Balanus Glandula Phylum: Arthropoda, Crustacea Class: Thecostraca, Cirripedia Order: Thoracica, Sessilia Acorn Barnacle Family: Balanidae

Total Page:16

File Type:pdf, Size:1020Kb

Balanus Glandula Phylum: Arthropoda, Crustacea Class: Thecostraca, Cirripedia Order: Thoracica, Sessilia Acorn Barnacle Family: Balanidae Balanus glandula Phylum: Arthropoda, Crustacea Class: Thecostraca, Cirripedia Order: Thoracica, Sessilia Acorn barnacle Family: Balanidae Description plates themselves include the rostrum, Size: Up to 3 cm in diameter, but usually less opposite it the carina and between the carina than 1.5 cm (Ricketts and Calvin 1971; and rostrum are the four side plates, the Kozloff 1993). carinolateral and rostrolateral plates (see Color: Shell usually white, often irregular and Plate 213, Newman 2007). color varies with state of erosion. Cirri are Opercular Valves: Valves consist of black and white (see Plate 11, Kozloff 1993). two pairs of movable plates inside the wall, General Morphology: Members of the which close the aperture: the tergum and the Cirripedia, or barnacles, can be recognized by scutum (Figs. 3a, 4, 5). their feathery thoracic limbs (called cirri) that Terga: The terga are the are used for feeding. There are six pairs of upper, smaller plate pair and each tergum has cirri in B. glandula (Fig. 1). Sessile barnacles a short spur at its base (Fig. 4), deep crests are surrounded by a shell that is composed for depressor muscles, a prominent articular of a flat basis attached to the substratum, a ridge, and an articular furrow (Pilsbry 1916). wall formed by several articulated plates (six Scuta: The scuta have pits on in Balanus species, Fig. 3) and movable either side of a short adductor ridge (Fig. 5), opercular valves including terga and scuta fine growth ridges, and a prominent articular (Newman 2007) (Figs. 2, 4, 5). ridge. Shell: Aperture: The shell opening, from Shape: Shell surrounding the which the cirri emerge when feeding, is barnacle body is pyramidal in shape (see Fig. controlled by movement of the terga and 99, Kozloff 1993) (Fig. 2). scuta in conjunction with adductor and Basis: Calcareous and flat, attached depressor muscles. When closed, plates to hard substrate, rendering B. glandula a produce a distinct and sinuous line at their sessile, or attached barnacle junction in B. glandula (Kozloff 1993). (Balanomorpha). Cirri: Feathery, black and white and Wall: Formed by the six plates (Fig. conspicuous. Each of the six pairs of legs 2) and composed of irregular, vertical, filled (=cirri), bears 4–7 pairs of setae (Nishizaki tubes, giving the exterior the appearance of and Carrington 2014). The cirri of B. glandula rough ribbing. were the first observed to exhibit Longitudinal Tubes: Only ecophenotypic plasticity, where individuals present in immature individuals (Newman adjusted response time (i.e. cirral withdrawl) 2007). to specific habitats. An adjustment from one Plates: Calcareous, nearly habitat (e.g. wave-exposed) to the next (e.g. conical and columnar. Six in family protected) occurred over a period of two molts Balanidae. Each plate is composed of (approximately 18 days) (Marchinko 2003). parietes (exposed triangular part) (Figs. 3a, 3b), alae (the plate overlapping plate edges) Possible Misidentifications and radii (the plate edge marked off from the There are three groups (i.e. superorders) of parietes by a definite change in direction of cirripeds including the Rhizocephala growth lines) (Fig. 3b) (Newman 2007). The (parasites among crustaceans), the Hiebert, T.C. and M. Jarvis. 2015. Balanus glandula. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12694 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to [email protected] Acrothoracica (shell-less burrowing forms), B. crenatus or B. glandula. Generally, these and the Thoracica. The Thoracica contains latter two species are found higher in the 1,000 species worldwide including the intertidal than is S. cariosus, which occurs monophyletic taxa, Lepadomorpha, the mostly subtidally. stalked barnacles, and the Balanomorpha, or Balanidae encompasses the genera sessile barnacles (Perez-Losada et al. 2008; Megabalanus, Paraconcavus, and Chan et al. 2014). Among the sessile forms, Menesiniella (each with one local species), there are four families represented locally. Amphibalanus (three local species) and The family Chthamaloidea includes members Balanus (four local species). Balanus of the genus Chthamalus. Juvenile Balanus crenatus is generally found in the intertidal glandula and Chthamalus dalli, often found at a lower level than the ubiquitous and together, are very alike. The genus morphologically similar B. glandula. Chthamalus has alae on its rostral plates, not Balanus glandula has no longitudinal wall radii (i.e. the rostral plate is overlapped, tubes (except when young) and it differs in rather than underlapped, as in B. glandula, the structure of terga and scuta: the terga by the rostrolateral plates). Chthamalus dalli are very wide and have longer spurs and is found both with and at higher tide levels the scuta have no adductor ridges (compare than B. glandula, and individuals are usually Fig. 5 with B. glandula Figs. 4, 5, this brown. The family Tetraclitoidea has one guide). Balanus crenatus, on the other species locally (Tetraclita rubescens), and is hand, has a shell wall with a single row of characterized by a wall that is composed of uniformly spaced tubes (Newman 2007). four plates (rather than six in the Balanidae). Balanus crenatus is a difficult barnacle to The remaining two families are the identify: "Not only does every external Balanidae and Archaeobalanidae. The character vary greatly in this species, but Archaeobalanidae includes the genera the internal parts very often vary to a Armatobalanus, Conopea, Hesperibalanus surprising degree, and to add to the and Semibalanus (each with one local difficulty, groups of specimens do not rarely species). The latter genus includes a vary in the same manner” (Charles Darwin common local intertidal species S. cariosus in Cornwall 1951). Balanus nubilus, the (and former member of the genus Balanus). giant acorn barnacle, is easily distinguished An isolated S. cariosus, is with splinter-like from B. glandula by its large size, reaching spines, nearly black cirri and is not likely to be 100 mm in diameter, and a shell aperture confused with another barnacle. It has a that is relatively large and flaring (Newman thatched appearance, being irregularly ribbed 2007). Balanus trigonus is a lower intertidal and its walls have uneven, longitudinal tubes species with a southern distribution (to (Pilsbry 1916). However, where it is crowded Monterey Bay, California). or eroded, these spines may be worn off or not developed, and the barnacle would have Ecological Information to be distinguished from other common Range: Type range includes Alaska to Baja barnacles by its terga and scuta, and by its California (Darwin 1854), B. glandula was unique and unusual membraneous base. introduced to South America (Argentina) and Semibalanus cariosus have terga with a long Japan (Kado 2003; Newman 2007; Rashidul pointed spur, quite different from either B. Alam et al. 2014). crenatus or B. glandula. Semibalanus Local Distribution: Ubiquitous in a wide cariosus commonly co-occurs with B. variety of locations from the open rocky crenatus, B. glandula, as well as with shores to the salty or brackish bays of the Chthamalus dalli. Juvenile S. cariosus will Oregon coast (Kozloff 1993), where show a typical heavy ribbing and starry basis populations show genetic heterogeneity over outline, which would distinguish it from young great distances (Barshis et al. 2011), except Hiebert, T.C. and M. Jarvis. 2015. Balanus glandula. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. in central California where gene flow is more Life-History Information restricted between populations (Sotka et al. Reproduction: Cirripeds usually brood their 2004). eggs and B. glandula produces 2–6 Habitat: Very adaptable to a variety of broods/year, in winter and spring (Oct–May in habitats. Suitable substrates include rocks, southern California), and through September pilings, wood, other crustaceans, molluscs, on Vancouver Island and December in Friday and barnacles. Often in conditions with Harbor (Høeg et al. 1987). Barnacles are one extreme exposure to sun, wind, rain and can of the few sessile organisms with internal tolerate estuarine conditions quite well, fertilization and plasticity in penis length has including those of poor water circulation, low been observed, with shorter penises in high oxygen, and little wave action (Ricketts and wave-energy environments (Neufeld and Calvin 1971). Populations in polluted areas Palmer 2008). Individuals are hermaphroditic have been shown to exhibit lower genetic and self-fertilization is possible, but not diversity, with more individuals of the same common (MacGinitie and MacGinitie 1949; haplotype (southern California, Ma et al. Yonge 1963). Spermcast spawning can 2000). occur (Barazandeh et al. 2014). Eggs and Salinity: Collected at salinities of 30, but can embryos are retained in ovisacs within the also survive at lower salinities (Ricketts and mantle cavity and are discharged as nauplii Calvin 1971). Balanus glandula resists after four months (Yonge 1963; Høeg et al. desiccation
Recommended publications
  • Black Oystercatcher Diet and Provisioning 2014 Annual Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Black Oystercatcher Chick Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 ON THIS PAGE Nest camera captures a black oystercatcher provisioning chick on Natoa Island. Photograph Courtesy: NPS/Kenai Fjords National Park ON THE COVER Black oystercatchers at nest in Aialik Bay, Kenai Fjords National Park Photograph by: NPS/Katie Thoresen Black Oystercatcher Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 Sam Stark1, Brian Robinson2 and Laura M. Phillips1 1National Park Service Kenai Fjords National Park PO Box 1727 Seward, AK 99664 2 University of Alaska, Fairbanks Department of Biology and Wildlife PO Box 756100 Fairbanks, AK 99775 January 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Appendix 1 Table A1
    OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S.
    [Show full text]
  • Does the Acorn Barnacle Balanus Glandula Exhibit Predictable Gradients in Metabolic Performance Across the Intertidal Zone?
    Warren J. Baker Endowment for Excellence in Project-Based Learning Robert D. Koob Endowment for Student Success FINAL REPORT Final reports will be published on the Cal Poly Digital Commons website(http://digitalcommons.calpoly.edu). I. Project Title Does the acorn barnacle Balanus glandula exhibit predictable gradients in metabolic performance across the intertidal zone? II. Project Completion Date 2/2019 III. Student(s), Department(s), and Major(s) (1) Kali Horn, Biological Sciences Department, M.S. Biological Sciences IV. Faculty Advisor and Department Kristin Hardy, Biological Sciences Department V. Cooperating Industry, Agency, Non-Profit, or University Organization(s) NA VI. Executive Summary Using funding from the Baker-Koob endowment, I successfully completed an experiment looking at metabolic variation in the common acorn barnacle, Balanus glandula, across tidal heights. We characterized the temperature profile across the zone as well to have data explicitly describing the abiotic variability from the upper intertidal zone to the low. Myself and many undergraduates collected barnacles from the top middle and bottom of the B.glandula distribution and ran the individuals through a suite of experiments to characterize the ‘metabolic phenotype’ . We defined the metabolic phenotype with a comprehensive suite of biochemical (e.g., citrate synthase and lactate dehydrogenase activity), physiological (VO2, aerobic scope) and behavioral (feeding rate) indices of metabolism. After removal from the intertidal zone, barnacles were placed in our intermittent respirometry system to calculate an average oxygen consumption rate over a 24h period. During the first two hours of the experiment, I conducted a behavioral observation to determine overall activity and feeding rate.
    [Show full text]
  • 10620150100042Co*
    CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS MINISTERIO DE CIENCIA, TECNOLOGIA E INNOVACION PRODUCTIVA Memoria 2014 CONVOCATORIA: Memoria 2014 SIGLA: CENPAT CENTRO NAC.PATAGONICO (I) DIRECTOR: GONZÁLEZ-JOSÉ, ROLANDO *10620150100042CO* 10620150100042CO 2014 MINISTERIO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN PRODUCTIVA CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS MEMORIA UNIDADES EJECUTORAS 1. IDENTIFICACION DE LA UNIDAD EJECUTORA - VERIFICAR: Estos serán los datos donde se envien las comunicaciones formales 1.1 Datos Básicos (Instituto, Centro Cientro Científico Tecnológico o Programa o Laboratorio) Sigla Centro Nacional Patagónico CENPAT Domicilio Registrado / Rectificado Calle Bv. Almirante Brown 2915 Cód.Postal: U9120ACD Localidad: Puerto Madryn Provincia: Chubut Teléfonos: 54 02804 4883184 Fax: 54 0280 4883543 Correo Electrónico: [email protected] Web: www.cenpat-conicet.gob.ar Domicilio Rectificado Calle Cód.Postal: Localidad: Provincia: Teléfonos: Fax: Correo Electrónico: Web: DIRECTOR: Apellido/s Nombre/s Gonzalez-José Rolando Documento Inscripción AFIP DNI Nº 23.600.840 CUIL 20-23600840-2 Correo Electrónico: [email protected] Dans, Silvana Laura VICE-DIRECTOR (Apellido y Nombre): ç Gran Area de Conocimiento Código Otras Areas SI Cs. Agrarias, de la Ingeniería y de Materiales KA SI Cs. Biológicas y de la Salud KB SI Servicios SI Cs. Exactas y Naturales KE NO Centros Cientíco Tecnológico SI Cs. Sociales y Humanidades KS SI Tecnología KT 1.2 Dependencia Institucional Tipo de relación
    [Show full text]
  • Supplementary Materials for Tsunami-Driven Megarafting
    Supplementary Materials for Commented [ams1]: Please use SM template provided Tsunami-Driven Megarafting: Transoceanic Species Dispersal and Implications for Marine Biogeography James T. Carlton, John W. Chapman, Jonathan A. Geller, Jessica A. Miller, Deborah A. Carlton, Megan I. McCuller, Nancy C. Treneman, Brian Steves, Gregory M. Ruiz correspondence to: [email protected] This file includes: Materials and Methods Figs. S1 to S8 Tables S1 to S6 1 Material and Methods Sample Acquisition and Processing Following the arrival in June 2012 of a large fishing dock from Misawa and of several Japanese vessels and buoys along the Oregon and Washington coasts (table S1), we established an extensive contact network of local, state, provincial, and federal officials, private citizens, and Commented [ams2]: Can you provide more details, i.e. in what formal sense was this a ‘network’ with nodes and links, rather than a list of contacts? environmental (particularly "coastal cleanup") groups, in Alaska, British Columbia, Washington, Oregon, California, and Hawaii. Between 2012 and 2017 this network grew to hundreds of individuals, many with scientific if not specifically biological training. We advised our contacts that we were interested in acquiring samples of organisms (alive or dead) attached to suspected Japanese Tsunami Marine Debris (JTMD), or to obtain the objects themselves (numerous samples and some objects were received that were North American in origin, or that we interpreted as likely discards from ships-at-sea). We provided detailed directions to searchers and collectors relative to Commented [ams3]: Did you deploy a standard form/protocol for your contacts to use? Can it be included in the SM if so? sample photography, collection, labeling, preservation, and shipping, including real-time communication while investigators were on site.
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • Alien Marine Invertebrates of Hawaii
    BARNACLE Balanus amphitrite (Darwin, 1854) Striped barnacle Phylum Arthropoda Subphylum Crustacea Class Maxillopoda Subclass Cirripedia Order Thoracica Family Balanidae Photo by R. DeFelice DESCRIPTION HABITAT Balanus amphitrite is a small, conical, sessile barnacle Very common in the intertidal fouling communities of (to about 1.5 cm diameter). Color is whitish with purple harbors and protected embayments. The live attached to or brown longitudinal stripes. Surface of test plates are any available hard surface, including rocks, pier pilings, longitudinally ribbed. The interlocking tergum and ship hull, oyster shells, and mangrove roots. scutum, the paired structures which cover the animal inside are as pictured below. A similar species, Balanus reticulatus Utinomi, is also an introduced species and commonly occurs with B. amphitrite. It also has longitudinal purple or brown stripes, but these stripes are intersected by horizontal grooves, giving the surface of the test plates a rough reticulated striation, unlike B. amphitrite. It can also be distinguished by examination of the tergum and scutum pictured below. Note the more sharply pointed apex of the tergum and the elongated and narrower tergum spur Balanus retculatus. (A) Scutum. (B) Tergum. of B. reticulatus. DISTRIBUTION HAWAIIAN ISLANDS Throughout the main Hawaiian Islands NATIVE RANGE Southwestern Pacific and Indian Ocean PRESENT DISTRIBUTION World-wide in warm and temperate seas spur MECHANISM OF INTRODUCTION Balanus amphitrite. (A) Scutum. (B) Tergum. Unintentional, as fouling on ships hulls © Hawaii Biological Survey 2001 B-35 Balanus amphitrite IMPACT REMARKS Barnacles are a serious fouling problem on ship bot- This now widespread barnacle of southern hemisphere toms, buoys, and pilings. The ecological impact of this origins was first collected in 1902 in Honolulu Harbor.
    [Show full text]
  • Balanus Trigonus
    Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Settlement of the barnacle Balanus trigonus BRAZILIAN CRUSTACEAN SOCIETY Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico e-ISSN 2358-2936 www.scielo.br/nau 1 orcid.org/0000-0001-9187-6080 www.crustacea.org.br Michel E. Hendrickx Evlin Ramírez-Félix2 orcid.org/0000-0002-5136-5283 1 Unidad académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. A.P. 811, Mazatlán, Sinaloa, 82000, Mexico 2 Oficina de INAPESCA Mazatlán, Instituto Nacional de Pesca y Acuacultura. Sábalo- Cerritos s/n., Col. Estero El Yugo, Mazatlán, 82112, Sinaloa, Mexico. ZOOBANK http://zoobank.org/urn:lsid:zoobank.org:pub:74B93F4F-0E5E-4D69- A7F5-5F423DA3762E ABSTRACT A large number of specimens (2765) of the acorn barnacle Balanus trigonus Darwin, 1854, were observed on the spiny lobster Panulirus gracilis Streets, 1871, in western Mexico, including recently settled cypris (1019 individuals or 37%) and encrusted specimens (1746) of different sizes: <1.99 mm, 88%; 1.99 to 2.82 mm, 8%; >2.82 mm, 4%). Cypris settled predominantly on the carapace (67%), mostly on the gastric area (40%), on the left or right orbital areas (35%), on the head appendages, and on the pereiopods 1–3. Encrusting individuals were mostly small (84%); medium-sized specimens accounted for 11% and large for 5%. On the cephalothorax, most were observed in branchial (661) and orbital areas (240). Only 40–41 individuals were found on gastric and cardiac areas. Some individuals (246), mostly small (95%), were observed on the dorsal portion of somites.
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Urchin Rocks-NW Island Transect Study 2020
    The Long-term Effect of Trampling on Rocky Intertidal Zone Communities: A Comparison of Urchin Rocks and Northwest Island, WA. A Class Project for BIOL 475, Marine Invertebrates Rosario Beach Marine Laboratory, summer 2020 Dr. David Cowles and Class 1 ABSTRACT In the summer of 2020 the Rosario Beach Marine Laboratory Marine Invertebrates class studied the intertidal community of Urchin Rocks (UR), part of Deception Pass State Park. The intertidal zone at Urchin Rocks is mainly bedrock, is easily reached, and is a very popular place for visitors to enjoy seeing the intertidal life. Visits to the Location have become so intense that Deception Pass State Park has established a walking trail and docent guides in the area in order to minimize trampling of the marine life while still allowing visitors. No documentation exists for the state of the marine community before visits became common, but an analogous Location with similar substrate exists just offshore on Northwest Island (NWI). Using a belt transect divided into 1 m2 quadrats, the class quantified the algae, barnacle, and other invertebrate components of the communities at the two locations and compared them. Algal cover at both sites increased at lower tide levels but while the cover consisted of macroalgae at NWI, at Urchin Rocks the lower intertidal algae were dominated by diatom mats instead. Barnacles were abundant at both sites but at Urchin Rocks they were even more abundant but mostly of the smallest size classes. Small barnacles were especially abundant at Urchin Rocks near where the walking trail crosses the transect. Barnacles may be benefitting from areas cleared of macroalgae by trampling but in turn not be able to grow to large size at Urchin Rocks.
    [Show full text]
  • Do Storms Trigger Synchronous Larval Release in Semibalanus Balanoides?
    Mar Biol (2011) 158:1581–1589 DOI 10.1007/s00227-011-1671-1 ORIGINAL PAPER High-frequency observations of early-stage larval abundance: do storms trigger synchronous larval release in Semibalanus balanoides? Joanna Gyory • Jesu´s Pineda Received: 12 April 2010 / Accepted: 10 March 2011 / Published online: 24 March 2011 Ó Springer-Verlag 2011 Abstract The acorn barnacle, Semibalanus balanoides,is balanoides (L.) is among the coastal marine invertebrates thought to release larvae in response to phytoplankton that reproduce synchronously. It is a highly abundant, boreo- blooms, but there is evidence that another, unidentified cue arctic barnacle species found on rocky intertidal zones along for release may exist. We conducted high-frequency sam- the eastern and western coasts of North America and the pling in Little Harbor, Massachusetts, USA, to determine northwestern coast of Europe. It reproduces once per year in whether early-stage larval abundance was related to several the winter or spring. Within a population, planktonic larvae environmental variables, and to characterize vertical dis- are released in one or more bursts, and the release period tributions of the larvae. Larval concentrations peaked at generally ends in less than 2 weeks (Barnes 1956; Crisp 2.52 and 1.02 individuals l-1 during two storms. Larvae 1959; Lang and Ackenhusen–Johns 1981; Pineda et al. were more abundant near the surface than near the bottom. 2004). The larvae can constitute 15% of zooplankton in We suggest the hypothesis that turbid conditions and coastal waters of the northeastern United States (Frolander upward-swimming behavior may protect newly-released 1955), but their pervasiveness is limited, since the planktonic larvae from predation and cannibalism.
    [Show full text]
  • Macro-To-Nanoscale Investigation of Wall-Plate Joints in the Acorn Barnacle Semibalanus Balanoides
    This is a repository copy of Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides : correlative imaging, biological form and function, and bioinspiration. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/161302/ Version: Published Version Article: Mitchell, R.L. orcid.org/0000-0002-6328-3998, Coleman, M., Davies, P. et al. (5 more authors) (2019) Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides : correlative imaging, biological form and function, and bioinspiration. Journal of The Royal Society Interface, 16 (157). 20190218. ISSN 1742-5689 https://doi.org/10.1098/rsif.2019.0218 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle royalsocietypublishing.org/journal/rsif Semibalanus balanoides: correlative imaging, biological form and function, Research and bioinspiration Cite this article: Mitchell RL, Coleman M, R. L. Mitchell1, M. Coleman1, P. Davies1, L. North1, E. C. Pope2, Davies P, North L, Pope EC, Pleydell-Pearce C, C.
    [Show full text]