The Slender-Billed Curlew Quest

Total Page:16

File Type:pdf, Size:1020Kb

The Slender-Billed Curlew Quest Species spotlight The Slender-billed (possibly extinct) by BirdLife – with no Curlew quest verified sightings since the early 1980s. We hope it can be proven that Slender- billed Curlew still exists.The most urgent On the very brink of extinction, the once numerous priority is to thoroughly search sites Slender-billed Curlew is a true enigma. Tim Cleeves, where the species is known to have wintered previously, as well as potential Nicola Crockford and Peter Köhler report on a last- moulting sites, although no moult site has ditch attempt to find the bird – and how you can help. yet been identified. It is likely to be easier to search the lender-billed Curlew is the Gretton et al 2002).The last flocks of more relatively few discrete, identifiable rarest bird in the Western than 100 were seen in Morocco at Lagune candidate sites in the putative wintering Palearctic. It is one of the five de Puerto Cansado, Khnifiss, in January and moulting range than the vast Sbird species in Europe – and 1964 (500-800 birds) and at Oued continuous area of potential breeding 190 in the world – most threatened with Chebeika in December 1974 (123 birds). habitat.Thus, unless stable isotope research global extinction, and classified as However, Slender-billed Curlew is narrows the search to within a radius of Critically Endangered by BirdLife easily overlooked and challenging to about 100-200 km, it is less of a priority International and the IUCN. identify, and could be present in countries to continue the ‘needle in the haystack’ There have been no verified records such as Iraq and Iran, which have been search for Slender-billed Curlew in its anywhere since 1999, when birds were relatively inaccessible to skilled birders in probable breeding range in Russia and seen in Greece in April and Oman in recent years. Kazakhstan. February and August.This last sighting There is a higher chance of catching involved three juveniles, indicating that Last chance birds at wintering sites, where they stay breeding must have occurred that year.At This article is intended to help launch a for prolonged periods, rather than passage the last-known regular wintering site, ‘final push’ to find this enigmatic species sites that they may go through quickly. Merja Zerga in Morocco, there have been before it is too late. If we lose Slender- This makes satellite tagging easier, which no verified records since 1995. billed Curlew, it will be the first is vital to find the breeding, passage, The only verified records of nesting extinction of a European bird since Great moult and wintering sites in order to take Slender-billed Curlews all date from the Auk in June 1844 and Canary Islands conservation action for the species. first quarter of the 20th century and Oystercatcher in 1981 (BirdLife We hope this article will inspire readers occurred near Tara, east of the Urals in the International 2008a). Eskimo Curlew, the to plan their birding holidays and organise Omsk region of south-west Siberia birds’ close relative in the Nearctic, is expeditions to the most likely Slender- ៑ CHRIS GOMERSALL (WWW.RSPB-IMAGES.COM) (Ushakov 1909, 1912, 1916 and 1925; already classified as Critically Endangered billed Curlew sites. In addition, the special This adult Slender-billed Curlew, one of several that used to winter at Merja Zerga, Morocco, in the early 1990s, was last seen in February 1995. There have since been no verified records at the site. REPRODUCED FROM The home of birding www.birdwatch.co.uk WWW.BIRDWATCH.CO.UK JANUARY 2009 • BIRDWATCH 43 Species spotlight laminated ‘toolkit’ enclosed exclusively Past records autumn. Almost a third are from another with this month’s Birdwatch has been eight countries: Ukraine – 33 in all seasons, designed to be taken into the field, and The Slender-billed Curlew Working Group but more in autumn; Serbia – 30 in autumn (SBCWG) collects and documents all and spring, but also in summer; Tunisia – includes an identification guide and advice records of the species on a database; visit 29 mainly winter; Turkey – 24, in all on steps to take if you are lucky enough to www.slenderbilledcurlew.net. It separates seasons but more in summer; Bulgaria – find a potential Slender-billed Curlew. those listed before and after 1990. It also 23 in spring, autumn and winter; Iran – 19, distinguishes three categories of records: mainly in winter; Romania – 18 in all Breeding ecology ● Verified records: these are authenticated seasons, but mainly autumn; and Russia – Like Eskimo Curlew in North America, in by national organisations – rarities 17, mainly in spring but some also in committees, BirdLife partners and so on – summer and autumn. the 19th century Slender-billed Curlew or, in the absence of such bodies, by other About 85 per cent of the verified records was regarded as common in Europe in experts. They include records regarded as since 1900 are from these 12 main range countries such as Romania, Hungary, Italy ‘confirmed’ by Gretton (1991 and 1994) states, all of which have had at least 10 and Greece. It outnumbered the two other unless proved otherwise by the relevant verified records during that period. There European curlew species – Eurasian Curlew national organisations or by the original are another 12 range states with between and Whimbrel – in several areas, including observer. three and nine verified records since 1990: ● Unverified records: these are mainly summer – Kazakhstan; mainly Sicily, Malta,Tunisia, Morocco and Algeria, unsubstantiated by any details such as a autumn – Poland, Austria, Malta, Iraq and and sometimes occurred in spectacular, description or photograph, or are those on Yemen; mainly winter – Algeria, Egypt, Iraq, thousands-strong flocks. Even then, before which a national organisation has not yet Oman, France and The Netherlands; mainly its dramatic decline, which was probably reached a decision or suggests that there spring – Bosnia-Herzegovina and Cyprus. due to overhunting and exacerbated by is doubt, but are not yet rejected. This Only about 20 per cent (128) of the habitat loss, very little was known about includes those treated by Gretton (1991 verified records since 1900 have been of and 1994) as unconfirmed, unless proven more than three birds, with just over half the bird’s ecology. otherwise. referring to single birds. According to Ushakov’s 1925 paper, ● Rejected records: these have been Slender-billed Curlews have often been confirmed nest sites near Tara, including a rejected by a national organisation or other seen in close association with Eurasian colony of 14 nests, were in an extensive relevant experts. Curlews. Associations with other waders quaking peat bog with dense cover of More than half of the 617 verified such as Whimbrel, Black-tailed Godwit, sedge mixed with Mares’Tail Equisetum, records for 1900 to 1999 come from four Grey Plover, Northern Lapwing and Tringa countries: Italy – 99 verified records, mostly species are not usually close (Gretton 1991). with willow, birch and pine present.The spring but some also in autumn and winter; It should be borne in mind that the birds arrived in the area from 10 May. Greece – 85, all seasons but mainly in number and distribution of records are With such a small sample and an spring; Morocco – 76, mainly in winter; and heavily influenced by the number and account dating back more than 80 years, Hungary – 66, all seasons but mainly in distribution of skilled birdwatchers. when the species was already in decline, it would be wrong to conclude that all Slender-billed Curlews bred or breed in taiga marsh, or that the breeding dates remain the same now as they did in Ushakov’s day.The bog-forest transitional habitat he described during the early 20th century appeared similar in 1990 but by 1997 was already destroyed, having become afforested, and with adjacent areas cultivated (Gretton et al 2002). ADAM GRETTONADAM All verified records of Slender-billed Curlew since 1900. Summer: June-July (45 records); autumn: August-November (196); winter: December-February (167); Autumn Summer spring: March-May (185). Spring Winter COURTESY OF RSPB The only known breeding site for Slender-billed Curlew was in the forest- steppe zone in the vicinity of Omsk and Novosibirisk. 44 BIRDWATCH • JANUARY 2009 WWW.BIRDWATCH.CO.UK Species spotlight Danilenko et al (1996) analysed Britain’s sole record vegetation maps in these areas and in of Slender-billed other locations where birds had been Curlew (left, with recorded during summer in the 1800s. Eurasian Curlew), They summarised the breeding habitat at Druridge Bay, requirements as forest-steppe: “Open, Northumberland, locally wet areas with dense sedge or dates back to early May 1998. grass vegetation, with patches of bare JIM PATTINSON ground, relief which is not flat (moderate elevations and depressions), and with complete by October-December, which 1997), Kazakhstan (July-September adjacent shrubs or woodland patches excludes flight feathers, upperwing 1998), Russia (Tumen plains and Omsk formed by deciduous trees and/or pines.” coverts, tail, some scapulars and most region, 1999), Iran (January-February Such habitat within western Siberia tertials. In spring, most feather tracts are 2000), Morocco (Lagune de Khnifiss, extends in area to between 200,000 and renewed again, but flight feathers remain December 2001),Yemen (November 400,000 sq km. unmoulted. 2001-January 2002), Iran (January Indeed, Ushakov’s observations were 2002),Tunisia (January 2003), Libya made towards the northern edge of the Habitat preferences (January 2005), Ukraine (July-August forest-steppe zone, with parts of the At wintering and migration stop-over sites 2006) and Uzbekistan (April-May 2007 marsh having some characteristics of the the species appears to be something of a and April-May 2008). taiga, such as the presence of conifers.
Recommended publications
  • A Case of the Population Trend of Far Eastern Curlew Numenius Madagascariensis in Banyuasin Peninsula, South Sumatra, Indonesia
    Ecologica Montenegrina 44: 11-18 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.44.2 Is the global decline reflects local declines? A case of the population trend of Far Eastern Curlew Numenius madagascariensis in Banyuasin Peninsula, South Sumatra, Indonesia MUHAMMAD IQBAL1*, CIPTO DWI HANDONO2, DENI MULYANA3, ARUM SETIAWAN4, ZAZILI HANAFIAH4, HENNI MARTINI5, SARNO4, INDRA YUSTIAN4 & HILDA ZULKIFLI4 1Biology Program, Faculty of Science, Sriwijaya University, Jalan Padang Selasa 524, Palembang, South Sumatra 30139, Indonesia. 2Yayasan Ekologi Satwa Liar Indonesia (EKSAI), Jalan Kutisari 1 No. 19, Surabaya, East Java 60291, Indonesia 3Berbak Sembilang National Park, South Sumatra office, Jalan Tanjung Api-api komplek Imadinatuna No. 114, South Sumatra, Indonesia 4Department of Biology, Faculty of Science, Sriwijaya University, Jalan Raya Palembang-Prabumulih km 32, Indralaya, South Sumatra, Indonesia. 5Hutan Kita Institute (HAKI), Jalan Yudo No. 9H, Palembang, South Sumatra 30126, Indonesia *Corresponding author: [email protected] Received 28 June 2021 │ Accepted by V. Pešić: 13 July 2021 │ Published online 16 July 2021. Abstract Far Eastern Curlew Numenius madagascariensis (Linnaeus, 1766) is Endangered species confined in East Asian Australasian Flyway (EAAF) sites. We compiled and summarized all historical numbers of Far Eastern Curlew in Banyuasin Peninsula, South Sumatra, Indonesia. A total of 30 records were documented from 1984 to 2020. The largest number is 2,620 individuals during the migration period in 1988. Unfortunately, the largest number drop to 1,750 individuals in wintering period in 2008, and then drop to 850 individuals in 2019. The numbers indicate that the population decline by up to 62% in the last 35 years (1984 to 2019).
    [Show full text]
  • Shifting Nonbreeding Distributions of Migratory Fauna in Relation to Climatic Change
    Global Change Biology (2005) 11, 31–38, doi: 10.1111/j.1365-2486.2004.00876.x Shifting nonbreeding distributions of migratory fauna in relation to climatic change GRAHAM E. AUSTIN andMARK M. REHFISCH British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK Abstract The distributions of eight out of nine common species of waders (Charadrii) overwintering on UK estuaries have changed in association with recent climate change. These birds represent a high proportion of various populations from breeding grounds as far apart as Greenland to the west to high-arctic Russia to the east. During warmer winters, smaller proportions of seven species wintered in south-west Britain. The distributions of the smaller species show the greatest temperature dependence. The opposite was found for the largest species and no relationship was found for a particularly site-faithful species. In north-west Europe, the winter isotherms have a broadly north to south alignment, with the east being colder than the west. The average minimum winter temperatures across the UK having increased by about 1.5 1C since the mid-1980s, the temperatures on the east coast during recent winters have been similar to those of the west coast during the mid-1980s. On average, estuaries on the east and south coasts of Britain have muddier sediments than those on the west coast and thus support a higher biomass of the invertebrate prey of waders. We suggest that, with global climatic change, the advantage gained by waders wintering in the milder west to avoid cold weather-induced mortality is diminished. Consequently, more choose to winter in the east and thus benefit from better foraging opportunities.
    [Show full text]
  • Growth and Development of Long-Billed Curlew Chicks
    April 1973] General Notes 435 Pitelka and Donald L. Beaver critically read the manuscript. This work was con- ducted under the I.B.P. Analysis of Ecosystems-TundraProgram and supported by a grant to F. A. Pitelka from the National ScienceFoundation.--THo•rAs W. CUSTrR, Department o! Zoology and Museum o! Vertebrate Zoology, University o! California, Berkeley,California 94720. Accepted9 May 72. Growth and development of Long-billed Curlew chicks.--Compared with the altricial nestlings of passerinesand the semiprecocialyoung of gulls, few studies of the growth and developmentof the precocialchicks of the Charadrii have been made (Pettingill, 1970: 378). In Europe, yon Frisch (1958, 1959) describedthe develop- ment of behavior in 14 plovers and sandpipers. Davis (1943) and Nice (1962) have reported on the growth of Killdeer (Charadriusvociferus), Nice (1962) on the Spotted Sandpiper (Actiris macularia), and Webster (1942) on the growth and development of plumages in the Black Oystercatcher (Haematopus bachmani). Pettingill (1936) studiedthe atypical AmericanWoodcock (Philohelaminor). Among the curlews, Genus Numenius, only the Eurasian Curlew (N. arquata) has been studied (von Frisch, 1956). Becauseof the scant knowledgeabout the development of the youngin the Charadriiand the scarcityof informationon all aspectsof the breeding biology of the Long-billed Curlew (N. americanus) (Palmer, 1967), I believe that the following data on the growth and development of Long-billed Curlew chicks are relevant. I took four eggs,one being pipped, from a nest 10 miles west of Brigham City, Box Elder County, Utah, on 24 May 1966. One egg was preservedimmediately for additional study, the others I placed in a 4' X 3' X 2' cardboard box with a 60-watt lamp for warmth in a vacant room in my home until they hatched.
    [Show full text]
  • Curlew Conservation and New Woodland in Scotland – Essential Steps for Forest Managers
    Curlew conservation and new woodland in Scotland – essential steps for forest managers What you can do to help save the globally-threatened curlew The evocative call of the curlew has echoed across Scotland landscape for generations, but these much-loved birds are at risk of being lost. Since the mid-1990s, their numbers have dropped by 61%. They are disappearing – fast. Scotland’s global importance for curlew Scotland holds an estimated 15% of the global breeding population of Eurasian curlew. Curlew is listed as globally Near-Threatened on the IUCN Red List of Threatened Species and is now a Red-listed Bird of Conservation Concern in the UK. The UK is a signatory to the African Eurasian Waterbird Agreement so the Scottish government has an international responsibility to act for curlew. The combination of its global conservation status, the importance of the UK and its rapid decline makes curlew arguably the most urgent bird conservation priority in Scotland. The impact of new woodlands on curlew Curlews are widely dispersed and nest in open ground often dominated by rough damp grass or heath. Their rapid decline is driven by land use change at the landscape scale - primarily: A reduction in habitat extent and quality. This includes conversion to forest plantations and new woodland. Curlews need large extents of open ground with few trees. Predation of nests and chicks by generalist predators including foxes and crows. The failure of breeding birds to produce enough young is the main driver of their decline. These influences work together: Open ground and marginal farmland which offers good quality habitat for curlews is often proposed for new woodland; this, in turn, can provide cover for predators.
    [Show full text]
  • Review of the Conflict Between Migratory Birds and Electricity Power Grids in the African-Eurasian Region
    CMS CONVENTION ON Distribution: General MIGRATORY UNEP/CMS/Inf.10.38/ Rev.1 SPECIES 11 November 2011 Original: English TENTH MEETING OF THE CONFERENCE OF THE PARTIES Bergen, 20-25 November 2011 Agenda Item 19 REVIEW OF THE CONFLICT BETWEEN MIGRATORY BIRDS AND ELECTRICITY POWER GRIDS IN THE AFRICAN-EURASIAN REGION (Prepared by Bureau Waardenburg for AEWA and CMS) Pursuant to the recommendation of the 37 th Meeting of the Standing Committee, the AEWA and CMS Secretariats commissioned Bureau Waardenburg to undertake a review of the conflict between migratory birds and electricity power grids in the African-Eurasian region, as well as of available mitigation measures and their effectiveness. Their report is presented in this information document and an executive summary is also provided as document UNEP/CMS/Conf.10.29. A Resolution on power lines and migratory birds is also tabled for COP as UNEP/CMS/Resolution10.11. For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) and the Convention on the Conservation of Migratory Species of Wild Animals (CMS) REVIEW OF THE CONFLICT BETWEEN MIGRATORY BIRDS AND ELECTRICITY POWER GRIDS IN THE AFRICAN-EURASIAN REGION Funded by AEWA’s cooperation-partner, RWE RR NSG, which has developed the method for fitting bird protection markings to overhead lines by helicopter. Produced by Bureau Waardenburg Boere Conservation Consultancy STRIX Ambiente e Inovação Endangered Wildlife Trust – Wildlife & Energy Program Compiled by: Hein Prinsen 1, Gerard Boere 2, Nadine Píres 3 & Jon Smallie 4.
    [Show full text]
  • First Record of Long-Billed Curlew Numenius Americanus in Peru and Other Observations of Nearctic Waders at the Virilla Estuary Nathan R
    Cotinga 26 First record of Long-billed Curlew Numenius americanus in Peru and other observations of Nearctic waders at the Virilla estuary Nathan R. Senner Received 6 February 2006; final revision accepted 21 March 2006 Cotinga 26(2006): 39–42 Hay poca información sobre las rutas de migración y el uso de los sitios de la costa peruana por chorlos nearcticos. En el fin de agosto 2004 yo reconocí el estuario de Virilla en el dpto. Piura en el noroeste de Peru para identificar los sitios de descanso para los Limosa haemastica en su ruta de migración al sur y aprender más sobre la migración de chorlos nearcticos en Peru. En Virilla yo observí más de 2.000 individuales de 23 especios de chorlos nearcticos y el primer registro de Numenius americanus de Peru, la concentración más grande de Limosa fedoa en Peru, y una concentración excepcional de Limosa haemastica. La combinación de esas observaciones y los resultados de un estudio anterior en el invierno boreal sugiere la posibilidad que Virilla sea muy importante para chorlos nearcticos en Peru. Las observaciones, también, demuestren la necesidad hacer más estudios en la costa peruana durante el año entero, no solemente durante el punto máximo de la migración de chorlos entre septiembre y noviembre. Shorebirds are poorly known in Peru away from bordered for a few hundred metres by sand and established study sites such as Paracas reserve, gravel before low bluffs rise c.30 m. Very little dpto. Ica, and those close to metropolitan areas vegetation grows here, although cows, goats and frequented by visiting birdwatchers and tour pigs owned by Parachique residents graze the area.
    [Show full text]
  • TESTING a MODEL THAT PREDICTS FUTURE BIRD LIST TOTALS by Robert W. Ricci Introduction One of the More Enjoyable Features of Bird
    TESTING A MODEL THAT PREDICTS FUTURE BIRD LIST TOTALS by Robert W. Ricci Introduction One of the more enjoyable features of birding as a hobby is in keeping bird lists. Certainly getting into the habit of carefully recording our own personal birding experiences paves the way to a better understanding of the birds around us and prepares our minds for that chance encounter with a vagrant. In addition to our own field experiences, we advance our understanding of bird life through our reading and fraternization with other birders. One of the most useful ways we can communicate is by sharing our bird lists in Christmas Bird Counts (CBC), breeding bird surveys, and in the monthly compilation of field records as found, for example, in this journal. As important as our personal observation might be, however, it is only in the analysis of the cumulative experiences of many birders that trends emerge that can provide the substance to answer important questions such as the causes of vagrancy in birds (Veit 1989), changes in bird populations (Davis 1991), and bird migration patterns (Roberts 1995). Most birders, at one time or another, have speculated about what new avian milestones they will overtake in the future. For example, an article in this journal (Forster 1990) recorded the predictions of several birding gurus on which birds might be likely candidates as the next vagrants to add to the Massachusetts Avian Records Committee roster of 451 birds. Just as important as predictions of which birds might appear during your field activities are predictions of the total number of birds that you might expect to encounter.
    [Show full text]
  • Slender-Billed Curlew: Promising Discovery in the Danube Delta 51 Slender-Billed Curlew: Promising Discovery in the Danube Delta
    Zhmud: Slender-billed Curlew: promising discovery in the Danube delta 51 Slender-billed Curlew: promising discovery in the Danube delta MYKHAYLO ZHMUD Danube Delta Biosphere Reserve, T. Vosstaniya Str. 132a, Vilkovo Odessa Reg. Ukraine UA68355. [email protected] Zhmud, M. 2005. Slender-billed Curlew: promising discovery in the Danube delta. Wader Study Group Bull. 106: 51–54. Keywords: shorebird, Slender-billed Curlew, Numenius tenuirostris, endangered species, Danube delta, Ukraine. Despite the hard work of the world conservation community to study the Slender-billed Curlew Numenius tenuirostris, discover its nesting sites and bring it back from the brink of extinction, it still remains a mystery bird. Currently, it is one of the rarest birds of the Old World and is critically endangered. Therefore, any information about recent records is of vital importance. Here, I report on the status of the species at one of its most important migrating stopover sites, the Danube delta, where promising observations were made in 2003 and 2004. As a consequence, plans are being made for follow-up studies and conservation activities. INTRODUCTION OBSERVATIONS OF SLENDER-BILLED CURLEWS DURING 2003–2004 The Danube delta, as well as the whole of the N and NW Black Sea coast is located on the main Slender-billed Cur- On 25 Jul 2003, I saw four Slender-billed Curlews together on lew migration route between its supposed W Siberian nest- the north-west end of the Taranova spit (45.443°N, 29.775°E) ing sites and its supposed Mediterranean wintering sites in the northern part of the delta between the channels Prorva (Gretton 1991; Heredia et al.
    [Show full text]
  • The Potential Breeding Range of Slender-Billed Curlew Numenius Tenuirostris Identified from Stable-Isotope Analysis
    Bird Conservation International (2016) 0 : 1 – 10 . © BirdLife International, 2016 doi:10.1017/S0959270916000551 The potential breeding range of Slender-billed Curlew Numenius tenuirostris identified from stable-isotope analysis GRAEME M. BUCHANAN , ALEXANDER L. BOND , NICOLA J. CROCKFORD , JOHANNES KAMP , JAMES W. PEARCE-HIGGINS and GEOFF M. HILTON Summary The breeding areas of the Critically Endangered Slender-billed Curlew Numenius tenuirostris are all but unknown, with the only well-substantiated breeding records being from the Omsk prov- ince, western Siberia. The identification of any remaining breeding population is of the highest priority for the conservation of any remnant population. If it is extinct, the reliable identification of former breeding sites may help determine the causes of the species’ decline, in order to learn wider conservation lessons. We used stable isotope values in feather samples from juvenile Slender-billed Curlews to identify potential breeding areas. Modelled precipitation δ 2 H data were compared to feather samples of surrogate species from within the potential breeding range, to produce a calibration equation. Application of this calibration to samples from 35 Slender-billed Curlew museum skins suggested they could have originated from the steppes of northern Kazakhstan and part of southern Russia between 48°N and 56°N. The core of this area was around 50°N, some way to the south of the confirmed nesting sites in the forest steppes. Surveys for the species might be better targeted at the Kazakh steppes, rather than around the historically recog- nised nest sites of southern Russia which might have been atypical for the species. We consider whether agricultural expansion in this area may have contributed to declines of the Slender-billed Curlew population.
    [Show full text]
  • Numenius Tenuirostris)
    INTERNATIONAL ACTION PLAN FOR THE SLENDER-BILLED CURLEW (Numenius tenuirostris) Compiled by: ADAM GRETTON (BirdLife International, U.K.) -1- INTERNATIONAL ACTION PLAN FOR THE SLENDER-BILLED CURLEW (Numenius tenuirostris) Compiled by: ADAM GRETTON (BirdLife International, U.K.) With contributions from: (including those involved as national coordinators in the BirdLife International (then ICBP) project 1988–1990) F. Ayache (Ministry of Environment and Land Use Planning, Tunisia) N. Baccetti (Istituto Nazionale per la Fauna Selvatica, Italy) S. Baris (Society for the Protection of Nature, Turkey) V. Belik (Russian Bird Conservation Union, Rostov) B. Chalabi (Institut National Agronomique, Algeria) M. Dakki (Institut Scientifique, Morocco) A. Errahioui (Eaux et Forêts, Morocco) T. Gaultier (Laboratoire d'Ornithologie, Tunisia) V. Goutner (Thessaloniki University, Greece) B. Heredia (BirdLife International, U.K.)1 D. Hoffmann (BirdLife International/CPCN, Morocco) P. Iankov (Bulgarian Society for the Protection of Birds) A. Ignatov (Bulgarian Society for the Protection of Birds) H. Kachiche (Eaux et Forêts, Morocco) G. Kovács (Hortobágy National Park, Hungary) A. Kovshar (Zoological Institute, Alma-Ata, Kazakhstan) M. Lambertini (Lega Italiana Protezione Uccelli) G. Magnin (Society for the Protection of Nature, Turkey) F. Márkus (Hungarian Ornithological and Nature Conservation Society) R. Martí (SEO?BirdLife Spain) A. Mikityuk (Ukranian Union for Bird Conservation) A. Mischenko (Russian Bird Conservation Union, Moscow) V. Morozov (Russian Bird Conservation Union, Moscow) D. Munteanu (Romanian Ornithological Society) J. Muzinic (Institute for Ornithology, Croatia) S. Nagy (Hungarian Ornithological and Nature Conservation Society) L. Profirov (Ministry of Environment, Bulgaria) L. Rose (Royal Society for the Protection of Birds, UK) C. Urdiales (Doñana National Park, Spain) 1 now ICONA, Spain -2- D.
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]
  • Breeding Origins of Wader Populations Utilizing the Dutch Wadden Sea, As Deduced from Body Dimensions, Body Mass, and Primary Moult Engelmoer, Meinte
    University of Groningen Breeding origins of wader populations utilizing the Dutch Wadden Sea, as deduced from body dimensions, body mass, and primary moult Engelmoer, Meinte IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Engelmoer, M. (2008). Breeding origins of wader populations utilizing the Dutch Wadden Sea, as deduced from body dimensions, body mass, and primary moult. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]