Chemical Engineering in the Next 25 Years
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meso/Micro/Nano Scale Technologies
Meso/Micro/Nano Scale Technologies Clayton Teague, Chief, APTD, MEL John Evans, Chief, ISD, MEL June 8, 1999 Contents of Presentation • What we (MEL) have done in meso-scale area • What is nanotechnology • Nanotechnology is important • Principal message • Why is it important to industry and NIST? – Examples of industry/NIST work at all scales • Challenges for NIST • Long term needs at the nano-scale • Short term needs at the meso/micro-scales • Priorities • Ideas • Discussion topics Background • During past 9 months, MEL has explored measurements and standards needs of meso and micro-scale manufacturing • Visited 20 companies • Conducted and participated in three workshops jointly sponsored with DARPA and NSF • Organized informal NIST-wide co-ordinating group for meso/micro/nano scale activities • All feedback from these efforts points toward an exploding growth of nanotechnology • We see a continuum of needs for NIST efforts from the macro-scale to the nano-scale What is Nanotechnology? • Technology on the scale of atoms -100 pm- up to biomolecular systems as large as cells - 10’s mm • “Top-down” - achieving increased miniaturization through extension of existing microfabrication schemes • “Bottom-up” - capability to construct functional components, devices, and systems from building blocks of atoms and molecules Nanotechnology Strategies Nanotechnology is important! • “We’ve got to learn how to build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells.” Richard Smalley, Nobel Laureate, 1995 • “I believe nanoscience and nanotechnology will be central to the next epoch of the information age …” John Armstrong, formerly Chief Scientist of IBM, 1991 • “If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering.” Neal Lane, Director OSTP, 1998 • “Nanotechnology has given us the tools to make contact with the world of the molecule and the atom. -
Molecular Materials for Nonlinear Optics
RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal molecular solids mere aggregations of molecules held to line fIlms, and amorphous compositions. In these materi gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic. -
Nanoscience and Nanotechnologies: Opportunities and Uncertainties
ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology -
Nanotechnology and Picotechnology to Increase Tissue Growth: a Summary of in Vivo Studies
Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies Ece Alpaslan1 and Thomas J Webster1,2 Author information ► Copyright and License information ► Go to: Abstract The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns. Keywords: nanomaterials, tissue engineering, toxicity Go to: Introduction Bone tissue and other organ dysfunction can be provoked by poor eating habits, stress, age-related diseases such as osteoarthritis or osteoporosis, as well as accidents.1 To date, common procedures to restore or enhance life expectancy involve medical device insertion or organ transplantation.1 However, due to the low number of donors and its high cost, organ transplantation is limited. -
Chemical Process Modeling in Modelica
Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier Fakultät für Mathematik, Universität Wien Nordbergstraße 15, A-1090 Wien, Austria Abstract model creation involves only high-level operations on a GUI; low-level coding is not required. This is the Chemical process models are highly structured. Infor- desired way of input. Not surprisingly, this is also mation on how the hierarchical components are con- how it is implemented in commercial chemical process nected helps to solve the model efficiently. Our ulti- simulators such as Aspen PlusR , Aspen HYSYSR or mate goal is to develop structure-driven optimization CHEMCAD R . methods for solving nonlinear programming problems Nonlinear system of equations are generally solved (NLP). The structural information retrieved from the using optimization techniques. AMPL (FOURER et al. JModelica environment will play an important role in [12]) is the de facto standard for model representation the development of our novel optimization methods. and exchange in the optimization community. Many Foundations of a Modelica library for general-purpose solvers for solving nonlinear programming (NLP) chemical process modeling have been built. Multi- problems are interfaced with the AMPL environment. ple steady-states in ideal two-product distillation were We are aiming to create a ‘Modelica to AMPL’ con- computed as a proof of concept. The Modelica source verter. One could use the Modelica toolchain to create code is available at the project homepage. The issues the models conveniently on a GUI. After exporting the encountered during modeling may be valuable to the Modelica model in AMPL format, the already existing Modelica language designers. software environments (solvers with AMPL interface, Keywords: separation, distillation column, tearing AMPL scripts) can be used. -
Download the Chemical Engineering Major Handbook
2020 - 2021 Undergraduate Handbook DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING INFORMATION FOR MAJORS IN CHEMICAL ENGINEERING Fall 2020 Updated July 2020 Quick Reference Guide Chemical Engineering Curriculum - Prerequisite Flowchart *Sophomore year has two variants; ChE 210 may be taken in sophomore or freshman year. Total Requirements - 48 classes Basic Courses: A. Mathematics - 4 classes D. Design and Communication - 3 classes Chemical Engineering Curriculum - Prerequisite Flowchart q MATH 220-1 (220) q MATH 228-1 (230) q q ENGLISH & DSGN 106-1,2 q MATH 220-2 (224) q MATH 228-2 (234) q COMM ST (Speech) 102, or B. Engineering Analysis - 4 classes PERF ST (Performance) 103 or 203 q q q q GEN ENG 205-1,2,3,4 E. Basic Engineering - 5 classes C. Basic Sciences - 4 classes q CHEM ENG 210 q q PHYSICS 135-2,3 (plus labs) q CHEM ENG 211 q q CHEM 131,132, or 151,152, q MAT SCI 301 or 171,172 (plus labs) q CHEM ENG 312 or IEMS 303 q CHEM ENG 321 Distribution Requirements: F. q Social Sci/Humanities (Theme) - 7 classes G. q Unrestricted Electives - 5 classes Core Curriculum: H. Major Program – 11 required classes + 5 technical electives q CHEM 210-1: Organic Chemistry q CHEM ENG 322: Heat Transfer q CHEM 210-2: Organic Chemistry (plus lab) q CHEM ENG 323: Mass Transfer q CHEM ENG 212: Phase Equilibrium and q CHEM ENG 341: Dynamics and Control Staged Separations of Chemical and Biological Processes q CHEM ENG 275: Cell & Molecular Biology q CHEM ENG 342: Chemical Engineering Lab for Engineers or BIOL SCI 215 or 291 or q CHEM ENG 351: Process Economics, 201 or 202 Design & Evaluation q CHEM ENG 307: Kinetics & Reactor q CHEM ENG 352: Chemical Engineering Engineering Design Projects q Technical Electives - 5 classes You may choose an area of specialization: (OR follow technical elective guidelines - Section IIIB) Bioengineering, Chemical Process Engineering, Design, Environmental Engineering and Sustainability, Nanotechnology and Molecular Engineering, or Polymer Science and Engineering Table of Contents I. -
Introducing Nanoengineering and Nanotechnology to the First Year Students Through an Interactive Seminar Course
Introducing nanoengineering and nanotechnology to the first year students through an interactive seminar course Hassan Raza1, Tehseen Z. Raza2 1 Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, USA [email protected] 2 Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA [email protected] Abstract: We report a first year seminar course on nanoengineering, which provides a unique opportunity to get exposed to the bottom-up approach and novel nanotechnology applications in an informal small class setting early in the undergraduate engineering education. Our objective is not only to introduce the fundamentals and applications of nanoengineering but also the issues related to ethics, environmental and societal impact of nanotechnology used in engineering. To make the course more interactive, laboratory tours for microfabrication facility, microscopy facility, and nanoscale laboratory at the University of Iowa are included, which inculcate the practical feel of the technology. The course also involves active student participation through weekly student presentations, highlighting topics of interest to this field, with the incentive of “nano is everywhere!” Final term papers submitted by the students involve a rigorous technology analysis through various perspectives. Furthermore, a student based peer review process is developed which helps them to improve technical writing skills, as well as address the ethical issues of academic honesty while reviewing and getting introduced to a new aspect of the area presented by their colleagues. Based on the chosen paper topics and student ratings, the student seemed motivated to learn about the novel area introduced to them through theoretical, computational and experimental aspects of the bottom-up approach. -
Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms
Biosensors 2015, 5, 712-735; doi:10.3390/bios5040712 OPEN ACCESS biosensors ISSN 2079-6374 www.mdpi.com/journal/biosensors/ Review Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms Sanaz Pilehvar * and Karolien De Wael AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-3265-3338. Academic Editors: Prabir Patra and Ashish Aphale Received: 9 September 2015 / Accepted: 14 October 2015 / Published: 23 November 2015 Abstract: Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. Keywords: nanotechnology; nanostructures; nano-bio hybrids; fullerene-biomolecule; biosensors 1. Introduction Bio-nanotechnology is a new emerging field of nanotechnology and combines knowledge from engineering, physics, and molecular engineering with biology, chemistry, and biotechnology aimed at the development of novel devices, such as biosensors, nanomedicines, and bio-photonics [1]. -
Chemical Engineering Careers in the Bioeconomy
BioFutures Chemical engineering careers in the bioeconomy A selection of career profiles Foreword In December 2018, IChemE published the final report of its BioFutures Programme.1 The report recognised the need for chemical engineers to have a greater diversity of knowledge and skills and to be able to apply these to the grand challenges facing society, as recognised by the UN Sustainable Development Goals2 and the NAE Grand Challenges for Engineering.3 These include the rapid development of the bioeconomy, pressure to reduce greenhouse gas emissions, and an increased emphasis on responsible and sustainable production. One of the recommendations from the BioFutures report prioritised by IChemE’s Board of Trustees was for IChemE to produce and promote new career profiles to showcase the roles of chemical engineers in the bioeconomy, in order to raise awareness of their contribution. It gives me great pleasure to present this collection of careers profiles submitted by members of the chemical engineering community. Each one of these career profiles demonstrates the impact made by chemical engineers across the breadth of the bioeconomy, including water, energy, food, manufacturing, and health and wellbeing. In 2006, the Organisation for Economic Co-operation and Development (OECD) defined the bioeconomy as “the aggregate set of economic operations in a society that uses the latent value incumbent in biological products and processes to capture new growth and welfare benefits for citizens and nations”.4 This definition includes the use of biological feedstocks and/or processes which involve biotechnology to generate economic outputs. The output in terms of products and services may be in the form of chemicals, food, pharmaceuticals, materials or energy. -
Bottom-Up Nano-Technology: Molecular Engineering at Surfaces
BESSY – Highlights 2003 – Scientific Highligths 1 Max-Planck-Institut für Bottom-up nano-technology: Festkörperforschung, Stuttgart, 2 molecular engineering at surfaces Lehrstuhl für 1 1 1 1 2 Physikalische Chemie I, S. Stepanow , M. Lingenfelder , A. Dmitriev , N. Lin , Th. Strunskus , Ruhr-Universität Bochum, Ch. Wöll2, J.V. Barth3,4, K. Kern1,3 3 Institut de Physique des Nanostructures, A key issue in nanotech- acid (terephthalic acid - Ecole Polytechnique Fédérale de nology is the development tpa) and 1,2,4-benzenetri- Lausanne, Schweiz of conceptually simple carboxylic acid (trimellitic 4 construction techniques acid - tmla) on the Advanced Materials and Process for the mass fabrication Cu(100) surface. Mol- Engineering Laboratory, of identical nanoscale ecules of this type are University of British Columbia, structures. Conventional frequently employed in Vancouver, Canada top down fabrication 3-D crystal engineering techniques are both top [3] and have proven to be down fabrication techniques are both energy useful for the fabrication of nanoporous intensive and wasteful, because many supramolecular layers [4-7]. The molecules production steps involve depositing unstruc- tpa and tmla with their respective twofold tured layers and then patterning them by and threefold exodentate functionality are removing most of the deposited films. shown in Fig. 1. While the formation of Furthermore, increasingly expensive fabrica- organic layers and nano-structures can be tion facilities are required as the feature size nicely monitored by STM, X-ray photoelectron decreases. The natural alternative to the top- spectroscopy (XPS) and near-edge X-ray down construction is the bottom-up ap- absorption fine structure (NEXAFS) resolve proach, in which nanoscale structures are conclusively the deprotonation of carboxylic obtained from their atomic and molecular acid group and molecular orientation. -
Nanotechnology: a Slightly Different History Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected]
Nanotechnology: a slightly different history Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected] Originally published in Portuguese as a diffusion of Science article Nanotecnologia - uma história um pouco diferente Ciência Hoje 308, October 2013, p.26-29 Many introductory articles and books about nanotechnology have been written to disseminate this apparently new technology, which investigate and manipulates matter at dimension of a billionth of a meter. However, these texts show in general a common feature: there is very little about the origins of this multidisciplinary field. If anything is mentioned at all, a few dates, facts and characters are reinforced, which under the scrutiny of a careful historical digging do not sustain as really founding landmarks of the field. Nevertheless, in spite of these flaws, such historical narratives bring up important elements to understand and contextualize this human endeavor, as well as the corresponding dissemination among the public: would nanotechnology be a cultural imperative? Introduction: plenty of room beyond the bottom Nanotechnology is based on the investigation and manipulation of matter at the scale of billionths of a meter, i.e., nanometers; borrowing approaches from academic disciplines, which until recently were perceived more or less as isolated from each other: Biology, Physics, Chemistry and Material Sciences. Different groups, ranging from the scientific community to the general public, when asked about the history of nanotechnology seem to be satisfied with a tiny set of information spread out from site to site in the web. Within the most disseminated allegedly origins of nanotechnology, we can find the so called grandfather and launching act of nanotechnology, namely the famous physicist Richard Feynman (1918 - 1988) and his 1959 talk There is plenty of room at the bottom1. -
Handbook of Chemical Engineering Calculations
Source: HANDBOOK OF CHEMICAL ENGINEERING CALCULATIONS SECTION 1 PHYSICAL AND CHEMICAL PROPERTIES Avinash Gupta, Ph.D. Senior Principal Chemical Engineer Chevron Lummus Global Bloomfield, NJ 1.1 MOLAR GAS CONSTANT 1.2 EQUATIONS AND LIQUID-LIQUID 1.2 ESTIMATION OF CRITICAL EQUILIBRIUM DATA 1.44 TEMPERATURE FROM EMPIRICAL 1.21 ACTIVITY-COEFFICIENT-CORRELATION CORRELATION 1.2 EQUATIONS AND VAPOR-LIQUID 1.3 CRITICAL PROPERTIES FROM EQUILIBRIUM DATA 1.46 GROUP-CONTRIBUTION METHOD 1.3 1.22 CONVERGENCE-PRESSURE 1.4 REDLICH-KWONG EQUATION VAPOR-LIQUID EQUILIBRIUM K OF STATE 1.5 VALUES 1.49 1.5 P-V-T PROPERTIES OF A GAS 1.23 HEAT OF FORMATION FROM MIXTURE 1.8 ELEMENTS 1.64 1.6 DENSITY OF A GAS MIXTURE 1.12 1.24 STANDARD HEAT OF REACTION, 1.7 ESTIMATION OF LIQUID STANDARD FREE-ENERGY CHANGE, AND EQUILIBRIUM CONSTANT 1.67 DENSITY 1.14 1.25 STANDARD HEAT OF REACTION FROM 1.8 ESTIMATION OF IDEAL-GAS HEAT HEAT OF FORMATION—AQUEOUS CAPACITY 1.15 SOLUTIONS 1.68 1.9 HEAT CAPACITY OF REAL GASES 1.20 1.26 STANDARD HEAT OF REACTION FROM 1.10 LIQUID HEAT CAPACITY— HEAT OF COMBUSTION 1.68 GENERALIZED CORRELATION 1.22 1.27 STANDARD HEAT OF FORMATION 1.11 ENTHALPY DIFFERENCE FOR IDEAL FROM HEAT OF COMBUSTION 1.70 GAS 1.24 1.28 HEAT OF ABSORPTION FROM 1.12 ESTIMATION OF HEAT OF SOLUBILITY DATA 1.71 VAPORIZATION 1.24 1.29 ESTIMATION OF LIQUID VISCOSITY 1.13 PREDICTION OF VAPOR AT HIGH TEMPERATURES 1.73 PRESSURE 1.27 1.30 VISCOSITY OF NONPOLAR AND 1.14 ENTHALPY ESTIMATION— POLAR GASES AT HIGH GENERALIZED METHOD 1.29 PRESSURE 1.73 1.15 ENTROPY INVOLVING A PHASE 1.31