcyclohexane Rossini et al (1953) ECN= 16.16, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 263.15 7.720 6.320 -18.13 268.15 6.720 5.586 -16.88 273.15 5.880 4.959 -15.66 278.15 5.120 4.422 -13.64 283.15 4.510 3.958 -12.23 288.15 3.980 3.557 -10.62 293.15 3.510 3.208 -8.59 298.15 3.110 2.904 -6.63 303.15 2.770 2.637 -4.80 308.15 2.470 2.402 -2.75 313.15 2.240 2.195 -2.03 318.15 2.030 2.011 -0.95 323.15 1.860 1.847 -0.68 328.15 1.702 1.702 -0.03 333.15 1.571 1.571 338.15 1.450 1.454 0.29 343.15 1.340 1.349 0.67 348.15 1.250 1.254 0.32 353.15 1.160 1.168 0.71 358.15 1.080 1.090 0.96 363.15 1.000 1.020 1.97 368.15 0.940 0.955 1.63 373.15 0.880 0.897 1.89 378.15 0.820 0.843 2.79 383.15 0.770 0.794 3.08 Overall AAE= 5.33 %

134

n-Nonylcyclohexane Rossini et al (1953) ECN= 17.46, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 263.15 9.890 7.801 -21.12 268.15 8.550 6.866 -19.69 273.15 7.420 6.072 -18.17 278.15 6.450 5.393 -16.39 283.15 5.620 4.810 -14.42 288.15 4.920 4.307 12.46 293.15 4.320 3.871 10.39 298.15 3.800 3.492 8.10 303.15 3.370 3.161 6.21 308.15 2.990 2.870 4.01 313.15 2.680 2.614 2.45 318.15 2.430 2.388 1.71 323.15 2.200 2.188 0.55 328.15 2.010 2.010 0.01 333.15 1.850 1.851 338.15 1.700 1.709 0.50 343.15 1.570 1.581 0.69 348.15 1.440 1.466 1.81 353.15 1.340 1.362 1.68 358.15 1.240 1.269 2.32 363.15 1.150 1.184 2.95 368.15 1.070 1.107 3.43 373.15 1.000 1.036 3.65 378.15 0.930 0.972 4.56 383.15 0.870 0.914 5.03 Overall AAE= 6.76 %

135

n-Decylcyclohexane Rossini et al (1953) ECN= 18.87, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 9.260 7.337 -20.77 278.15 8.000 6.494 -18.82 283.15 6.930 5.773 -16.70 288.15 6.030 5.153 -14.55 293.15 5.260 4.617 -12.22 298.15 4.600 4.153 -9.73 303.15 4.050 3.748 -7.47 308.15 3.570 3.394 -4.94 313.15 3.190 3.083 -3.36 318.15 2.870 2.809 -2.13 323.15 2.590 2.567 -0.91 328.15 2.360 2.352 -0.35 333.15 2.160 2.160 338.15 1.970 1.990 1.00 343.15 1.810 1.837 1.49 348.15 1.660 1.700 2.40 353.15 1.530 1.576 3.03 358.15 1.420 1.465 3.16 363.15 1.310 1.364 4.13 368.15 1.210 1.273 5.19 373.15 1.120 1.190 6.22 378.15 1.040 1.114 7.12 383.15 0.970 1.045 7.73 Overall AAE= 6.97 %

136

n-Undecylcyclohexane Rossini et al (1953) ECN= 20.41, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 283.15 8.440 6.809 -19.32 288.15 7.310 6.061 -17.08 293.15 6.340 5.417 -14.56 298.15 5.500 4.860 -11.64 303.15 4.810 4.375 -9.04 308.15 4.230 3.952 -6.56 313.15 3.760 3.582 -4.73 318.15 3.360 3.257 -3.08 323.15 3.030 2.969 -2.00 328.15 2.740 2.715 -0.91 333.15 2.490 2.489 338.15 2.270 2.288 0.80 343.15 2.080 2.108 1.37 348.15 1.900 1.947 2.50 353.15 1.740 1.803 3.61 358.15 1.600 1.672 4.53 363.15 1.470 1.555 5.76 368.15 1.360 1.448 6.48 373.15 1.260 1.351 7.26 378.15 1.160 1.264 8.93 383.15 1.080 1.183 9.58 Overall AAE= 6.99 %

137

Results for Olefins

1-hexene Isdale (1980) ECN= 5.647, calculated at 343.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 0.3364 0.3610 7.30 283.15 0.3047 0.3209 5.32 293.15 0.2774 0.2876 3.68 303.15 0.2537 0.2596 2.34 313.15 0.2328 0.2359 1.34 323.15 0.2143 0.2156 0.63 333.15 0.1978 0.1982 0.19 343.15 0.1830 0.1830 353.15 0.1696 0.1698 0.11 363.15 0.1573 0.1582 0.55 373.15 0.1461 0.1479 1.23 383.15 0.1357 0.1388 2.27 393.15 0.1261 0.1306 3.61 403.15 0.1170 0.1234 5.44 413.15 0.1085 0.1168 7.66 423.15 0.1005 0.1109 10.33 Overall AAE= 3.47 %

138

1-heptene Isdale (1980) ECN= 6.60, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 0.4475 0.4920 9.94 283.15 0.4013 0.4317 7.57 293.15 0.3622 0.3821 5.51 303.15 0.3287 0.3410 3.75 313.15 0.2999 0.3066 2.22 323.15 0.2747 0.2774 0.98 333.15 0.2525 0.2525 343.15 0.2329 0.2311 0.75 353.15 0.2153 0.2126 1.24 363.15 0.1995 0.1965 1.50 373.15 0.1852 0.1824 1.53 383.15 0.1722 0.1699 1.33 393.15 0.1602 0.1589 0.82 403.15 0.1492 0.1491 0.09 413.15 0.1390 0.1403 0.92 423.15 0.1295 0.1324 2.23 433.15 0.1206 0.1253 3.88 443.15 0.1121 0.1189 6.02 453.15 0.1041 0.1130 8.56 Overall AAE= 3.27 %

139

1-octene Isdale (1980) ECN= 7.55 calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 0.5982 0.6604 10.39 283.15 0.5291 0.5722 8.15 293.15 0.4719 0.5007 6.11 303.15 0.4239 0.4420 4.28 313.15 0.3833 0.3933 2.62 323.15 0.3484 0.3526 1.19 333.15 0.3182 0.3181 343.15 0.2918 0.2887 1.06 353.15 0.2685 0.2635 1.87 363.15 0.2479 0.2417 2.51 373.15 0.2294 0.2227 2.92 383.15 0.2128 0.2061 3.15 393.15 0.1978 0.1915 3.20 403.15 0.1841 0.1785 3.02 413.15 0.1716 0.1671 2.65 423.15 0.1600 0.1568 2.00 433.15 0.1493 0.1476 1.14 443.15 0.1393 0.1393 0.02 453.15 0.1300 0.1318 1.42 463.15 0.1212 0.1251 3.19 473.15 0.1129 0.1189 5.31 Overall AAE= 3.31%

140

1-nonene Isdale (1980) ECN= 8.55, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 0.8102 0.8864 9.41 283.15 0.7047 0.7587 7.66 293.15 0.6195 0.6563 5.93 303.15 0.5495 0.5731 4.30 313.15 0.4913 0.5049 2.76 323.15 0.4422 0.4482 1.37 333.15 0.4005 0.4008 0.08 343.15 0.3645 0.3608 -1.03 353.15 0.3333 0.3266 -2.00 363.15 0.3060 0.2974 -2.82 373.15 0.2818 0.2721 -3.44 383.15 0.2604 0.2501 -3.94 393.15 0.2412 0.2309 -4.26 403.15 0.2240 0.2140 -4.45 413.15 0.2083 0.1991 -4.41 423.15 0.1941 0.1859 -4.25 433.15 0.1810 0.1740 -3.84 443.15 0.1690 0.1635 -3.28 453.15 0.1579 0.1540 -2.50 463.15 0.1476 0.1454 -1.51 473.15 0.1379 0.1376 -0.22 483.15 0.1288 0.1305 1.35 493.15 0.1202 0.1241 3.25 503.15 0.1120 0.1182 5.56 Overall AAE= 3.63 %

141

1-decene Isdale (1980) ECN= 9.57, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 1.1025 1.1776 6.81 283.15 0.9409 0.9959 5.85 293.15 0.8136 0.8520 4.72 303.15 0.7113 0.7364 3.53 313.15 0.6280 0.6425 2.31 323.15 0.5590 0.5653 1.12 333.15 0.5013 0.5012 343.15 0.4523 0.4475 -1.07 353.15 0.4104 0.4021 -2.02 363.15 0.3743 0.3635 -2.89 373.15 0.3427 0.3303 -3.61 383.15 0.3151 0.3017 -4.25 393.15 0.2906 0.2768 -4.73 403.15 0.2688 0.2551 -5.09 413.15 0.2492 0.2360 -5.29 423.15 0.2316 0.2192 -5.37 433.15 0.2156 0.2042 -5.28 443.15 0.2011 0.1909 -5.08 453.15 0.1877 0.1790 -4.66 463.15 0.1754 0.1682 -4.08 473.15 0.1641 0.1586 -3.36 483.15 0.1535 0.1498 -2.38 493.15 0.1436 0.1419 -1.17 503.15 0.1343 0.1347 0.29 513.15 0.1255 0.1281 2.07 523.15 0.1172 0.1221 4.15 Overall AAE= 3.65 %

142

1-undecene Isdale (1980) ECN= 10.53 calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 1.4611 1.5154 3.72 283.15 1.2236 1.2683 3.66 293.15 1.0407 1.0745 3.25 303.15 0.8970 0.9203 2.60 313.15 0.7819 0.7961 1.82 323.15 0.6884 0.6949 0.94 333.15 0.6113 0.6115 343.15 0.5468 0.5421 -0.86 353.15 0.4924 0.4839 -1.73 363.15 0.4460 0.4347 -2.54 373.15 0.4059 0.3927 -3.26 383.15 0.3711 0.3566 -3.90 393.15 0.3407 0.3255 -4.47 403.15 0.3138 0.2984 -4.90 413.15 0.2899 0.2747 -5.23 423.15 0.2686 0.2539 -5.46 433.15 0.2494 0.2356 -5.55 443.15 0.2321 0.2193 -5.53 453.15 0.2163 0.2047 -5.35 463.15 0.2019 0.1917 -5.03 473.15 0.1886 0.1801 -4.52 483.15 0.1764 0.1695 -3.89 493.15 0.1651 0.1600 -3.07 503.15 0.1545 0.1514 -2.01 513.15 0.1447 0.1435 -0.81 523.15 0.1354 0.1364 0.71 533.15 0.1266 0.1298 2.52 543.15 0.1182 0.1238 4.71 Overall AAE= 3.41%

143

1-dodecene Isdale (1980) ECN= 11.50, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 1.9235 1.9265 0.16 283.15 1.5797 1.5966 1.07 293.15 1.3212 1.3403 1.44 303.15 1.1222 1.1381 1.42 313.15 0.9659 0.9766 1.11 323.15 0.8409 0.8460 0.61 333.15 0.7393 0.7392 343.15 0.6556 0.6510 0.70 353.15 0.5858 0.5775 1.42 363.15 0.5269 0.5156 2.14 373.15 0.4766 0.4632 2.81 383.15 0.4334 0.4184 3.45 393.15 0.3959 0.3800 4.02 403.15 0.3632 0.3467 4.55 413.15 0.3343 0.3177 4.96 423.15 0.3086 0.2924 5.25 433.15 0.2858 0.2701 5.49 443.15 0.2653 0.2504 5.61 453.15 0.2467 0.2329 5.57 463.15 0.2299 0.2174 5.45 473.15 0.2146 0.2034 5.21 483.15 0.2005 0.1909 4.79 493.15 0.1876 0.1796 4.26 503.15 0.1756 0.1694 3.53 513.15 0.1644 0.1601 2.60 523.15 0.1540 0.1517 1.50 533.15 0.1442 0.1440 0.15 543.15 0.1350 0.1369 1.44 553.15 0.1263 0.1305 3.31 563.15 0.1179 0.1245 5.63 Overall AAE= 3.09 %

144

1-tridecene Isdale (1980) ECN= 12.43, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 2.4614 2.3914 -2.84 283.15 1.9865 1.9645 -1.11 293.15 1.6368 1.6356 -0.07 303.15 1.3724 1.3784 0.43 313.15 1.1680 1.1743 0.54 323.15 1.0069 1.0105 0.34 333.15 0.8777 0.8773 343.15 0.7724 0.7681 -0.56 353.15 0.6855 0.6775 -1.17 363.15 0.6129 0.6017 -1.83 373.15 0.5516 0.5378 -2.50 383.15 0.4993 0.4836 -3.15 393.15 0.4542 0.4371 -3.76 403.15 0.4150 0.3971 -4.31 413.15 0.3808 0.3625 -4.81 423.15 0.3506 0.3323 -5.23 433.15 0.3238 0.3058 -5.55 443.15 0.2999 0.2825 -5.79 453.15 0.2785 0.2619 -5.95 463.15 0.2591 0.2436 -5.98 473.15 0.2415 0.2273 -5.89 483.15 0.2255 0.2126 -5.70 493.15 0.2108 0.1995 -5.36 503.15 0.1973 0.1876 -4.90 513.15 0.1847 0.1769 -4.22 523.15 0.1731 0.1672 -3.43 533.15 0.1623 0.1583 -2.47 543.15 0.1521 0.1502 -1.25 553.15 0.1425 0.1428 0.20 563.15 0.1335 0.1360 1.86 573.15 0.1248 0.1297 3.94 Overall AAE= 3.17 %

145

1-tetradecene Isdale (1980) ECN= 13.35, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 283.15 2.4626 2.3810 -3.31 293.15 1.9994 1.9676 -1.59 303.15 1.6555 1.6465 -0.54 313.15 1.3937 1.3936 -0.01 323.15 1.1901 1.1918 0.14 333.15 1.0288 1.0288 343.15 0.8989 0.8957 -0.35 353.15 0.7927 0.7860 -0.84 363.15 0.7047 0.6947 -1.41 373.15 0.6310 0.6181 -2.04 383.15 0.5686 0.5533 -2.68 393.15 0.5152 0.4981 -3.31 403.15 0.4692 0.4508 -3.92 413.15 0.4291 0.4099 -4.47 423.15 0.3940 0.3744 -4.97 433.15 0.3630 0.3434 -5.39 443.15 0.3355 0.3162 -5.74 453.15 0.3109 0.2923 -5.99 463.15 0.2889 0.2710 -6.18 473.15 0.2689 0.2521 -6.23 483.15 0.2508 0.2353 -6.19 493.15 0.2343 0.2202 -6.04 503.15 0.2192 0.2065 -5.77 513.15 0.2052 0.1943 -5.33 523.15 0.1923 0.1831 -4.77 533.15 0.1804 0.1730 -4.09 543.15 0.1692 0.1638 -3.18 553.15 0.1587 0.1554 -2.07 563.15 0.1489 0.1477 -0.80 573.15 0.1395 0.1406 0.82 583.15 0.1307 0.1341 2.63 593.15 0.1222 0.1281 4.86 Overall AAE= 3.41 %

146

1-pentadecene Isdale (1980) ECN= 14.54, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 283.15 3.1910 2.9961 -6.11 293.15 2.5440 2.4541 -3.53 303.15 2.0738 2.0367 -1.79 313.15 1.7227 1.7106 -0.70 323.15 1.4541 1.4523 -0.12 333.15 1.2444 1.2452 343.15 1.0777 1.0772 -0.05 353.15 0.9431 0.9396 -0.37 363.15 0.8327 0.8257 -0.84 373.15 0.7412 0.7307 -1.42 383.15 0.6643 0.6508 -2.04 393.15 0.5991 0.5830 -2.69 403.15 0.5433 0.5251 -3.34 413.15 0.4951 0.4754 -3.98 423.15 0.4531 0.4324 -4.56 433.15 0.4163 0.3951 -5.10 443.15 0.3838 0.3624 -5.58 453.15 0.3549 0.3337 -5.97 463.15 0.3291 0.3084 -6.30 473.15 0.3059 0.2859 -6.53 483.15 0.2850 0.2659 -6.69 493.15 0.2660 0.2481 -6.74 503.15 0.2486 0.2321 -6.66 513.15 0.2327 0.2176 -6.47 523.15 0.2181 0.2046 -6.19 533.15 0.2046 0.1928 -5.76 543.15 0.1921 0.1821 -5.21 553.15 0.1804 0.1723 -4.48 563.15 0.1694 0.1634 -3.54 573.15 0.1591 0.1552 -2.44 583.15 0.1494 0.1477 -1.13 593.15 0.1402 0.1408 0.43 Overall AAE= 3.77 %

147

1-hexadecene Isdale (1980) ECN= 15.55, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 303.15 2.4800 2.4027 -3.12 313.15 2.0366 2.0062 -1.49 323.15 1.7022 1.6938 -0.49 333.15 1.4443 1.4448 343.15 1.2415 1.2438 0.18 353.15 1.0793 1.0799 0.05 363.15 0.9476 0.9449 -0.29 373.15 0.8391 0.8327 -0.76 383.15 0.7487 0.7387 -1.33 393.15 0.6725 0.6593 -1.96 403.15 0.6077 0.5918 -2.61 413.15 0.5520 0.5340 -3.26 423.15 0.5038 0.4842 -3.90 433.15 0.4617 0.4410 -4.49 443.15 0.4247 0.4034 -5.03 453.15 0.3920 0.3704 -5.51 463.15 0.3629 0.3414 -5.93 473.15 0.3368 0.3157 -6.26 483.15 0.3133 0.2929 -6.51 493.15 0.2921 0.2726 -6.67 503.15 0.2728 0.2544 -6.74 513.15 0.2552 0.2381 -6.70 523.15 0.2391 0.2234 -6.57 533.15 0.2242 0.2101 -6.30 543.15 0.2104 0.1980 -5.88 553.15 0.1977 0.1870 -5.39 563.15 0.1858 0.1770 -4.71 573.15 0.1746 0.1679 -3.84 583.15 0.1641 0.1595 -2.80 593.15 0.1542 0.1518 -1.55 603.15 0.1448 0.1447 -0.06 613.15 0.1359 0.1382 1.67 623.15 0.1273 0.1321 3.78 Overall AAE= 3.62 %

148

Results for Aromatics:

o-xylene Isdale (1981) ECN= 9.53, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 1.6956 1.6927 -0.17 263.15 1.3441 1.3943 3.73 273.15 1.1150 1.1649 4.47 283.15 0.9431 0.9857 4.51 293.15 0.8107 0.8436 4.06 303.15 0.7063 0.7294 3.27 313.15 0.6225 0.6366 2.27 323.15 0.5539 0.5603 1.15 333.15 0.4970 0.4969 343.15 0.4491 0.4438 -1.18 353.15 0.4084 0.3989 -2.32 363.15 0.3733 0.3607 -3.38 373.15 0.3429 0.3279 -4.38 383.15 0.3162 0.2996 -5.26 393.15 0.2927 0.2749 -6.07 403.15 0.2717 0.2534 -6.73 413.15 0.2529 0.2345 -7.28 423.15 0.2360 0.2178 -7.72 433.15 0.2207 0.2030 -8.04 443.15 0.2067 0.1898 -8.20 453.15 0.1938 0.1779 -8.19 463.15 0.1820 0.1673 -8.08 473.15 0.1710 0.1577 -7.76 483.15 0.1608 0.1491 -7.30 493.15 0.1513 0.1412 -6.68 503.15 0.1423 0.1340 -5.82 513.15 0.1338 0.1275 -4.72 523.15 0.1258 0.1215 -3.43 533.15 0.1180 0.1160 -1.70 543.15 0.1106 0.1109 0.30 Overall AAE= 4.76 %

149

m-xylene Isdale (1981) ECN= 8.62, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 1.1071 1.2834 15.93 263.15 0.9345 1.0702 14.92 273.15 0.8028 0.9044 12.65 283.15 0.6996 0.7734 10.54 293.15 0.6170 0.6684 8.34 303.15 0.5496 0.5833 6.14 313.15 0.4938 0.5135 3.99 323.15 0.4470 0.4556 1.93 333.15 0.4071 0.4072 343.15 0.3727 0.3663 -1.73 353.15 0.3429 0.3315 -3.34 363.15 0.3167 0.3016 -4.77 373.15 0.2936 0.2758 -6.05 383.15 0.2730 0.2534 -7.16 393.15 0.2545 0.2339 -8.10 403.15 0.2379 0.2167 -8.92 413.15 0.2227 0.2015 -9.52 423.15 0.2089 0.1880 -9.99 433.15 0.1962 0.1760 -10.29 443.15 0.1844 0.1653 -10.38 453.15 0.1736 0.1556 -10.38 463.15 0.1634 0.1469 -10.12 473.15 0.1539 0.1390 -9.70 483.15 0.1450 0.1318 -9.10 493.15 0.1366 0.1253 -8.28 503.15 0.1285 0.1193 -7.14 513.15 0.1209 0.1139 -5.83 523.15 0.1135 0.1088 -4.11 533.15 0.1064 0.1042 -2.05 543.15 0.0995 0.0999 0.45 Overall AAE= 7.64 %

150

p-xylene Isdale (1981) ECN= 8.72, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 293.15 0.6408 0.6861 7.08 303.15 0.5682 0.5982 5.27 313.15 0.5084 0.5261 3.47 323.15 0.4584 0.4663 1.73 333.15 0.4162 0.4164 343.15 0.3800 0.3743 -1.51 353.15 0.3487 0.3384 -2.95 363.15 0.3213 0.3077 -4.22 373.15 0.2972 0.2812 -5.37 383.15 0.2758 0.2582 -6.36 393.15 0.2567 0.2382 -7.22 403.15 0.2395 0.2205 -7.92 413.15 0.2239 0.2050 -8.46 423.15 0.2098 0.1911 -8.89 433.15 0.1968 0.1788 -9.12 443.15 0.1848 0.1678 -9.18 453.15 0.1737 0.1579 -9.07 463.15 0.1634 0.1490 -8.79 473.15 0.1538 0.1410 -8.35 483.15 0.1447 0.1336 -7.64 493.15 0.1362 0.1270 -6.78 503.15 0.1281 0.1209 -5.63 513.15 0.1204 0.1153 -4.23 523.15 0.1130 0.1102 -2.49 533.15 0.1058 0.1055 -0.31 Overall AAE= 5.92 %

151

2-Ethyltoluene Isdale (1981) ECN= 9.85, calculated at 353.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 1.6960 1.8594 9.63 263.15 1.3782 1.5252 10.67 273.15 1.1463 1.2694 10.74 283.15 0.9719 1.0702 10.12 293.15 0.8371 0.9129 9.06 303.15 0.7306 0.7869 7.71 313.15 0.6448 0.6848 6.20 323.15 0.5745 0.6011 4.62 333.15 0.5161 0.5317 3.03 343.15 0.4668 0.4737 1.49 353.15 0.4249 0.4249 363.15 0.3888 0.3833 -1.41 373.15 0.3574 0.3477 -2.70 383.15 0.3299 0.3171 -3.88 393.15 0.3056 0.2905 -4.95 403.15 0.2839 0.2673 -5.85 413.15 0.2645 0.2469 -6.65 423.15 0.2470 0.2290 -7.30 433.15 0.2312 0.2131 -7.85 443.15 0.2167 0.1989 -8.21 453.15 0.2035 0.1863 -8.48 463.15 0.1913 0.1749 -8.57 473.15 0.1800 0.1647 -8.51 483.15 0.1695 0.1554 -8.30 493.15 0.1597 0.1471 -7.91 503.15 0.1505 0.1394 -7.34 513.15 0.1419 0.1325 -6.63 523.15 0.1336 0.1261 -5.58 533.15 0.1258 0.1203 -4.36 543.15 0.1184 0.1150 -2.91 553.15 0.1112 0.1100 -1.07 563.15 0.1094 0.1054 3.61 573.15 0.0974 0.1012 3.93 Overall AAE= 6.23 %

152

3-Ethyltoluene Isdale (1981) ECN= 9.12, calculated at 353.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 0.8455 1.0410 23.12 283.15 0.7392 0.8850 19.72 293.15 0.6538 0.7607 16.36 303.15 0.5839 0.6605 13.11 313.15 0.5257 0.5786 10.07 323.15 0.4768 0.5111 7.19 333.15 0.4350 0.4548 4.56 343.15 0.3989 0.4075 2.16 353.15 0.3676 0.3674 363.15 0.3400 0.3331 -2.02 373.15 0.3157 0.3036 -3.82 383.15 0.2939 0.2781 -5.37 393.15 0.2744 0.2559 -6.76 403.15 0.2568 0.2364 -7.96 413.15 0.2407 0.2192 -8.93 423.15 0.2261 0.2040 -9.77 433.15 0.2127 0.1905 -10.44 443.15 0.2003 0.1784 -10.92 453.15 0.1888 0.1676 -11.22 463.15 0.1782 0.1579 -11.40 473.15 0.1682 0.1491 -11.36 483.15 0.1588 0.1411 -11.13 493.15 0.1500 0.1339 -10.75 503.15 0.1416 0.1273 -10.12 513.15 0.1336 0.1212 -9.26 523.15 0.1260 0.1157 -8.19 533.15 0.1187 0.1106 -6.83 543.15 0.1117 0.1016 -5.19 553.15 0.1048 0.0975 -3.09 563.15 0.0981 0.0938 -0.56 573.15 0.0915 0.1016 2.54 Overall AAE= 8.80 %

153

4-Ethyltoluene Isdale (1981) ECN= 9.10, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 0.9111 1.035 13.63 283.15 0.7902 0.880 11.40 293.15 0.6941 0.757 9.04 303.15 0.6162 0.657 6.66 313.15 0.5519 0.5759 4.35 323.15 0.4982 0.5088 2.13 333.15 0.4527 0.4528 343.15 0.4137 0.4058 -1.91 353.15 0.3800 0.3659 -3.71 363.15 0.3505 0.3318 -5.33 373.15 0.3245 0.3025 -6.78 383.15 0.3015 0.2771 -8.10 393.15 0.2809 0.2550 -9.24 403.15 0.2623 0.2356 -10.19 413.15 0.2455 0.2185 -11.01 423.15 0.2303 0.2034 -11.70 433.15 0.2163 0.1899 -12.20 443.15 0.2034 0.1779 -12.54 453.15 0.1916 0.1671 -12.77 463.15 0.1805 0.1574 -12.78 473.15 0.1703 0.1487 -12.70 483.15 0.1606 0.1407 -12.37 493.15 0.1516 0.1335 -11.92 503.15 0.1430 0.1269 -11.23 513.15 0.1349 0.1209 -10.36 523.15 0.1272 0.1154 -9.27 533.15 0.1198 0.1103 -7.90 543.15 0.1126 0.1057 -6.17 553.15 0.1057 0.1013 -4.13 563.15 0.0989 0.0973 -1.58 Overall AAE= 8.73 %

154

2- Propyltoluene Isdale (1981) ECN= 10.57, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 2.34 2.2818 2.49 263.15 1.8471 1.8549 0.42 273.15 1.4992 1.5309 2.12 283.15 1.2447 1.2808 2.90 293.15 1.0529 1.0847 3.02 303.15 0.9047 0.9287 2.65 313.15 0.7876 0.8031 1.96 323.15 0.6934 0.7007 1.05 333.15 0.6163 0.6164 343.15 0.5523 0.5463 -1.08 353.15 0.4985 0.4875 -2.20 363.15 0.4527 0.4378 -3.29 373.15 0.4134 0.3954 -4.35 383.15 0.3793 0.3590 -5.34 393.15 0.3495 0.3276 -6.26 403.15 0.3232 0.3003 -7.08 413.15 0.2998 0.2764 -7.79 423.15 0.2789 0.2555 -8.41 433.15 0.2601 0.2369 -8.91 443.15 0.2432 0.2205 -9.33 453.15 0.2277 0.2059 -9.59 463.15 0.2136 0.1928 -9.76 473.15 0.2006 0.1810 -9.77 483.15 0.1886 0.1704 -9.65 493.15 0.1775 0.1608 -9.40 503.15 0.1672 0.1521 -9.02 513.15 0.1575 0.1442 -8.45 523.15 0.1484 0.1370 -7.70 533.15 0.1398 0.1304 -6.75 543.15 0.1317 0.1243 -5.62 553.15 0.1239 0.1187 -4.18 563.15 0.1164 0.1136 -2.43 573.15 0.1093 0.1088 -0.44 583.15 0.1023 0.1044 2.07 593.15 0.0955 0.1003 5.07 Overall AAE= 5.31 %

155

3- Propyltoluene Isdale (1981) ECN= 9.95, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 1.2034 1.3035 8.32 283.15 1.0209 1.0978 7.53 293.15 0.8798 0.9355 6.33 303.15 0.7682 0.8056 4.87 313.15 0.6782 0.7004 3.27 323.15 0.6045 0.6142 1.61 333.15 0.5431 0.5430 343.15 0.4914 0.4834 -1.63 353.15 0.4473 0.4332 -3.15 363.15 0.4094 0.3906 -4.59 373.15 0.3763 0.3541 -5.89 383.15 0.3474 0.3227 -7.11 393.15 0.3218 0.2955 -8.18 403.15 0.2991 0.2717 -9.16 413.15 0.2787 0.2509 -9.98 423.15 0.2603 0.2325 -10.67 433.15 0.2436 0.2163 -11.22 443.15 0.2284 0.2018 -11.64 453.15 0.2145 0.1889 -11.93 463.15 0.2017 0.1773 -12.09 473.15 0.1899 0.1669 -12.12 483.15 0.1789 0.1575 -11.98 493.15 0.1686 0.1489 -11.67 503.15 0.1590 0.1412 -11.22 513.15 0.1499 0.1341 -10.55 523.15 0.1414 0.1276 -9.75 533.15 0.1332 0.1217 -8.65 543.15 0.1255 0.1162 -7.39 553.15 0.1180 0.1112 -5.76 563.15 0.1108 0.1066 -3.83 573.15 0.1039 0.1023 -1.58 583.15 0.0970 0.0983 1.32 Overall AAE= 7.58 %

156

4- Propyltoluene Isdale (1981) ECN= 10.27, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 273.15 1.3568 1.4174 4.47 283.15 1.1367 1.1896 4.65 293.15 0.9690 1.0104 4.27 303.15 0.8382 0.8675 3.50 313.15 0.7340 0.7521 2.47 323.15 0.6494 0.6578 1.30 333.15 0.5798 0.5800 343.15 0.5216 0.5152 -1.23 353.15 0.4725 0.4607 -2.50 363.15 0.4304 0.4145 -3.69 373.15 0.3941 0.3751 -4.83 383.15 0.3625 0.3411 -5.89 393.15 0.3347 0.3118 -6.85 403.15 0.3101 0.2862 -7.69 413.15 0.2882 0.2639 -8.44 423.15 0.2685 0.2442 -9.05 433.15 0.2508 0.2268 -9.57 443.15 0.2346 0.2113 -9.92 453.15 0.2200 0.1975 -10.21 463.15 0.2065 0.1852 -10.32 473.15 0.1941 0.1741 -10.31 483.15 0.1826 0.1641 -10.15 493.15 0.1719 0.1550 -9.83 503.15 0.1619 0.1468 -9.35 513.15 0.1526 0.1393 -8.75 523.15 0.1437 0.1324 -7.86 533.15 0.1354 0.1261 -6.85 543.15 0.1274 0.1204 -5.53 553.15 0.1198 0.1150 -3.97 563.15 0.1125 0.1101 -2.09 573.15 0.1054 0.1056 0.21 583.15 0.0985 0.1014 2.97 593.15 0.0917 0.0975 6.35 Overall AAE= 6.10 %

157

2-Phenylpropane Isdale (1981) ECN= 9.38, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 1.6152 1.6189 0.23 263.15 1.3072 1.3361 2.21 273.15 1.0835 1.1183 3.21 283.15 0.9159 0.9478 3.49 293.15 0.7868 0.8125 3.27 303.15 0.6851 0.7036 2.70 313.15 0.6034 0.6149 1.91 323.15 0.5367 0.5419 0.97 333.15 0.4814 0.4812 343.15 0.4349 0.4303 -1.06 353.15 0.3953 0.3872 -2.06 363.15 0.3613 0.3504 -3.01 373.15 0.3317 0.3189 -3.87 383.15 0.3059 0.2916 -4.68 393.15 0.2831 0.2678 -5.39 403.15 0.2628 0.2471 -5.98 413.15 0.2446 0.2288 -6.45 423.15 0.2282 0.2127 -6.80 433.15 0.2134 0.1983 -7.06 443.15 0.1999 0.1856 -7.17 453.15 0.1875 0.1741 -7.14 463.15 0.1760 0.1638 -6.92 473.15 0.1655 0.1545 -6.63 483.15 0.1556 0.1461 -6.09 493.15 0.1464 0.1385 -5.41 503.15 0.1377 0.1315 -4.48 513.15 0.1296 0.1252 -3.42 523.15 0.1218 0.1193 -2.01 533.15 0.1144 0.1140 -0.35 543.15 0.1072 0.1091 1.75 553.15 0.1003 0.1045 4.21 563.15 0.0936 0.1003 7.18 Overall AAE= 4.10 %

158

2-Phenylbutane Isdale (1981) ECN= 9.97, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 2.2887 1.9251 -15.89 263.15 1.7683 1.5767 -10.83 273.15 1.4099 1.3104 -7.06 283.15 1.1532 1.1034 -4.32 293.15 0.9634 0.9400 -2.43 303.15 0.8190 0.8094 -1.18 313.15 0.7067 0.7036 -0.44 323.15 0.6174 0.6169 -0.08 333.15 0.5452 0.5452 343.15 0.4859 0.4853 -0.12 353.15 0.4365 0.4349 -0.37 363.15 0.3948 0.3921 -0.70 373.15 0.3593 0.3554 -1.08 383.15 0.3287 0.3238 -1.48 393.15 0.3021 0.2965 -1.86 403.15 0.2788 0.2726 -2.22 413.15 0.2582 0.2517 -2.52 423.15 0.2399 0.2333 -2.77 433.15 0.2235 0.2169 -2.94 443.15 0.2087 0.2024 -3.02 453.15 0.1953 0.1894 -3.00 463.15 0.1831 0.1778 -2.89 473.15 0.1719 0.1673 -2.66 483.15 0.1616 0.1579 -2.30 493.15 0.1520 0.1493 -1.77 503.15 0.1431 0.1415 -1.11 513.15 0.1348 0.1344 -0.29 523.15 0.1270 0.1279 0.72 533.15 0.1196 0.1220 1.97 543.15 0.1126 0.1165 3.45 553.15 0.1058 0.1114 5.33 563.15 0.0994 0.1068 7.42 Overall AAE= 3.04 %

159

p-Cymene Isdale (1981) ECN= 9.827, calculated at 333.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 253.15 1.6896 1.8470 9.31 263.15 1.3813 1.5155 9.71 273.15 1.1548 1.2626 9.34 283.15 0.9832 1.0648 8.30 293.15 0.8499 0.9085 6.89 303.15 0.7440 0.7832 5.27 313.15 0.6584 0.6817 3.54 323.15 0.5879 0.5985 1.80 333.15 0.5292 0.5295 343.15 0.4795 0.4718 -1.60 353.15 0.4371 0.4232 -3.18 363.15 0.4005 0.3819 -4.65 373.15 0.3686 0.3465 -6.00 383.15 0.3406 0.3160 -7.23 393.15 0.3157 0.2895 -8.30 403.15 0.2936 0.2664 -9.27 413.15 0.2738 0.2461 -10.11 423.15 0.2559 0.2283 -10.80 433.15 0.2396 0.2124 -11.34 443.15 0.2248 0.1983 -11.78 453.15 0.2111 0.1857 -12.02 463.15 0.1986 0.1744 -12.18 473.15 0.1870 0.1642 -12.17 483.15 0.1762 0.1550 -12.01 493.15 0.1661 0.1467 -11.68 503.15 0.1566 0.1391 -11.17 513.15 0.1477 0.1322 -10.51 523.15 0.1392 0.1258 -9.59 533.15 0.1312 0.1200 -8.51 543.15 0.1235 0.1200 -8.51 553.15 0.1161 0.1147 -7.13 563.15 0.1090 0.1052 -3.49 573.15 0.1020 0.1010 -0.99 583.15 0.0952 0.0971 1.98 Overall AAE= 7.80 %

160

Biphenyl Isdale (1981) ECN= 17.17, calculated at 453.15 K Temperature (K) Experimental Calculated Viscosity Error, % Viscosity (mPa-s) (mPa-s) 343.15 1.4863 1.5285 2.84 353.15 1.2672 1.3186 4.06 363.15 1.0949 1.1469 4.75 373.15 0.9571 1.0050 5.00 383.15 0.8451 0.8868 4.93 393.15 0.7528 0.7874 4.60 403.15 0.6759 0.7033 4.06 413.15 0.6110 0.6317 3.39 423.15 0.5557 0.5702 2.61 433.15 0.5082 0.5172 1.77 443.15 0.4671 0.4711 0.87 453.15 0.4311 0.4310 463.15 0.3995 0.3957 -0.94 473.15 0.3715 0.3647 -1.83 483.15 0.3465 0.3372 -2.67 493.15 0.3242 0.3128 -3.50 503.15 0.3041 0.2911 -4.28 513.15 0.2859 0.2716 -5.01 523.15 0.2693 0.2541 -5.66 533.15 0.2542 0.2383 -6.26 543.15 0.2404 0.2240 -6.82 553.15 0.2276 0.2110 -7.27 563.15 0.2158 0.1993 -7.66 573.15 0.2048 0.1885 -7.95 583.15 0.1946 0.1787 -8.18 593.15 0.1851 0.1697 -8.33 603.15 0.1762 0.1614 -8.40 613.15 0.1677 0.1538 -8.30 623.15 0.1598 0.1467 -8.17 633.15 0.1523 0.1402 -7.93 643.15 0.1451 0.1342 -7.51 653.15 0.1382 0.1286 -6.94 663.15 0.1316 0.1234 -6.23 Overall AAE= 5.27 %

161

Results of defined mixtures at low pressure:

Ethylbenzene (1) + Toluene Irving (1977)

(X1=0.15) ECN =8.37; (X1=0.34) ECN=8.50; (X1=0.48) ECN=8.54, calculated at 323.15 K Temperature (K) Mole Experimental Calculated Error, % Fraction Viscosity (mPa-s) Viscosity (mPa-s) (X1) 273.15 0.15 0.764 0.842 10.17 283.15 0.15 0.671 0.722 7.59 293.15 0.15 0.597 0.626 4.81 303.15 0.15 0.533 0.547 2.72 313.15 0.15 0.479 0.483 0.87 323.15 0.15 0.430 0.430 333.15 0.15 0.392 0.385 -1.83 343.15 0.15 0.358 0.347 -3.11 353.15 0.15 0.328 0.315 -4.11 AAE= 4.40 % 273.15 0.34 0.786 0.874 11.17 283.15 0.34 0.687 0.748 8.93 293.15 0.34 0.611 0.648 6.00 303.15 0.34 0.546 0.566 3.65 313.15 0.34 0.490 0.499 1.79 323.15 0.34 0.443 0.443 333.15 0.34 0.403 0.396 -1.66 343.15 0.34 0.369 0.357 -3.29 353.15 0.34 0.338 0.323 -4.37 AAE= 5.11 % 273.15 0.48 0.807 0.884 9.53 283.15 0.48 0.701 0.757 7.93 293.15 0.48 0.623 0.655 5.06 303.15 0.48 0.554 0.572 3.19 313.15 0.48 0.496 0.504 1.54 323.15 0.48 0.447 0.447 333.15 0.48 0.408 0.400 -1.98 343.15 0.48 0.372 0.360 -3.23 353.15 0.48 0.340 0.326 -4.13 AAE= 4.57 %

162

Ethylbenzene(1) + Toluene Irving (1977)

(X1=0.63) ECN=8.65; (X1=0.82) ECN=8.66, calculated at 323.15 K Temperature Mole Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 273.15 Fraction0.63 (X1) 0.820 0.912 11.24 283.15 0.63 0.716 0.78 8.9 293.15 0.63 0.636 0.674 5.93 303.15 0.63 0.565 0.588 4.03 313.15 0.63 0.505 0.517 2.42 323.15 0.63 0.459 0.459 333.15 0.63 0.418 0.41 -1.93 343.15 0.63 0.381 0.369 -3.24 353.15 0.63 0.349 0.334 -4.43 AAE= 5.27 % 273.15 0.82 0.840 0.915 8.9 283.15 0.82 0.734 0.782 6.52 293.15 0.82 0.652 0.675 3.6 303.15 0.82 0.581 0.589 1.42 313.15 0.82 0.52 0.518 -0.29 323.15 0.82 0.460 0.460 333.15 0.82 0.418 0.411 -1.71 343.15 0.82 0.383 0.369 -3.54 353.15 0.82 0.349 0.334 -4.23 AAE= 3.78 %

163

Benzene (1) + Cyclohexane Dymond and Young (1981)

(X1=0.20) ECN =9.17; (X1=0.40) ECN=8.73; (X1=0.60) ECN=8.46, calculated at 333.36 K Temperature (K) Mole Experimental Calculated Error, % Fraction Viscosity (mPa-s) Viscosity (mPa-s) (X1) 283.15 0.2 0.935 0.897 -4.06 288.15 0.2 0.865 0.830 -4.06 298.19 0.2 0.735 0.716 -2.47 313.23 0.2 0.592 0.585 -1.14 333.36 0.2 0.459 0.459 353.53 0.2 0.367 0.370 0.80 373.28 0.2 0.299 0.306 2.43 393.20 0.19 0.250 0.258 3.09 AAE= 2.58 % 283.15 0.4 0.806 0.797 -1.07 288.15 0.4 0.747 0.739 -0.98 298.19 0.4 0.643 0.641 -0.23 313.23 0.4 0.527 0.527 0.00 333.36 0.4 0.416 0.416 353.53 0.4 0.338 0.338 0.05 373.28 0.4 0.279 0.281 0.96 393.20 0.39 0.235 0.239 1.58 AAE= 0.70 % 283.15 0.6 0.7431 0.740 -0.40 288.15 0.6 0.6903 0.688 -0.36 298.19 0.6 0.5977 0.598 0.08 313.23 0.6 0.4928 0.493 0.13 333.36 0.6 0.3923 0.392 353.53 0.6 0.3203 0.319 -0.29 373.28 0.6 0.2662 0.267 0.32 393.20 0.59 0.2270 0.227 0.02 AAE= 0.23 %

164

Benzene (1) + Cyclohexane Dymond and Young (1981)

(X1=0.79) ECN=8.36; (X1=0.88) ECN=8.37, calculated at 333.36 K Temperature Mole Fraction Experimental Calculated Error, %

(K) (X1) Viscosity (mPa-s) Viscosity (mPa-s) 283.15 0.79 0.727 0.72 -0.96 288.15 0.79 0.673 0.669 -0.59 298.19 0.79 0.583 0.583 0.06 313.23 0.79 0.481 0.481 0.12 333.36 0.79 0.383 0.383 353.53 0.79 0.313 0.313 -0.09 373.28 0.79 0.261 0.262 0.4 393.20 0.79 0.223 0.223 0.1 AAE= 0.30 % 283.15 0.88 0.7319 0.722 -1.36 288.15 0.88 0.6778 0.671 -0.96 298.19 0.88 0.5859 0.584 0.25 313.23 0.88 0.4826 0.483 0.02 333.36 0.88 0.384 0.384 353.53 0.88 0.3147 0.313 -0.42 373.28 0.88 0.2633 0.262 -0.35 AAE= 0.56 %

165

hexane (1) + hexadecane Dymond and Young (1980a)

(X1=0.20) ECN =14.39; (X1=0.38) ECN=12.82; (X1=0.60) ECN=10.75; (X1=0.80) ECN=8.61, calculated at 338.36 K Temperature (K) Mole Experimental Calculated Error, % Fraction Viscosity (mPa-s) Viscosity (mPa-s) (X1) 288.15 0.1996 2.7840 2.634 -5.38 298.19 0.1987 2.2350 2.173 -2.78 318.26 0.1976 1.5340 1.533 -0.03 338.36 0.1958 1.1280 1.127 358.28 0.1929 0.8711 0.860 -1.27 378.29 0.1885 0.6938 0.674 -2.81 AAE= 2.46 % 288.15 0.3784 1.948 1.942 -0.33 298.19 0.3772 1.607 1.620 0.83 318.26 0.3758 1.155 1.168 1.12 338.36 0.3734 0.8753 0.875 358.28 0.3695 0.6932 0.678 -2.13 378.29 0.3637 0.5623 0.540 -4.00 AAE= 1.68 % 283.15 0.5993 1.2370 1.338 8.16 288.15 0.5993 1.1720 1.228 4.81 298.19 0.5983 1.0010 1.044 4.27 318.26 0.5971 0.7591 0.777 2.38 338.36 0.5949 0.5993 0.599 358.28 0.5916 0.4880 0.476 -2.37 378.29 0.5864 0.4058 0.388 -4.44 AAE= 4.41 % 283.15 0.7988 0.7010 0.771 9.96 288.15 0.7988 0.6740 0.716 6.25 298.19 0.7982 0.5930 0.622 4.80 318.26 0.7975 0.4710 0.481 2.18 338.36 0.7963 0.3850 0.384 358.28 0.7944 0.3200 0.315 -1.64 378.29 0.7915 0.2710 0.263 -2.79 AAE= 4.62 %

166

Benzene (1) + dodecane Dymond and Young (1981)

(X1=0.25) ECN =11.09; (X1=0.50) ECN=10.20; (X1=0.75) ECN=9.25, calculated at 333.36 K Temperature (K) Mole Experimental Calculated Error, % Fraction Viscosity (mPa-s) Viscosity (mPa-s) (X1) 283.15 0.25 1.4430 1.451 0.56 288.15 0.25 1.3170 1.330 0.99 298.19 0.25 1.1080 1.127 1.68 313.23 0.25 0.8848 0.896 1.28 333.36 0.26 0.6814 0.681 353.29 0.25 0.5445 0.536 -1.61 373.28 0.24 0.4460 0.432 -3.16 393.20 0.24 0.3739 0.356 -4.75 AAE= 2.00 % 283.15 0.5 1.1290 1.169 3.55 288.15 0.5 1.0400 1.076 3.49 298.10 0.5 0.8917 0.919 3.09 313.23 0.5 0.7258 0.740 1.92 333.36 0.5 0.5703 0.570 353.29 0.5 0.4626 0.454 -1.88 373.28 0.49 0.3834 0.370 -3.51 393.20 0.49 0.3243 0.308 -5.02 AAE= 3.21 % 283.15 0.75 0.8795 0.916 4.15 288.15 0.75 0.8143 0.848 4.08 298.19 0.75 0.7079 0.731 3.25 313.23 0.75 0.5854 0.596 1.80 333.36 0.75 0.4668 0.467 353.29 0.75 0.3831 0.377 -1.68 373.28 0.75 0.3200 0.311 -2.87 393.20 0.74 0.2725 0.262 -3.96 AAE= 3.11 %

167

Benzene (1) + n-hexane Dymond and Young (1981)

(X1=0. 5) ECN =6.64; calculated at 333.36 K Temperature (K) Mole Experimental Calculated Error, % Fraction Viscosity (mPa-s) Viscosity (mPa-s) (X1) 283.15 0.5 0.4193 0.437 4.21 288.15 0.5 0.3963 0.411 3.60 298.19 0.5 0.3561 0.365 2.40 313.23 0.5 0.3062 0.310 1.12 333.36 0.5 0.2545 0.255 353.29 0.5 0.2163 0.214 -0.90 373.28 0.5 0.1857 0.184 -1.04 Overall AAE= 2.21 %

n-hexane (1) + n-octane (2) + n-hexadecane Dymond and Young (1980b)

(X1=0.11, X2 =0.12) ECN =14.31; (X1=0.33, X2=0.33) ECN=10.61, calculated at 338.26 K Temperature( K) Mole Experimental Calculated Error, % Fraction Viscosity (mPa-s) Viscosity (mPa-s) (X1) X2 288.15 0.1097 0.1152 2.7330 2.596 -5.02 298.15 0.1093 0.1152 2.1940 2.144 -2.28 318.26 0.1086 0.1151 1.5120 1.514 0.10 338.26 0.1076 0.1151 1.1140 1.115 358.28 0.1058 0.1149 0.8598 0.850 -1.11 378.29 0.1032 0.1146 0.6870 0.667 -2.89 AAE= 2.28 % 298.19 0.3286 0.3297 0.9767 1.011 3.51 318.26 0.3276 0.33 0.7399 0.755 1.98 338.26 0.3259 0.3303 0.5836 0.584 358.28 0.3229 0.3317 0.4746 0.464 -2.15 AAE= 2.55 %

168

n-hexane(1)+n-octane(2)+n-dodecane(3)+n-hexadecane Dymond and Young (1980b)

(X1=0.26; X2=0.30; X3=0.25) ECN=10.37, calculated at 338.36 K Temperature( K) Mole Experimental Calculated Error, Fraction Viscosity(mPa-s) Viscosity % X1 X2 X3 (mPa-s) 288.15 0.26 0.30 0.25 1.084 1.122 3.48 298.19 0.26 0.30 0.25 0.9261 0.956 3.28 318.26 0.26 0.30 0.25 0.7041 0.717 1.82 338.36 0.26 0.30 0.25 0.5556 0.556 358.28 0.26 0.30 0.25 0.4523 0.444 -1.77 Overall AAE= 2.59 %

Results for defined compounds at high pressures:

Benzene Vieira dos Santos et al (1997) ECN=8.51, calculated at 298.15 K /1.013 Bar Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 298.15 1.013 0.607 0.606 298.15 155 0.681 0.711 4.38 298.15 253 0.746 0.777 4.21 298.15 325 0.785 0.826 5.26 298.15 415 0.838 0.887 5.89 298.15 509 0.905 0.951 5.11 298.15 617 0.984 1.025 4.12 323.15 1.013 0.443 0.444 0.24 323.15 246 0.543 0.566 4.22 323.15 509 0.664 0.697 4.93 323.15 512 0.665 0.698 4.99 348.15 1.013 0.319 0.340 6.62 348.15 259 0.403 0.438 8.78 348.15 271 0.416 0.443 6.48 348.15 512 0.502 0.535 6.53 Overall AAE= 5.13 %

169

Toluene Assael et al (1999) ECN=8.07, calculated at 233.93 K /1.01 Bar Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 219.362 1.013 2.3020 2.182 -5.23

219.324 13.50 2.3310 2.217 -5.01 219.286 (Bar)34.30 2.3760 2.270 -4.58 219.217 53.50 2.4230 2.320 -4.33 217.726 66.30 2.5770 2.427 -5.47 217.751 91.40 2.6080 2.490 -4.21 217.720 114.30 2.6690 2.548 -4.14 217.713 134.30 2.7200 2.597 -4.06 217.600 150.40 2.7740 2.648 -4.18 233.931 1.013 1.5720 1.5702 233.931 22.30 1.6030 1.6076 0.29 233.893 42.20 1.6360 1.6439 0.48 233.924 63.20 1.6620 1.6798 1.07 233.946 87.40 1.6960 1.7215 1.51 233.965 107.70 1.7250 1.7565 1.83 233.975 124.80 1.7470 1.7862 2.24 234.000 145.80 1.7780 1.8221 2.48 234.010 159.90 1.8030 1.8465 2.41 253.528 1.01 1.0500 1.0708 1.98 253.537 22.50 1.0700 1.0964 2.46 253.550 42.80 1.0860 1.1204 3.17 253.515 62.10 1.1020 1.1443 3.84 253.521 81.80 1.1220 1.1678 4.08 253.518 98.80 1.1370 1.1883 4.51 253.521 120.80 1.1590 1.2146 4.80 253.521 142.40 1.1790 1.2405 5.22 253.508 162.40 1.1980 1.2648 5.57 253.505 180.00 1.2130 1.2860 6.01 253.528 194.30 1.2280 1.3026 6.07 273.289 1.01 0.7633 0.7695 0.85 273.289 20.80 0.7752 0.7865 1.49 273.164 41.50 0.7868 0.8059 2.43 273.158 60.90 0.7990 0.8228 2.97 273.161 82.50 0.8118 0.8414 3.64 273.161 102.40 0.8247 0.8586 4.11 273.158 123.10 0.8387 0.8765 4.50 273.151 141.60 0.8519 0.8926 4.77 273.145 162.00 0.8659 0.9103 5.12 273.164 183.90 0.8806 0.9289 5.48

170

Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 293.210 1.01 0.5842 0.5769 -1.25 293.207 21.30 0.5925 0.5901 -0.41 293.181 42.00 0.6035 0.6036 0.02 293.129 61.80 0.6130 0.6169 0.63 293.142 81.50 0.6225 0.6295 1.13 313.276 1.01 0.4646 0.4479 -3.59 313.279 22.20 0.4718 0.4585 -2.81 313.260 42.00 0.4802 0.4686 -2.42 313.162 64.30 0.4886 0.4803 -1.69 313.146 81.40 0.4943 0.4890 -1.07 313.149 101.90 0.5026 0.4993 -0.66 313.149 121.30 0.5099 0.5090 -0.17 313.149 141.80 0.5172 0.5193 0.41 313.149 161.60 0.5253 0.5293 0.76 313.143 181.20 0.5330 0.5392 1.16 313.143 201.20 0.5411 0.5492 1.50 313.146 221.60 0.5496 0.5595 1.79 313.146 240.10 0.5564 0.5687 2.22 313.146 255.30 0.5624 0.5764 2.49 333.090 1.01 0.3803 0.3595 -5.48 333.090 20.90 0.3859 0.3675 -4.77 333.093 42.20 0.3931 0.3760 -4.34 333.057 63.60 0.3998 0.3848 -3.75 333.044 81.70 0.4053 0.3922 -3.24 333.067 101.50 0.4113 0.4000 -2.74 333.070 121.60 0.418 0.4081 -2.37 333.064 141.00 0.4245 0.4160 -2.01 333.054 161.50 0.4308 0.4243 -1.52 333.047 181.30 0.4375 0.4323 -1.20 333.054 201.10 0.4440 0.4402 -0.86 333.064 221.70 0.4507 0.4485 -0.50 353.481 1.01 0.3167 0.2941 -7.13 353.494 21.50 0.3220 0.3008 -6.57 353.517 41.60 0.3273 0.3074 -6.08 353.517 61.70 0.3327 0.3140 -5.62 353.520 81.70 0.3387 0.3206 -5.35 353.520 101.00 0.3435 0.3269 -4.82 353.520 121.40 0.3495 0.3337 -4.53 353.507 141.30 0.3548 0.3403 -4.10 353.507 161.00 0.3608 0.3467 -3.89 353.510 181.60 0.3665 0.3535 -3.54 353.507 200.70 0.3719 0.3598 -3.25 353.501 221.50 0.3779 0.3667 -2.97

171

Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 353.520 239.10 0.3826 0.3724 -2.66 Overall AAE= 2.92 %

Cyclohexane Rajagopal et al (2009) ECN=9.98, calculated at 333.15 K /69 Bar Temperature (K) Pressure Experimental Calculated % Error (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 318.150 69.00 0.671 0.6596 -1.70

318.150 137.90 0.726 0.7105 -2.14 318.150 206. 80 0.785 0.7614 -3.01 318.150 275.80 0.839 0.8123 -3.18 318.150 344.70 0.906 0.8632 -4.72 318.150 413.70 0.974 0.9142 -6.14 318.150 482.60 1.049 0.9651 -8.00 318.150 551.60 1.149 1.0161 -11.57 318.150 620.50 1.216 1.0670 -12.25 333.150 69.00 0.546 0.5464 333.150 137.90 0.595 0.5885 -1.09 333.150 206.80 0.642 0.6307 -1.76 333.150 275.80 0.698 0.6729 -3.60 333.150 344.70 0.75 0.7151 -4.66 333.150 413.70 0.808 0.7573 -6.28 333.150 482.60 0.855 0.7994 -6.50 333.150 551.60 0.916 0.8417 -8.12 333.150 620.50 0.951 0.8838 -7.06 348.150 69.00 0.458 0.4600 0.43 348.150 137.90 0.495 0.4955 0.09 348.150 206.80 0.536 0.5310 -0.94 348.150 275.80 0.579 0.5665 -2.16 348.150 344.70 0.624 0.6020 -3.53 348.150 413.70 0.67 0.6375 -4.84 348.150 482.60 0.717 0.6730 -6.13 348.150 551.60 0.769 0.7086 -7.86 348.150 620.50 0.814 0.7441 -8.59 363.150 69.00 0.386 0.3928 1.76 363.150 137.90 0.42 0.4231 0.74 363.150 206.80 0.455 0.4534 -0.35 363.150 275.80 0.493 0.4838 -1.87 363.150 344.70 0.53 0.5141 -3.00 363.150 413.70 0.568 0.5444 -4.15

172

Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 363.150 482.60 0.618 0.5747 -7.00 363.150 551.60 0.658 0.6051 -8.04 363.150 620.50 0.699 0.6354 -9.10 388.150 69.00 0.301 0.3102 3.06 388.150 137.90 0.328 0.3341 1.87 388.150 206.80 0.356 0.3581 0.59 388.150 275.80 0.384 0.3821 -0.51 388.150 344.70 0.412 0.4060 -1.46 388.150 413.70 0.441 0.4300 -2.50 388.150 482.60 0.469 0.4539 -3.22 388.150 551.60 0.498 0.4779 -4.04 388.150 620.50 0.528 0.5018 -4.96 413.150 69.00 0.245 0.2521 2.89 413.150 137.90 0.273 0.2715 -0.53 413.150 206.80 0.293 0.2910 -0.68 413.150 275.80 0.316 0.3105 -1.75 413.150 344.70 0.342 0.3299 -3.53 413.150 413.70 0.367 0.3494 -4.79 413.150 482.60 0.396 0.3689 -6.85 413.150 551.60 0.415 0.3883 -6.42 413.150 620.50 0.438 0.4078 -6.90 Overall AAE= 4.13 %

173

Cyclohexane (1) + n-hexadecane Rajagopal et al (2009)

(X1=0.3) ECN=14.78, calculated 333.15 K/ 69 Bar Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 318.150 69.00 1.638 1.6357 -0.14 318.150 137.90 1.772 1.8161 2.49 318.150 206.80 1.928 1.9964 3.55 318.150 275.80 2.08 2.1770 4.66 318.150 344.70 2.247 2.3573 4.91 318.150 413.70 2.41 2.5379 5.31 318.150 482.60 2.602 2.7182 4.47 318.150 551.60 2.789 2.8988 3.94 318.150 620.50 2.98 3.0791 3.33 333.150 69.00 1.291 1.2914 0.03 333.150 137.90 1.408 1.4337 1.83 333.150 206.80 1.525 1.5761 3.35 333.150 275.80 1.642 1.7187 4.67 333.150 344.70 1.766 1.8610 5.38 333.150 413.70 1.893 2.0036 5.84 333.150 482.60 2.015 2.1459 6.50 333.150 551.60 2.148 2.2885 6.54 333.150 620.50 2.272 2.4309 6.99 348.150 69.00 1.056 1.0405 -1.47 348.150 137.90 1.145 1.1552 0.89 348.150 206.80 1.234 1.2699 2.91 348.150 275.80 1.325 1.3848 4.51 348.150 344.70 1.425 1.4995 5.22 348.150 413.70 1.506 1.6143 7.19 348.150 482.60 1.61 1.7290 7.39 348.150 551.60 1.709 1.8439 7.89 348.150 620.50 1.814 1.9586 7.97 363.150 69.00 0.897 0.8534 -4.86 363.150 137.90 0.973 0.9475 -2.62 363.150 206.80 1.048 1.0416 -0.61 363.150 275.80 1.129 1.1358 0.60 363.150 344.70 1.206 1.2299 1.98 363.150 413.70 1.289 1.3241 2.72 363.150 482.60 1.369 1.4182 3.59 363.150 551.60 1.453 1.5124 4.09 363.150 620.50 1.537 1.6065 4.52 388.150 69.00 0.668 0.6346 -5.00 388.150 137.90 0.724 0.7046 -2.68 388.150 206.80 0.778 0.7745 -0.45

174

Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 388.150 275.80 0.835 0.8446 1.15 388.150 344.70 0.89 0.9145 2.76 388.150 413.70 0.949 0.9846 3.75 388.150 482.60 1.006 1.0546 4.83 388.150 551.60 1.067 1.1246 5.40 388.150 620.50 1.127 1.1946 6.00 413.150 69.00 0.53 0.4891 -7.71 413.150 137.90 0.578 0.5430 -6.05 413.150 206.80 0.622 0.5970 -4.03 413.150 275.80 0.664 0.6510 -1.96 413.150 344.70 0.715 0.7049 -1.42 413.150 413.70 0.752 0.7589 0.91 413.150 482.60 0.796 0.8128 2.11 413.150 551.60 0.847 0.8668 2.34 413.150 620.50 0.888 0.9207 3.68 Overall AAE= 3.91 %

175

Cyclohexane (1) + n-hexadecane Rajagopal et al (2009)

(X1=0.7) ECN=12.74, calculated 333.15 K/ 69 Bar Temperature (K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 318.150 69.00 1.213 1.1528 -4.96 318.150 137.90 1.315 1.2799 -2.67 318.150 206.80 1.424 1.4070 -1.19 318.150 275.80 1.525 1.5343 0.61 318.150 344.70 1.645 1.6614 0.99 318.150 413.70 1.748 1.7886 2.32 318.150 482.60 1.880 1.9157 1.90 318.150 551.60 2.000 2.0430 2.15 318.150 620.50 2.128 2.1701 1.98 333.150 69.00 0.927 0.9268 333.150 137.90 1.005 1.0289 2.38 333.150 206.80 1.096 1.1311 3.20 333.150 275.80 1.182 1.2334 4.35 333.150 344.70 1.28 1.3356 4.34 333.150 413.70 1.364 1.4379 5.42 333.150 482.60 1.462 1.5400 5.34 333.150 551.60 1.548 1.6424 6.10 333.150 620.50 1.659 1.7445 5.15 348.150 69.00 0.763 0.7592 -0.50 348.150 137.90 0.823 0.8429 2.41 348.150 206.80 0.905 0.9265 2.38 348.150 275.80 0.980 1.0104 3.10 348.150 344.70 1.051 1.0940 4.10 348.150 413.70 1.116 1.1779 5.54 348.150 482.60 1.194 1.2615 5.66 348.150 551.60 1.249 1.3454 7.71 348.150 620.50 1.329 1.4290 7.53 363.150 69.00 0.631 0.6322 0.19 363.150 137.90 0.679 0.7019 3.37 363.150 206.80 0.736 0.7716 4.84 363.150 275.80 0.787 0.8414 6.91 363.150 344.70 0.84 0.9111 8.46 363.150 413.70 0.896 0.9809 9.47 363.150 482.60 0.950 1.0506 10.59 363.150 551.60 1.011 1.1204 10.82 363.150 620.50 1.073 1.1901 10.91 388.150 69.00 0.497 0.4809 -3.24 388.150 137.90 0.534 0.5339 -0.02 388.150 206.80 0.565 0.5869 3.88

176

Temperature( K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 388.150 275.80 0.609 0.6400 5.09 388.150 344.70 0.656 0.6930 5.65 388.150 413.70 0.700 0.7461 6.59 388.150 482.60 0.738 0.7991 8.29 388.150 551.60 0.779 0.8522 9.40 388.150 620.50 0.830 0.9053 9.07 413.150 69.00 0.402 0.3781 -5.94 413.150 137.90 0.440 0.4198 -4.59 413.150 206.80 0.477 0.4615 -3.25 413.150 275.80 0.515 0.5032 -2.28 413.150 344.70 0.542 0.5449 0.54 413.150 413.70 0.582 0.5867 0.80 413.150 482.60 0.608 0.6283 3.35 413.150 551.60 0.639 0.6701 4.87 413.150 620.50 0.678 0.7118 4.98 Overall AAE= 4.55 %

177

Cyclohexane (1) + n-octane Tanaka et al (1991)

(X1=0.2) ECN=8.18; (X1=0.4) ECN=8.40, calculated at 323.15 K/ 1 Bar Temperature( K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 298.150 1 0.5398 0.5563 3.05 298.150 102 0.6053 0.6192 2.30 298.150 204 0.6652 0.6828 2.64 298.150 304 0.7319 0.7451 1.80 298.150 412 0.8005 0.8123 1.48 298.150 509 0.8751 0.8728 -0.26 323.150 1 0.4103 0.4107 323.150 134 0.4786 0.4719 -1.40 323.150 207 0.511 0.5055 -1.08 323.150 301 0.5611 0.5487 -2.20 323.150 391 0.6075 0.5901 -2.86 323.150 601 0.7148 0.6867 -3.92 348.150 1 0.324 0.3168 -2.23 348.150 101 0.3626 0.3522 -2.85 348.150 208 0.4055 0.3902 -3.77 348.150 300 0.4485 0.4228 -5.72 348.150 412 0.4917 0.4626 -5.92 348.150 615 0.5760 0.5346 -7.19 AAE(X1=0.2)= 2.98 % 298.150 1 0.5777 0.5892 2.00 298.150 99 0.6489 0.6539 0.77 298.150 205 0.7156 0.7239 1.16 298.150 296 0.7861 0.7839 -0.28 298.150 404 0.8637 0.8552 -0.98 298.150 506 0.9474 0.9225 -2.63 298.150 606 1.03 0.9885 -4.03 323.150 1 0.4326 0.4327 323.150 106 0.493 0.4836 -1.90 323.150 209 0.5411 0.5335 -1.40 323.150 304 0.5962 0.5796 -2.79 323.150 409 0.6514 0.6305 -3.21 323.150 603 0.7643 0.7245 -5.21 348.150 1 0.3331 0.3322 -0.27 348.150 204 0.4215 0.4077 -3.27 348.150 404 0.5046 0.4821 -4.45 348.150 608 0.5975 0.5580 -6.61 AAE(X1=0.4)= 2.56 %

178

Cyclohexane (1) + n-octane Tanaka et al (1991)

(X1=0.6) ECN=8.71; (X1=0.8) ECN=9.14, calculated at 323.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 298.150 1 0.6273 0.6383 1.75 298.150 100 0.7069 0.7091 0.30 298.150 206 0.7887 0.7848 -0.49 298.150 301 0.871 0.8527 -2.10 298.150 408 0.9601 0.9292 -3.22 298.150 495 1.044 0.9914 -5.04 323.150 1 0.4655 0.4653 323.150 102 0.5182 0.5179 -0.06 323.150 211 0.582 0.5747 -1.26 323.150 307 0.6395 0.6247 -2.31 323.150 413 0.7049 0.6799 -3.54 323.150 604 0.8381 0.7795 -7.00 348.150 1 0.3564 0.3549 -0.43 348.150 98 0.3968 0.3934 -0.85 348.150 196 0.4378 0.4324 -1.24 348.150 401 0.5338 0.5139 -3.73 AAE(X1=0.6)= 2.22 % 298.150 1 0.7162 0.7115 -0.65 298.150 184 0.8936 0.8574 -4.05 298.150 293 1.0110 0.9442 -6.60 298.150 406 1.1390 1.0343 -9.19 298.150 501 1.2490 1.1100 -11.13 323.150 1 0.5138 0.5134 323.150 200 0.6495 0.6279 -3.33 323.150 406 0.7998 0.7463 -6.69 323.150 597 0.9619 0.8561 -10.99 348.150 1 0.3900 0.3882 -0.45 348.150 204 0.4943 0.4765 -3.60 348.150 406 0.6070 0.5644 -7.03 348.150 604 0.7233 0.6505 -10.07 AAE(X1=0.8)= 6.15 %

179

Cyclohexane (1) + n-dodecane Tanaka et al (1991)

(X1=0.2) ECN=11.59; (X1=0.4) ECN=11.26, calculated at 323.15 K/ 1 Bar Temperature( K) Pressure Experimental Calculated Error, % (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 298.15 1 1.2630 1.2576 -0.43 298.15 199 1.6030 1.5365 -4.15 298.15 397 1.9900 1.8153 -8.78 298.15 602 2.4470 2.1041 -14.01 323.15 1 0.8615 0.8611 323.15 206 1.0960 1.0588 -3.39 323.15 406 1.3500 1.2517 -7.28 323.15 599 1.6080 1.4378 -10.58 348.15 1 0.6372 0.6226 -2.29 348.15 206 0.8071 0.7655 -5.15 348.15 422 0.9989 0.9161 -8.29 348.15 595 1.1730 1.0368 -11.61 AAE(X1=0.2)= 6.91 % 298.15 1 1.1710 1.1705 -0.05 298.15 207 1.4860 1.4405 -3.06 298.15 406 1.8520 1.7014 -8.13 298.15 609 2.2870 1.9675 -13.97 323.15 1 0.8075 0.8067 323.15 200 1.0030 0.9865 -1.65 323.15 402 1.2470 1.1690 -6.26 323.15 613 1.5040 1.3596 -9.60 348.15 1 0.5992 0.5865 -2.12 348.15 210 0.7567 0.7238 -4.35 348.15 410 0.9166 0.8552 -6.70 348.15 611 1.1020 0.9872 -10.42 AAE(X1=0.4)= 6.03 %

180

Cyclohexane (1) + n-dodecane Tanaka et al (1991)

(X1=0.6) ECN=10.85; (X1=0.8) ECN=10.38, calculated at 323.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 298.15 1 1.071 1.0683 -0.25 298.15 196 1.36 1.3016 -4.29 298.15 408 1.723 1.5553 -9.74 298.15 608 2.121 1.7946 -15.39 323.15 1 0.7427 0.7425 323.15 299 1.042 0.9903 -4.97 323.15 613 1.414 1.2514 -11.5 348.15 1 0.5585 0.5437 -2.65 348.15 298 0.7778 0.7245 -6.85 348.15 606 1.035 0.9121 -11.88 AAE(X1=0.6)= 7.50 % 298.15 1 0.979 0.9593 -2.01 298.15 96 1.114 1.0614 -4.72 298.15 207 1.26 1.1806 -6.3 298.15 305 1.415 1.2859 -9.12 298.15 413 1.586 1.402 -11.6 298.15 485 1.726 1.4793 -14.29 323.15 1 0.6736 0.6733 323.15 294 0.9489 0.8943 -5.76 323.15 612 1.301 1.1341 -12.83 348.15 1 0.4981 0.4972 -0.17 348.15 295 0.7022 0.661 -5.87 348.15 603 0.9388 0.8325 -11.32 AAE(X1=0.8)= 7.64 %

181

n-pentane (1) + n-octane (2) + n-decane Iglesias-Silva et al (1999)

(X1=0.6014, X2=0.2505) ECN=6.36; calculated at 328.05 K/ 1.01 Bar Temperature Pressure Experimental Calculated Error, % (K) (Bar) Viscosity (mPa-s) Viscosity (mPa-s) 297.95 1.01 0.3582 0.3374 -5.81 297.95 49.95 0.353 0.3559 0.82 297.95 99.13 0.3692 0.3745 1.43 297.95 148.15 0.3891 0.3930 1.00 297.95 216.96 0.4072 0.4190 2.90 297.95 246.26 0.4277 0.4301 0.56 313.05 1.01 0.273 0.2876 5.35 313.05 49.95 0.3033 0.3034 0.02 313.05 99.13 0.3175 0.3192 0.54 313.05 148.15 0.3311 0.3350 1.18 313.05 216.96 0.3462 0.3572 3.17 313.05 246.26 0.3652 0.3666 0.39 328.05 1.01 0.249 0.2490 328.05 49.95 0.2745 0.2627 -4.31 328.05 99.13 0.2898 0.2764 -4.63 328.05 148.15 0.3034 0.2901 -4.40 328.05 216.96 0.3139 0.3092 -1.48 328.05 246.26 0.331 0.3174 -4.10 343.15 1.01 0.217 0.2182 0.54 343.15 49.95 0.2418 0.2301 -4.83 343.15 99.13 0.2555 0.2421 -5.23 343.15 148.15 0.268 0.2541 -5.18 343.15 216.96 0.2789 0.2709 -2.86 343.15 246.26 0.2951 0.2781 -5.77 358.25 49.95 0.2125 0.2039 -4.06 358.25 99.13 0.2257 0.2145 -4.96 358.25 148.15 0.2398 0.2251 -6.12 358.25 216.96 0.2504 0.2400 -4.15 358.25 246.26 0.2653 0.2464 -7.14 373.35 49.95 0.1893 0.1824 -3.65 373.35 99.13 0.2002 0.1919 -4.14 373.35 148.15 0.2132 0.2014 -5.54 373.35 216.96 0.2259 0.2147 -4.95 373.35 246.26 0.2385 0.2204 -7.59 AAE(X1=0.6014)= 3.60 %

182

n-pentane(1) + n-octane(2) + n-decane Iglesias-Silva et al (1999)

(X1=0.1489, X2=0.7033) ECN=7.95, calculated at 328.05 K/ 1.01 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 297.95 1.01 0.4956 0.5248 5.89 297.95 49.95 0.5586 0.5535 -0.91 297.95 99.13 0.5877 0.5824 -0.90 297.95 148.15 0.6188 0.6112 -1.22 297.95 216.96 0.6442 0.6517 1.16 297.95 246.26 0.6724 0.6689 -0.52 313.05 1.01 0.4343 0.4358 0.35 313.05 49.95 0.4634 0.4597 -0.79 313.05 99.13 0.4959 0.4837 -2.45 313.05 148.15 0.5179 0.5077 -1.98 313.05 216.96 0.5408 0.5413 0.08 313.05 246.26 0.5618 0.5556 -1.11 328.05 1.01 0.3689 0.3686 328.05 49.95 0.4022 0.3888 -3.33 328.05 99.13 0.4241 0.4091 -3.53 328.05 148.15 0.4434 0.4294 -3.17 328.05 216.96 0.465 0.4578 -1.56 328.05 246.26 0.4847 0.4699 -3.06 343.15 1.01 0.319 0.3160 -0.93 343.15 49.95 0.3489 0.3334 -4.45 343.15 99.13 0.3663 0.3508 -4.24 343.15 148.15 0.386 0.3681 -4.63 343.15 216.96 0.4027 0.3925 -2.54 343.15 246.26 0.421 0.4029 -4.31 358.15 1.01 0.2765 0.2748 -0.63 358.25 49.95 0.3057 0.2896 -5.28 358.25 99.13 0.3216 0.3047 -5.26 358.25 148.15 0.3396 0.3198 -5.84 358.25 216.96 0.357 0.3409 -4.51 358.25 246.26 0.3722 0.3499 -5.99 373.35 1.01 0.2375 0.2412 1.55 373.35 49.95 0.265 0.2544 -4.00 373.35 99.13 0.2817 0.2677 -4.98 373.35 148.15 0.2982 0.2809 -5.80 373.35 216.96 0.3162 0.2995 -5.28 373.35 246.26 0.3312 0.3074 -7.18 AAE= 3.13 %

183

n-pentane(1) + n-octane(2) + n-decane Iglesias-Silva et al (1999)

(X1=0.15, X2=0.25) ECN=8.85; calculated at 328.05 K/ 1.01 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 297.95 1.01 0.6312 0.6633 5.08 297.95 49.95 0.7129 0.6996 -1.86 297.95 99.13 0.7470 0.7362 -1.45 297.95 148.15 0.7763 0.7726 -0.48 297.95 216.96 0.8110 0.8237 1.57 297.95 246.26 0.8491 0.8455 -0.43 313.05 1.01 0.5359 0.5434 1.40 313.05 49.95 0.5900 0.5732 -2.85 313.05 99.13 0.6188 0.6031 -2.53 313.05 148.15 0.6477 0.633 -2.28 313.05 216.96 0.6749 0.6748 -0.01 313.05 246.26 0.7084 0.6927 -2.22 328.05 1.01 0.454 0.454 328.05 49.95 0.4923 0.4788 -2.74 328.05 99.13 0.5175 0.5038 -2.64 328.05 148.15 0.5417 0.5288 -2.39 328.05 216.96 0.5698 0.5637 -1.06 328.05 246.26 0.5971 0.5786 -3.09 343.15 1.01 0.3853 0.3848 -0.12 343.15 49.95 0.4313 0.4059 -5.88 343.15 99.13 0.4524 0.4271 -5.59 343.15 148.15 0.4767 0.4483 -5.97 343.15 216.96 0.4916 0.4779 -2.78 343.15 246.26 0.5152 0.4905 -4.79 358.15 1.01 0.3338 0.3311 -0.8 358.25 49.95 0.3637 0.3489 -4.06 358.25 99.13 0.3859 0.3672 -4.85 358.25 148.15 0.4078 0.3853 -5.51 358.25 216.96 0.4290 0.4108 -4.24 358.25 246.26 0.4505 0.4217 -6.4 373.35 1.01 0.2863 0.2879 0.55 373.35 49.95 0.316 0.3037 -3.91 373.35 99.13 0.3361 0.3195 -4.94 373.35 148.15 0.3559 0.3353 -5.78 373.35 216.96 0.3768 0.3575 -5.12 373.35 246.26 0.3980 0.367 -7.80 AAE(X1=0.1502)= 3.23 %

184

n-pentane (1) + n-octane (2) + n-decane Iglesias-Silva et al (1999)

(X1=0.4487, X2=0.3989) ECN=7.00, calculated at 328.05 K/ 1.01 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 297.95 1.01 0.3797 0.4048 6.60 297.95 49.95 0.4312 0.4270 -0.98 297.95 99.13 0.4509 0.4493 -0.36 297.95 148.15 0.4713 0.4715 0.04 297.95 216.96 0.4925 0.5027 2.07 297.95 246.26 0.5159 0.5160 0.01 313.05 1.01 0.3355 0.3413 1.74 313.05 49.95 0.371 0.3601 -2.95 313.05 99.13 0.3896 0.3789 -2.76 313.05 148.15 0.4081 0.3976 -2.57 313.05 216.96 0.4249 0.4239 -0.23 313.05 246.26 0.4441 0.4351 -2.02 328.05 1.01 0.293 0.2927 328.05 49.95 0.3235 0.3087 -4.56 328.05 99.13 0.3403 0.3249 -4.54 328.05 148.15 0.3553 0.3409 -4.04 328.05 216.96 0.3714 0.3635 -2.13 328.05 246.26 0.388 0.3731 -3.84 343.15 1.01 0.2586 0.2542 -1.72 343.15 49.95 0.2665 0.2681 0.59 343.15 99.13 0.3011 0.2821 -6.32 343.15 148.15 0.3146 0.2960 -5.90 343.15 216.96 0.3267 0.3156 -3.39 343.15 246.26 0.3414 0.3240 -5.11 358.25 1.01 0.2251 0.2233 -0.79 358.25 49.95 0.2461 0.2356 -4.28 358.25 99.13 0.2607 0.2479 -4.92 358.25 148.15 0.2761 0.2601 -5.79 358.25 216.96 0.2887 0.2773 -3.94 358.25 246.26 0.3041 0.2847 -6.39 373.35 49.95 0.2165 0.2092 -3.39 373.35 99.13 0.2299 0.2201 -4.27 373.35 148.15 0.2453 0.2310 -5.84 373.35 216.96 0.2598 0.2463 -5.21 373.35 246.26 0.2756 0.2528 -8.29 AAE(X1=0.4487)= 3.46 %

185

Benzene(1) + Cyclohexane(2) + n-tetradecane Galvan et al (2009)

(X1=0.101, X2=0.151) ECN=13.36, calculated at 333.2 K/ 10 Bar Temperature( K) Pressure(Bar) Experimental Calculated Error, % Viscosity (mPa-s) Viscosity (mPa-s) 313.20 10 1.379 1.3961 1.24 313.20 50 1.435 1.4855 3.52 313.20 100 1.501 1.5971 6.41 313.20 200 1.662 1.8205 9.54 313.20 300 1.827 2.0439 11.87 313.20 400 2.019 2.2673 12.30 313.20 500 2.242 2.4906 11.09 313.20 600 2.53 2.7140 7.27 333.20 10 1.03 1.0298 333.20 50 1.083 1.0957 1.17 333.20 100 1.117 1.1781 5.47 333.20 200 1.24 1.3428 8.29 333.20 300 1.354 1.5076 11.34 333.20 400 1.462 1.6724 14.39 333.20 500 1.581 1.8371 16.20 333.20 600 1.710 2.0019 17.07 353.20 10 0.812 0.7868 -3.11 353.20 50 0.854 0.8371 -1.98 353.20 100 0.902 0.9001 -0.22 353.20 200 1.095 1.0259 -6.31 353.20 300 1.080 1.1518 6.65 353.20 400 1.169 1.2777 9.30 353.20 500 1.264 1.4036 11.04 353.20 600 1.337 1.5295 14.40 393.20 10 0.456 0.4986 9.34 393.20 50 0.481 0.5305 10.29 393.20 100 0.514 0.5704 10.97 393.20 200 0.575 0.6501 13.07 393.20 300 0.642 0.7299 13.69 393.20 400 0.711 0.8097 13.88 393.20 500 0.78 0.8895 14.03 393.20 600 0.842 0.9692 15.11 AAE= 9.37 %

186

Benzene (1) + Cyclohexane (2) + n-tetradecane Galvan et al (2009)

(X1=0.100, X2=0.451) ECN=11.94, calculated at 333.2 K/ 10 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 313.20 10 1.058 1.0671 0.86 313.20 50 1.104 1.1149 0.99 313.20 100 1.154 1.1747 1.79 313.20 200 1.261 1.2942 2.64 313.20 300 1.384 1.4137 2.15 313.20 400 1.514 1.5333 1.27 313.20 500 1.648 1.6528 0.29 313.20 600 1.793 1.7723 -1.15 333.20 10 0.802 0.8021 333.20 50 0.842 0.8381 -0.47 333.20 100 0.895 0.8830 -1.34 333.20 200 0.995 0.9728 -2.23 333.20 300 1.083 1.0627 -1.88 333.20 400 1.177 1.1525 -2.08 333.20 500 1.268 1.2423 -2.02 333.20 600 1.356 1.3322 -1.76 353.20 10 0.618 0.6232 0.83 353.20 50 0.659 0.6511 -1.20 353.20 100 0.701 0.6860 -2.14 353.20 200 0.780 0.7558 -3.11 353.20 300 0.862 0.8256 -4.23 353.20 400 0.939 0.8954 -4.65 353.20 500 1.016 0.9651 -5.01 353.20 600 1.093 1.0349 -5.31 393.20 10 0.377 0.4062 7.75 393.20 50 0.396 0.4244 7.18 393.20 100 0.423 0.4472 5.72 393.20 200 0.479 0.4927 2.85 393.20 300 0.538 0.5382 0.03 393.20 400 0.594 0.5837 -1.74 393.20 500 0.653 0.6292 -3.65 393.20 600 0.711 0.6747 -5.11 AAE= 2.69 %

187

Benzene (1) + Cyclohexane (2) + n-tetradecane Galvan et al (2009)

(X1=0.504, X2=0.143) ECN=10.77, calculated at 333.2 K/ 10 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 313.20 10 0.820 0.8384 2.24 313.20 50 0.861 0.8759 1.73 313.20 100 0.901 0.9229 2.43 313.20 200 0.994 1.0168 2.29 313.20 300 1.078 1.1107 3.03 313.20 400 1.167 1.2046 3.22 313.20 500 1.260 1.2985 3.05 313.20 600 1.344 1.3924 3.60 333.20 10 0.641 0.6411 333.20 50 0.661 0.6699 1.34 333.20 100 0.698 0.7058 1.11 333.20 200 0.777 0.7776 0.07 333.20 300 0.853 0.8494 -0.43 333.20 400 0.921 0.9212 0.02 333.20 500 0.993 0.9930 0.00 333.20 600 1.065 1.0648 -0.02 353.20 10 0.513 0.5057 -1.42 353.20 50 0.534 0.5284 -1.05 353.20 100 0.558 0.5567 -0.23 353.20 200 0.624 0.6134 -1.71 353.20 300 0.685 0.6700 -2.19 353.20 400 0.744 0.7266 -2.33 353.20 500 0.808 0.7833 -3.06 353.20 600 0.869 0.8399 -3.35 393.20 10 0.326 0.3383 3.78 393.20 50 0.346 0.3535 2.16 393.20 100 0.365 0.3724 2.03 393.20 200 0.405 0.4103 1.31 393.20 300 0.445 0.4482 0.72 393.20 400 0.481 0.4861 1.06 393.20 500 0.530 0.5240 -1.14 393.20 600 0.571 0.5619 -1.60 AAE= 1.73 %

188

Benzene (1) + Cyclohexane (2) + n-tetradecane Galvan et al (2009)

(X1=0.510, X2=0.344) ECN=9.51, calculated at 333.2 K/ 10 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 313.20 10 0.628 0.6337 0.90 313.20 50 0.653 0.6621 1.39 313.20 100 0.688 0.6976 1.39 313.20 200 0.764 0.7685 0.59 313.20 300 0.842 0.8395 -0.30 313.20 400 0.916 0.9105 -0.60 313.20 500 0.987 0.9814 -0.56 313.20 600 1.057 1.0524 -0.43 333.20 10 0.495 0.4945 333.20 50 0.517 0.5167 -0.06 333.20 100 0.548 0.5444 -0.66 333.20 200 0.605 0.5998 -0.87 333.20 300 0.664 0.6551 -1.33 333.20 400 0.727 0.7105 -2.27 333.20 500 0.787 0.7659 -2.68 333.20 600 0.849 0.8213 -3.26 353.20 10 0.407 0.3971 -2.42 353.20 50 0.429 0.4149 -3.28 353.20 100 0.451 0.4372 -3.07 353.20 200 0.497 0.4817 -3.09 353.20 300 0.546 0.5261 -3.64 353.20 400 0.596 0.5706 -4.26 353.20 500 0.639 0.6151 -3.74 353.20 600 0.688 0.6596 -4.13 393.20 10 0.279 0.2739 -1.84 393.20 50 0.288 0.2861 -0.65 393.20 100 0.305 0.3015 -1.16 393.20 200 0.336 0.3321 -1.15 393.20 300 0.368 0.3628 -1.41 393.20 400 0.399 0.3935 -1.38 393.20 500 0.435 0.4242 -2.49 393.20 600 0.466 0.4548 -2.40 AAE= 1.85 %

189

Results for Coal Liquids:

IHS-EDS-Coal Liquids Thurner (1984) ECN= 17.43, calculated at 311 K/6.70 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 311 .0 6.70 2.7100 2.7101 311.0 34.50 2.8100 2.8307 0.70 311.0 68.95 2.9900 2.9800 -0.30 311.0 103.40 3.3600 3.1294 -6.90 311.0 138.00 3.2300 3.2795 1.50 366.0 6.70 1.0900 1.1354 4.20 366.0 34.50 1.1100 1.1859 6.80 366.0 68.95 1.1500 1.2484 8.60 366.0 103.40 1.1900 1.3110 10.20 366.0 138.00 1.2300 1.3739 11.70 450.0 6.70 0.4820 0.4532 -6.00 450.0 34.50 0.4990 0.4734 -5.10 450.0 68.95 0.5130 0.4984 -2.90 450.0 103.40 0.5340 0.5233 -2.00 450.0 138.00 0.5720 0.5484 -4.10 533.0 6.70 0.2190 0.2431 11.0 533.0 34.50 0.2790 0.2539 -9.00 533.0 68.95 0.2690 0.2673 -0.60 533.0 103.40 0.3160 0.2807 -11.20 533.0 138.00 0.3180 0.2941 -7.50 644.0 6.70 0.1800 0.1358 -24.60 644.0 68.95 0.1850 0.1493 -19.30 644.0 103.40 0.2320 0.1568 -32.40 644.0 138.00 0.2040 0.1643 -19.50 728.0 34.50 0.1600 0.1027 -35.80 728.0 68.95 0.1430 0.1081 -24.40 728.0 103.40 0.1790 0.1135 -36.60 728.0 138.00 0.1960 0.1190 -39.30 Overall AAE= 12.67 %

190

IA-3-EDS-Coal Liquids Thurner (1984) ECN= 17.95, calculated at 450 K/13.79 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 450 .0 13.79 0.4734 0.4735 450.0 13.79 0.4790 0.4735 -1.14 450.0 13.79 0.5002 0.4735 -5.33 450.0 34.47 0.4947 0.4892 -1.11 450.0 34.47 0.4923 0.4892 -0.63 450.0 34.47 0.5124 0.4892 -4.53 450.0 137.90 0.5405 0.5676 5.01 450.0 137.90 0.5144 0.5676 10.33 450.0 137.90 0.5661 0.5676 0.26 533.0 13.79 0.2821 0.2521 -10.63 533.0 13.79 0.2774 0.2521 -9.11 533.0 13.79 0.2809 0.2521 -10.24 533.0 34.47 0.2871 0.2605 -9.28 533.0 34.47 0.2818 0.2605 -7.57 533.0 34.47 0.2886 0.2605 -9.75 533.0 137.90 0.3244 0.3022 -6.85 533.0 137.90 0.3176 0.3022 -4.85 533.0 137.90 0.3240 0.3022 -6.73 700.0 34.47 0.1032 0.1153 11.69 700.0 34.47 0.1030 0.1153 11.91 700.0 34.47 0.1097 0.1153 5.07 700.0 68.95 0.1284 0.1214 -5.44 700.0 68.95 0.1338 0.1214 -9.25 700.0 68.95 0.1320 0.1214 -8.02 700.0 137.90 0.1673 0.1337 -20.07 700.0 137.90 0.1660 0.1337 -19.44 700.0 137.90 0.1601 0.1337 -16.47 Overall AAE= 8.10 %

191

IA-6-EDS-Coal Liquids Thurner (1984) ECN= 16.60, calculated at 366.5 K/13.79 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 366.5 13.79 1.0280 1.0280 366.5 13.79 1.0448 1.0280 -1.61 366.5 13.79 1.0862 1.0280 -5.36 366.5 13.79 1.0300 1.0280 -0.19 366.5 13.79 1.0592 1.0280 -2.94 366.5 13.79 1.0628 1.0280 -3.27 366.5 13.79 1.0747 1.0280 -4.34 366.5 13.79 1.1145 1.0280 -7.76 366.5 13.79 1.0680 1.0280 -3.74 366.5 34.47 1.0512 1.0620 1.03 366.5 34.47 1.0828 1.0620 -1.92 366.5 34.47 1.1161 1.0620 -4.84 366.5 34.47 1.0486 1.0620 1.28 366.5 34.47 1.0713 1.0620 -0.86 366.5 34.47 1.0918 1.0620 -2.73 366.5 34.47 1.0963 1.0620 -3.12 366.5 34.47 1.1187 1.0620 -5.06 366.5 34.47 1.0966 1.0620 -3.15 366.5 137.90 1.1828 1.2322 4.17 366.5 137.90 1.2058 1.2322 2.19 366.5 137.90 1.2451 1.2322 -1.04 366.5 137.90 1.1905 1.2322 3.50 366.5 137.90 1.2134 1.2322 1.55 366.5 137.90 1.2468 1.2322 -1.17 366.5 137.90 1.2099 1.2322 1.84 366.5 137.90 1.2524 1.2322 -1.62 366.5 137.90 1.2305 1.2322 0.14 450.0 13.79 0.3804 0.4208 10.63 450.0 13.79 0.4241 0.4208 -0.77 450.0 13.79 0.3681 0.4208 14.32 450.0 13.79 0.4038 0.4208 4.21 450.0 13.79 0.3611 0.4208 16.54 450.0 13.79 0.3658 0.4208 15.04 450.0 20.68 0.4317 0.4255 -1.45 450.0 20.68 0.4089 0.4255 4.05 450.0 20.68 0.4007 0.4255 6.18 450.0 34.47 0.3889 0.4347 11.79 450.0 34.47 0.4355 0.4347 -0.17 450.0 34.47 0.4356 0.4347 -0.20

192

Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 450.0 34.47 0.3724 0.4347 16.74 450.0 34.47 0.4113 0.4347 5.70 450.0 34.47 0.4052 0.4347 7.29 450.0 34.47 0.3662 0.4347 18.72 450.0 34.47 0.4058 0.4347 7.13 450.0 34.47 0.3755 0.4347 15.78 450.0 137.90 0.4280 0.5044 17.85 450.0 137.90 0.4860 0.5044 3.78 450.0 137.90 0.4866 0.5044 3.65 450.0 137.90 0.4171 0.5044 20.93 450.0 137.90 0.4614 0.5044 9.32 450.0 137.90 0.4537 0.5044 11.17 450.0 137.90 0.4122 0.5044 22.36 450.0 137.90 0.4564 0.5044 10.51 450.0 137.90 0.4241 0.5044 18.93 533.0 13.79 0.2417 0.2285 -5.45 533.0 13.79 0.2473 0.2285 -7.59 533.0 13.79 0.2479 0.2285 -7.81 533.0 13.79 0.2235 0.2285 2.25 533.0 13.79 0.2266 0.2285 0.86 533.0 13.79 0.2185 0.2285 4.59 533.0 13.79 0.2141 0.2285 6.74 533.0 13.79 0.2132 0.2285 7.19 533.0 13.79 0.1904 0.2285 20.03 533.0 34.37 0.2518 0.2361 -6.25 533.0 34.37 0.2536 0.2361 -6.92 533.0 34.37 0.2293 0.2361 2.95 533.0 34.37 0.2262 0.2361 4.36 533.0 34.37 0.1973 0.2361 19.65 533.0 137.90 0.2689 0.2739 1.87 533.0 137.90 0.2828 0.2739 -3.14 533.0 137.90 0.2566 0.2739 6.75 533.0 137.90 0.2542 0.2739 7.76 533.0 137.90 0.2497 0.2739 9.70 533.0 137.90 0.2293 0.2739 19.46 700.0 34.47 0.0838 0.1072 27.91 700.0 34.47 0.0738 0.1072 45.24 700.0 34.47 0.0725 0.1072 47.85 700.0 137.90 0.1364 0.1244 -8.83 Overall AAE= 8.14 %

193

IA-10-EDS-Coal Liquids Thurner (1984) ECN= 15.04, calculated at 366.5 K/13.79 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 366.5 13.79 0.8467 0.8472 366.5 13.79 0.7973 0.8472 6.26 366.5 13.79 0.7505 0.8472 12.88 366.5 34.47 0.8723 0.8752 0.34 366.5 34.47 0.8169 0.8752 7.14 366.5 34.47 0.7915 0.8752 10.58 366.5 137.90 1.0004 1.0154 1.50 366.5 137.90 0.9484 1.0154 7.07 450.0 13.79 0.3824 0.3610 -5.60 450.0 13.79 0.3648 0.3610 -1.04 450.0 13.79 0.3432 0.3610 5.18 450.0 13.79 0.3464 0.3610 4.21 450.0 13.79 0.3191 0.3610 13.13 450.0 20.68 0.3755 0.3650 -2.80 450.0 20.68 0.3532 0.3650 3.33 450.0 20.68 0.3297 0.3650 10.70 450.0 34.47 0.3967 0.3729 -5.99 450.0 34.47 0.4086 0.3729 -8.73 450.0 34.47 0.4344 0.3729 -14.15 450.0 34.47 0.4344 0.3729 -14.15 450.0 34.47 0.3758 0.3729 -0.76 450.0 34.47 0.3911 0.3729 -4.64 450.0 34.47 0.4370 0.3729 -14.66 450.0 34.47 0.4325 0.3729 -13.77 450.0 34.47 0.3583 0.3729 4.08 450.0 34.47 0.4535 0.3729 -17.77 450.0 34.47 0.4533 0.3729 -17.73 450.0 137.90 0.4382 0.4327 -1.26 450.0 137.90 0.4193 0.4327 3.19 450.0 137.90 0.4544 0.4327 -4.78 450.0 137.90 0.4928 0.4327 -12.20 450.0 137.90 0.4193 0.4327 3.19 450.0 137.90 0.3927 0.4327 10.18 450.0 137.90 0.4406 0.4327 -1.80 450.0 137.90 0.4916 0.4327 -11.99 450.0 137.90 0.3942 0.4327 9.76 450.0 137.90 0.3743 0.4327 15.60 533.0 13.79 0.2146 0.2015 -6.11 533.0 13.79 0.2355 0.2015 -14.44

194

Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 533.0 13.79 0.2441 0.2015 -17.45 533.0 13.79 0.2380 0.2015 -15.34 533.0 13.79 0.1955 0.2015 3.07 533.0 13.79 0.2309 0.2015 -12.73 533.0 13.79 0.2294 0.2015 -12.16 533.0 13.79 0.2376 0.2015 -15.20 533.0 34.47 0.2402 0.2082 -13.34 533.0 34.47 0.2507 0.2082 -16.97 533.0 34.47 0.2525 0.2082 -17.56 533.0 34.47 0.2436 0.2082 -14.55 533.0 34.47 0.2433 0.2082 -14.44 533.0 137.90 0.2674 0.2415 -9.68 533.0 137.90 0.2862 0.2415 -15.62 533.0 137.90 0.2829 0.2415 -14.63 700.0 34.47 0.0534 0.0979 83.37 700.0 34.47 0.0536 0.0979 82.68 700.0 68.95 0.0863 0.1031 19.52 700.0 68.95 0.0839 0.1031 22.94 700.0 137.90 0.1269 0.1136 -10.48 700.0 137.90 0.1225 0.1136 -7.26 700.0 137.90 0.1194 0.1136 -4.85 450.0 13.79 0.4291 0.3610 -15.87 450.0 13.79 0.3912 0.3610 -7.72 450.0 13.79 0.4437 0.3610 -18.64 450.0 13.79 0.4322 0.3610 -16.48 450.0 13.79 0.4251 0.3610 -15.08 450.0 13.79 0.4246 0.3610 -14.98 450.0 13.79 0.3956 0.3610 -8.75 450.0 13.79 0.4324 0.3610 -16.51 450.0 13.79 0.4279 0.3610 -15.64 450.0 13.79 0.4187 0.3610 -13.78 450.0 13.79 0.4513 0.3610 -20.01 450.0 13.79 0.4278 0.3610 -15.62 Overall AAE= 12.61 %

195

SRC-II-Coal Liquids (Cut-1) Gray et al (1983) ECN=6.89, calculated at 339.6 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

300.3 7.91 0.3545 0.3819 7.72 339.6 7.91 0.2557 0.2556 381.6 14.80 0.1852 0.1838 -0.75 424.5 14.80 0.1342 0.1395 3.95 AAE= 4.14 %

SRC-II-Coal Liquids (Cut-2) Gray et al (1983) ECN=8.62, calculated at 341.1 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

295.5 7.91 0.5999 0.6468 7.83 341.1 7.91 0.3745 0.3741 382.8 7.91 0.2523 0.2542 0.75 421.3 14.80 0.2080 0.1919 -7.76 AAE= 5.44 %

SRC-II-Coal Liquids (Cut-3) Gray et al (1983) ECN=8.50, calculated at 340.4 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

297.8 4.46 0.5688 0.6052 6.41 340.4 7.91 0.3667 0.3671 386.5 11.36 0.2548 0.2421 -4.99 424.3 14.80 0.1925 0.1843 -4.25 AAE= 5.22 %

196

SRC-II-Coal Liquids (Cut-4) Gray et al (1983) ECN=9.461, calculated at 341.5 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

295.0 7.91 0.7503 0.8067 7.51 341.5 7.91 0.4455 0.4455 381.6 7.91 0.3126 0.2999 -4.05 421.4 14.80 0.2461 0.2198 -10.67 AAE= 7.41 %

SRC-II-Coal Liquids (Cut-5) Gray et al (1983) ECN=12.42, calculated at 340.2 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

294.8 7.91 1.6841 1.5855 -5.85 340.2 7.91 0.7963 0.7968 387.6 7.91 0.4478 0.4613 3.02 423.6 7.91 0.3211 0.3306 2.95 463.8 7.91 0.2418 0.2422 0.17 501.8 14.80 0.2006 0.1911 -4.76 AAE= 3.35 %

SRC-II-Coal Liquids (Cut-6) Gray et al (1983) ECN=15.73, calculated at 341.5 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

295.8 7.91 3.4440 2.8454 -17.38 341.5 7.91 1.3057 1.3058 381.9 7.91 0.7084 0.7660 8.13 423.4 7.91 0.4587 0.4924 7.35 465.1 7.91 0.3135 0.3420 9.08 502.0 7.91 0.2378 0.2605 9.55 AAE= 10.30 %

197

SRC-II-Coal Liquids (Cut-7) Gray et al (1983) ECN=16.43, calculated at 381.5 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

296.8 7.91 4.5858 3.1053 -32.28 341.5 7.91 1.5635 1.4313 -8.45 381.5 7.91 0.8344 0.8348 420.9 7.91 0.5327 0.5425 1.84 463.0 7.91 0.3605 0.3712 2.97 505.0 7.91 0.2549 0.2708 6.23 AAE= 10.36 %

SRC-II-Coal Liquids (Cut-8) Gray et al (1983) ECN=20.44, calculated at 380.4 K/ 21.70 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

295.8 7.91 7.7350 5.0127 -35.19 343.2 14.80 2.2782 2.0886 -8.32 380.4 21.70 1.2294 1.2293 422.1 28.59 0.7468 0.7590 1.63 456.9 35.49 0.5427 0.5446 0.36 503.7 42.38 0.3830 0.3742 -2.31 AAE= 9.56 %

SRC-II-Coal Liquids (Cut-9) Gray et al (1983) ECN=19.85, calculated at 382.6 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

296.8 14.80 7.9321 4.7939 -39.56 339.9 7.91 2.3230 2.0962 -9.77 382.6 7.91 1.1421 1.1422 422.6 7.91 0.7195 0.7167 -0.40 463.9 7.91 0.4789 0.4819 0.62 504.8 7.91 0.3632 0.3468 -4.52 AAE= 10.97 %

198

SRC-II-Coal Liquids (Cut-10) Gray et al (1983) ECN=24.90, calculated at 381.9 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

341.4 7.91 3.1902 2.7767 -12.96 381.9 7.91 1.5161 1.5159 422.2 7.91 0.8941 0.9315 4.18 462.8 7.91 0.5798 0.6214 7.17 500.2 7.91 0.4076 0.4536 11.28 AAE= 8.90 %

SRC-II-Coal Liquids (Cut-11) Gray et al (1983) ECN=17.30*, calculated at 383.8 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

296.9 44.61 72.769 25.4700 -65.20 342.2 7.91 8.7558 5.7416 -18.18 383.8 7.91 3.0455 3.0455 424.2 7.91 1.6645 1.8532 6.56 504.0 7.91 0.8182 0.8778 30.71 AAE= 30.16 % * ECN calculated from the aromatic correlation

SRC-II-Coal Liquids (Cut-12) Gray et al (1983) ECN=18.40*, calculated at 426.3 K/ 42.38 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

342.6 42.38 21.0070 11.1992 -46.69 346.8 28.59 17.0390 9.8781 -42.03 426.3 42.38 2.0987 2.1012 464.5 42.38 1.2207 1.1963 -2.00 506.9 42.38 0.7512 0.7071 -5.87 AAE= 24.14 % * ECN calculated from the aromatic correlation

199

SRC-II-Coal Liquids (Cut-13) Gray et al (1983) ECN=18.92*, calculated at 420.4 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 342.9 7.91 39.1450 13.9958 -64.25 380.2 7.91 7.2242 5.8892 -18.48 420.4 7.91 2.7561 2.7516 459.9 7.91 1.3837 1.4830 7.18 496.3 7.91 0.9046 0.9154 1.19 AAE= 22.87 % * ECN calculated from the aromatic correlation

SRC-II-Coal Liquids (Cut-15) Gray et al (1983) ECN=18.06*, calculated at 382.3 K/ 7.91 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

339.9 7.91 14.7000 10.2135 -30.52 382.3 7.91 4.0711 4.0767 423.3 7.91 1.7477 1.9790 13.23 463.1 7.91 1.0129 1.1090 9.49 501.5 7.91 0.6606 0.6920 4.75 AAE= 14.50 % * ECN calculated from the aromatic correlation

SRC-II-Coal Liquids (Cut-16) Gray et al (1983) ECN=19.29*, calculated at 420.4 K/ 56.17 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

341.9 56.17 53.4600 17.0749 -68.06 379.6 56.17 8.7925 6.9420 -21.05 420.4 56.17 3.1453 3.1438 460.2 56.17 1.5671 1.6620 6.06 500.0 56.17 1.0300 0.9725 -5.58 AAE= 25.11 % * ECN calculated from the aromatic correlation

200

Surrogate Coal Liquid Oil 1 (Dietz Coal) Current work ECN=17.67, calculated at 325.55 K/1.01 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

314.35 1.01 2.4520 2.6252 7.06 315.95 1.01 2.4130 2.5497 5.67 317.45 1.01 2.3970 2.4816 3.53 318.85 1.01 2.3470 2.4203 3.12 320.05 1.01 2.2830 2.3693 3.78 321.25 1.01 2.2500 2.3197 3.10 322.45 1.01 2.2213 2.2716 2.26 323.45 1.01 2.1986 2.2325 1.54 324.65 1.01 2.1865 2.1868 0.01 325.55 1.01 2.1532 2.1533 326.65 1.01 2.1217 2.1134 -0.39 327.65 1.01 2.0997 2.0779 -1.04 328.65 1.01 2.0643 2.0433 -1.02 329.65 1.01 2.0599 2.0094 -2.45 330.65 1.01 2.0425 1.9763 -3.24 331.65 1.01 2.0198 1.9440 -3.75 332.65 1.01 2.0030 1.9123 -4.53 333.55 1.01 1.9930 1.8845 -5.45 AAE= 3.05 %

201

Surrogate Coal Liquid Oil 2 (Dietz Coal) Current work ECN=16.92, calculated at 322.75 K/1.01 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 311.75 1.01 2.2740 2.5006 9.96 314.85 1.01 2.1490 2.3640 10.00 316.25 1.01 2.1370 2.3056 7.89 317.35 1.01 2.1260 2.2611 6.35 318.35 1.01 2.1140 2.2216 5.09 319.35 1.01 2.1030 2.1831 3.81 320.25 1.01 2.0910 2.1492 2.78 321.15 1.01 2.0820 2.1160 1.63 321.95 1.01 2.0710 2.0871 0.78 322.75 1.01 2.0600 2.0587 323.55 1.01 2.0490 2.0308 -0.89 324.25 1.01 2.0380 2.0069 -1.53 325.05 1.01 2.0280 1.9799 -2.37 326.55 1.01 2.0090 1.9308 -3.89 327.25 1.01 2.0000 1.9084 -4.58 328.05 1.01 1.9910 1.8833 -5.41 329.45 1.01 1.9720 1.8404 -6.67 330.25 1.01 1.9630 1.8165 -7.46 331.75 1.01 1.9450 1.7728 -8.85 332.45 1.01 1.9370 1.7529 -9.50 333.25 1.01 1.9290 1.7305 -10.29 AAE= 5.49 %

202

Shenhua-1- Coal Liquids Zhang et al (2006) ECN=11.30, calculated at 323.15 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 293.15 1.013 1.0875 1.2820 17.88 303.15 1.013 0.9250 1.0905 17.89 313.15 1.013 0.8650 0.9373 8.36 323.15 1.013 0.8125 0.8132 333.15 1.013 0.7725 0.7115 -7.89 343.15 1.013 0.7250 0.6274 -13.46 353.15 1.013 0.6850 0.5573 -18.65 AAE=14.02 %

Shenhua-2- Coal Liquids Zhang et al (2006) ECN=16.77, calculated at 333.15 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

293.15 1.013 4.1775 3.5147 -15.87 303.15 1.013 3.2125 2.8793 -10.37 313.15 1.013 2.5250 2.3890 -5.38 323.15 1.013 1.9825 2.0053 1.15 333.15 1.013 1.7000 1.7010 343.15 1.013 1.4200 1.4567 2.59 353.15 1.013 1.2000 1.2586 4.88 AAE= 6.71 %

Shenhua-3- Coal Liquids Zhang et al (2006) ECN=20.52, calculated at 333.15 K/1.013 bar Temperature Pressure (Bar) Experimental Calculated Error, (K) Viscosity (mPa-s) Viscosity (mPa-s) %

293.15 1.013 7.0550 5.4721 -22.44 303.15 1.013 5.1725 4.4183 -14.58 313.15 1.013 4.1230 3.6165 -12.29 323.15 1.013 3.1330 2.9971 -4.34 333.15 1.013 2.5130 2.5120 343.15 1.013 2.0800 2.1271 2.27 353.15 1.013 1.7800 1.8183 2.15 AAE= 9.68 %

203

Shenhua-4-Coal Liquids Zhang et al (2006) ECN=15.72*, calculated at 343.15 K/1.013 bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

293.15 1.013 25.5100 12.7053 -48.77 303.15 1.013 16.4750 9.7041 -39.47 313.15 1.013 10.2500 7.5405 -24.47 323.15 1.013 6.3875 5.9515 -4.42 333.15 1.013 4.7725 4.7646 2.34 343.15 1.013 3.9575 3.8642 353.15 1.013 3.0725 3.1713 5.65 AAE= 20.85 % * ECN calculated from the aromatic correlation

Utah Distillate Sharma (1980) ECN=14.92, calculated at 323.15 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 294.26 1.013 2.7900 2.5662 -8.02 298.71 1.013 2.5700 2.3572 -8.28 313.15 1.013 1.8700 1.8192 -2.72 323.15 1.013 1.5400 1.5412 333.15 1.013 1.2900 1.3187 2.22 343.15 1.013 1.1100 1.1386 2.58 AAE= 4.77 %

Western Kentucky Whole Oil Sharma (1980) ECN=13.60*, calculated at 323.15 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

300.93 1.013 5.6600 4.8814 -13.76 313.15 1.013 3.9200 3.7583 -4.12 323.15 1.013 3.0800 3.0793 330.93 1.013 2.5700 2.6592 3.47 AAE= 7.12 % * ECN calculated from the aromatic correlation

204

Western Kentucky Distillate Sharma (1980) ECN=15.01, calculated at 322.04 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

298.71 1.013 2.5700 2.3931 -6.88 313.15 1.013 1.8800 1.8454 -1.84 322.04 1.013 1.5900 1.5909 333.15 1.013 1.3400 1.3364 -0.27 343.15 1.013 1.1500 1.1534 0.30 348.71 1.013 1.0700 1.0667 -0.31 AAE= 1.92 %

SRC-I-Naphtha Sharma (1980) ECN=8.81, calculated at 324.26 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 289.82 1.013 0.7200 0.7371 2.37 300.93 1.013 0.6100 0.6303 3.33 313.15 1.013 0.5300 0.5376 1.42 324.26 1.013 0.4700 0.4700 331.48 1.013 0.4300 0.4328 0.64 AAE= 1.94 %

1046 Naphtha Sharma (1980) ECN=9.85, calculated at 322.04 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

289.82 1.013 0.9800 0.9614 -1.89 303.15 1.013 0.7700 0.7869 2.20 314.26 1.013 0.6700 0.6747 0.70 322.04 1.013 0.6100 0.6096 332.04 1.013 0.5400 0.5388 -0.22 AAE= 1.25 %

205

878-Middle Distillate Sharma (1980) ECN=18.53, calculated at 335.37 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

297.59 1.013 5.1300 4.0392 -21.26 313.15 1.013 3.2000 2.9697 -7.20 323.15 1.013 2.4500 2.4753 1.03 335.37 1.013 2.0100 2.0108 345.37 1.013 1.6100 1.7151 6.53 359.82 1.013 1.2300 1.3844 12.55 AAE= 9.72 %

Synthoil Distillate Sharma (1980) ECN=14.43*, calculated at 330.93 K Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

300.93 1.013 9.8700 6.4643 -34.51 313.15 1.013 5.8900 4.8817 -17.12 323.15 1.013 4.2800 3.9413 -7.91 330.93 1.013 3.3700 3.3669 344.26 1.013 2.3500 2.6133 11.21 359.82 1.013 1.8100 1.9910 10.00 AAE= 16.15 % * ECN calculated from the aromatic correlation

206

Results for Light Crude Oils and Fractions:

Arabian Light Crude (ALC) (Boiling point (Tb) =429.4 K) Kanti et al (1989) ECN=9.13, calculated at 313.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 298.15 1 0.6900 0.7098 2.86 313.15 1 0.5800 0.5800 333.15 1 0.4750 0.4558 -4.04 298.15 200 0.8500 0.8680 2.11 313.15 200 0.7100 0.7093 -0.10 333.15 200 0.5700 0.5574 -2.21 298.15 400 1.0200 1.0269 0.68 313.15 400 0.8450 0.8392 -0.69 333.15 400 0.6850 0.6595 -3.72 298.15 600 1.1900 1.1859 -0.34 313.15 600 0.9950 0.9691 -2.60 333.15 600 0.8050 0.7616 -5.39 AAE= 2.25 %

207

Arabian Light Crude (Tb =446.9 K) Kanti et al (1989) ECN=10.01, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

298.15 1 0.8400 0.8795 4.70 313.15 1 0.6900 0.7099 2.88 333.15 1 0.5500 0.5498 353.15 1 0.4000 0.4383 9.57 373.15 1 0.2950 0.3580 21.35 298.15 200 1.0600 1.0755 1.46 313.15 200 0.8500 0.8681 2.13 333.15 200 0.6700 0.6723 0.34 353.15 200 0.5400 0.5360 -0.75 373.15 200 0.4300 0.4378 1.81 298.15 400 1.2800 1.2725 -0.59 313.15 400 1.0400 1.0271 -1.24 333.15 400 0.7900 0.7955 0.69 353.15 400 0.6500 0.6341 -2.44 373.15 400 0.5350 0.5180 -3.19 298.15 600 1.5500 1.4695 -5.19 313.15 600 1.2500 1.1861 -5.11 333.15 600 0.9400 0.9186 -2.28 353.15 600 0.7700 0.7323 -4.90 373.15 600 0.6300 0.5981 -5.06 AAE= 3.98 %

208

Arabian Light Crude (Tb=468.7 K) Kanti et al (1989) ECN=11.43, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

298.15 1 1.1000 1.2148 10.43 313.15 1 0.9050 0.9627 6.38 333.15 1 0.7300 0.7294 353.15 1 0.5350 0.5703 6.60 298.15 200 1.3500 1.4855 10.04 313.15 200 1.1300 1.1773 4.19 333.15 200 0.8400 0.8920 6.19 353.15 200 0.6850 0.6975 1.82 298.15 400 1.6400 1.7576 7.17 313.15 400 1.3300 1.3930 4.73 333.15 400 1.0500 1.0554 0.52 353.15 400 0.8150 0.8252 1.25 298.15 600 2.0000 2.0298 1.49 313.15 600 1.5700 1.6086 2.46 333.15 600 1.2200 1.2188 -0.10 353.15 600 0.9600 0.9530 -0.73 AAE= 4.27 %

209

Arabian Light Crude (Bp =489.15 K) Kanti et al (1989) ECN=12.19, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

298.15 1 1.4300 1.4273 -0.19 313.15 1 1.1100 1.1210 0.99 333.15 1 0.8400 0.8402 353.15 1 0.6350 0.6507 2.47 373.15 1 0.5200 0.5179 -0.40 298.15 200 1.8700 1.8818 0.63 313.15 200 1.4200 1.4779 4.08 333.15 200 1.0600 1.1078 4.51 353.15 200 0.8100 0.8579 5.91 373.15 200 0.6500 0.6828 5.05 298.15 400 2.2700 2.3385 3.02 313.15 400 1.7300 1.8366 6.16 333.15 400 1.2800 1.3766 7.55 353.15 400 0.9900 1.0661 7.69 373.15 400 0.8000 0.8486 6.07 298.15 600 2.7900 2.7953 0.19 313.15 600 2.1100 2.1953 4.04 333.15 600 1.5400 1.6455 6.85 353.15 600 1.1900 1.2743 7.09 373.15 600 0.9400 1.0143 7.91 AAE= 4.25 %

210

Arabian Light Crude (Tb= 508.35 K) Kanti et al (1989) ECN=13.36, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

298.15 1 1.8600 1.8006 -3.19 313.15 1 1.4200 1.3961 -1.68 333.15 1 1.0300 1.0305 353.15 1 0.7950 0.7873 -0.97 298.15 200 2.3000 2.3740 3.22 313.15 200 1.7800 1.8406 3.41 333.15 200 1.3000 1.3586 4.51 353.15 200 0.9900 1.0379 4.84 298.15 400 2.8900 2.9502 2.08 313.15 400 2.1800 2.2874 4.93 333.15 400 1.5900 1.6884 6.19 353.15 400 1.2100 1.2899 6.60 298.15 600 3.6000 3.5264 -2.05 313.15 600 2.6900 2.7341 1.64 333.15 600 1.9200 2.0181 5.11 353.15 600 1.4500 1.5418 6.33 AAE= 3.78 %

211

Arabian Light Crude (Tb=526.5 K) Kanti et al (1989) ECN=14.62, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

298.15 1 2.3700 2.2633 -4.50 313.15 1 1.7500 1.7332 -0.96 333.15 1 1.2600 1.2605 353.15 1 0.9500 0.9504 0.04 373.15 1 0.7500 0.7386 -1.52 298.15 200 3.0900 2.9840 -3.43 313.15 200 2.2800 2.2850 0.22 333.15 200 1.6400 1.6618 1.33 353.15 200 1.2400 1.2530 1.05 373.15 200 0.9800 0.9737 -0.64 298.15 400 3.7800 3.7083 -1.90 313.15 400 2.8400 2.8396 -0.01 333.15 400 2.0300 2.0652 1.73 353.15 400 1.5100 1.5571 3.12 373.15 400 1.1900 1.2101 1.69 298.15 600 4.7800 4.4325 -7.27 313.15 600 3.5300 3.3942 -3.85 333.15 600 2.4700 2.4685 -0.06 353.15 600 1.8300 1.8612 1.71 373.15 600 1.4200 1.4464 1.86 AAE= 1.94 %

212

Arabian Light Crude (Bp=543.6 K) Kanti et al (1989) ECN=15.82, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

298.15 1 3.0000 2.7564 -8.12 313.15 1 2.1500 2.0887 -2.85 333.15 1 1.5000 1.5002 353.15 1 1.1300 1.1187 -1.00 373.15 1 0.9300 0.8608 -7.44 298.15 200 3.9200 3.6340 -7.30 313.15 200 2.8600 2.7538 -3.71 333.15 200 2.0100 1.9779 -1.60 353.15 200 1.5100 1.4749 -2.33 373.15 200 1.1600 1.1349 -2.16 298.15 400 5.0600 4.5160 -10.75 313.15 400 3.6100 3.4222 -5.20 333.15 400 2.4900 2.4580 -1.29 353.15 400 1.8700 1.8328 -1.99 373.15 400 1.4200 1.4104 -0.68 298.15 600 6.4200 5.3981 -15.92 313.15 600 4.4900 4.0906 -8.90 333.15 600 3.0800 2.9380 -4.61 353.15 600 2.2600 2.1908 -3.06 373.15 600 1.7200 1.6858 -1.99 AAE= 4.78 %

213

Arabian Light Crude (Bp=559.8 K) Kanti et al (1989) ECN=17.27, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

298.15 1 3.8400 3.4057 -11.31 313.15 1 2.6700 2.5529 -4.39 333.15 1 1.8100 1.8099 353.15 1 1.3200 1.3342 1.07 373.15 1 1.1000 1.0162 -7.62 298.15 200 5.3200 4.4900 -15.60 313.15 200 3.6700 3.3657 -8.29 333.15 200 2.4900 2.3862 -4.17 353.15 200 1.8200 1.7590 -3.35 373.15 200 1.3800 1.3397 -2.92 298.15 400 6.8600 5.5799 -18.66 313.15 400 4.7000 4.1826 -11.01 333.15 400 3.1000 2.9654 -4.34 353.15 400 2.2500 2.1859 -2.85 373.15 400 1.7000 1.6649 -2.07 298.15 600 8.7900 6.6697 -24.12 313.15 600 6.2600 4.9995 -20.14 333.15 600 3.8600 3.5446 -8.17 353.15 600 2.7200 2.6129 -3.94 373.15 600 2.0600 1.9901 -3.39 AAE= 8.28 %

Kuwaiti Petroleum Fraction-1 Riazi et al (2001) ECN=6.56, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

310.95 1 0.3110 0.3103 -0.24 322.05 1 0.2730 0.2775 1.64 333.15 1 0.2500 0.2500 344.25 1 0.2280 0.2268 -0.53 355.35 1 0.2110 0.2070 -1.90 372.05 1 0.1920 0.1823 -5.07 AAE= 1.88 %

214

Kuwaiti Petroleum Fraction-2 Riazi et al (2001) ECN=8.64, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

310.95 1 0.5140 0.5303 3.18 322.05 1 0.4500 0.4636 3.03 333.15 1 0.4090 0.4090 344.25 1 0.3590 0.3637 1.32 355.35 1 0.3340 0.3258 -2.44 372.05 1 0.2870 0.2796 -2.58 AAE= 2.51 %

Kuwaiti Petroleum Fraction-3 Riazi et al (2001) ECN=11.95, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 310.95 1 1.3020 1.1058 -15.07 322.05 1 1.0110 0.9378 -7.24 333.15 1 0.8040 0.8041 344.25 1 0.6820 0.6964 2.11 355.35 1 0.5820 0.6085 4.56 372.05 1 0.4810 0.5044 4.86 AAE= 6.77 %

Kuwaiti Petroleum Fraction-4 Riazi et al (2001) ECN=11.93, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

310.95 1 1.1020 1.1014 -0.06 322.05 1 0.9030 0.9342 3.46 333.15 1 0.8010 0.8012 344.25 1 0.6950 0.6939 -0.15 355.35 1 0.5890 0.6065 2.96 372.05 1 0.4870 0.5027 3.23 AAE= 1.97 %

215

Kuwaiti Petroleum Fraction-5 Riazi et al (2001) ECN=12.96, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

310.95 1 1.4600 1.3443 -7.93 322.05 1 1.1520 1.1311 -1.81 333.15 1 0.9630 0.9628 344.25 1 0.8120 0.8281 1.98 355.35 1 0.7040 0.7190 2.13 372.05 1 0.5780 0.5906 2.18 AAE= 3.20 %

Kuwaiti Petroleum Fraction-6 Riazi et al (2001) ECN=18.28, calculated at 333.15 K/ 1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

310.95 1 5.1840 3.0086 -41.96 322.05 1 3.8740 2.4552 -36.62 333.15 1 2.0310 2.0309 344.25 1 1.4220 1.7006 19.60 355.35 1 1.0840 1.4400 32.84 372.05 1 0.7820 0.3103 46.07 AAE= 35.42 %

216

Abu Dhabi Crude (Crude-1) Moharam and Fahim (1995) ECN=16.34, calculated at 374.80 K/86.9 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 374.8 86.9 0.8970 0.8970 374.8 89.6 0.9000 0.9009 0.10 374.8 103.4 0.9180 0.9207 0.29 374.8 137.9 0.9630 0.9702 0.75 374.8 172.4 1.0080 1.0197 1.16 374.8 206.8 1.0530 1.0691 1.53 374.8 241.3 1.0990 1.1186 1.78 374.8 275.7 1.1440 1.1680 2.09 374.8 289.5 1.1630 1.1878 2.13 374.8 310.2 1.1900 1.2175 2.31 374.8 344.6 1.2360 1.2669 2.50 AAE= 1.46 %

Abu Dhabi Crude (Crude-2) Moharam and Fahim (1995) ECN=12.92, calculated at 360.90 K/78.6 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

360.9 78.6 0.6680 0.6679 360.9 103.4 0.6880 0.6944 0.93 360.9 137.9 0.7200 0.7313 1.57 360.9 172.4 0.7500 0.7682 2.42 360.9 206.8 0.7810 0.8049 3.06 360.9 275.7 0.8470 0.8785 3.72 360.9 344.6 0.9080 0.9522 4.87 AAE= 2.76 %

217

Abu Dhabi Crude (Crude-3) Moharam and Fahim (1995) ECN=15.26, calculated at 388.2 K/102.7 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

388.2 102.7 0.6730 0.6731 388.2 136.1 0.6950 0.7091 2.03 388.2 172.4 0.7170 0.7482 4.35 388.2 206.8 0.7390 0.7852 6.26 388.2 241.3 0.7610 0.8224 8.07 388.2 275.7 0.7820 0.8594 9.90 388.2 314.6 0.8070 0.9013 11.69 388.2 344.6 0.8260 0.9336 13.03 AAE= 7.90 %

Abu Dhabi Crude (Crude-4) Moharam and Fahim (1995) ECN=14.08, calculated at 388.2 K/109.7 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

388.2 109.7 0.5790 0.5793 388.2 117.1 0.5870 0.5861 -0.15 388.2 124 0.5950 0.5925 -0.42 388.2 131 0.6030 0.5990 -0.66 388.2 137.9 0.6100 0.6054 -0.75 388.2 206.8 0.6870 0.6693 -2.58 388.2 275.7 0.7660 0.7331 -4.29 388.2 344.6 0.8480 0.7970 -6.02 AAE= 2.12 %

218

Abu Dhabi Crude (Crude-5) Moharam and Fahim (1995) ECN=15.68, calculated at 383.2 K/68.5 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s) 383.2 68.5 0.7500 0.7499 383.2 103.4 0.8010 0.7918 -1.15 383.2 137.9 0.8540 0.8332 -2.44 383.2 206.8 0.9610 0.9158 -4.70 383.2 275.7 1.0690 0.9985 -6.59 383.2 344.6 1.1740 1.0812 -7.91 AAE= 4.56 %

Abu Dhabi Crude (Crude-6) Moharam and Fahim (1995) ECN=16.67, calculated at 385.9 K/62.1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

385.9 62.1 0.8130 0.8133 385.9 68.9 0.8210 0.8221 0.14 385.9 137.9 0.9030 0.9119 0.98 385.9 206.8 0.9870 1.0015 1.47 385.9 275.7 1.0710 1.0912 1.89 385.9 344.6 1.1540 1.1809 2.33 AAE= 1.36 %

Abu Dhabi Crude (Crude-7) Moharam and Fahim (1995) ECN=15.03, calculated at 385.4 K/82.1 Bar Temperature Pressure (Bar) Experimental Calculated Error, % (K) Viscosity (mPa-s) Viscosity (mPa-s)

385.4 82.1 0.6750 0.6753 385.4 89.6 0.6810 0.6834 0.36 385.4 103.4 0.6920 0.6984 0.92 385.4 137.9 0.7230 0.7356 1.75 385.4 206.8 0.7820 0.8101 3.59 385.4 275.7 0.8410 0.8845 5.18 385.4 344.6 0.9010 0.9590 6.44 AAE= 3.04 %

219