MONOGENEANS the ULTIMATE FISH PARASITES 28 / the Biologist / Vol 58 No 2 MAIN IMAGE, LEFT Fig

Total Page:16

File Type:pdf, Size:1020Kb

MONOGENEANS the ULTIMATE FISH PARASITES 28 / the Biologist / Vol 58 No 2 MAIN IMAGE, LEFT Fig PARASITOLOGY B MONOGENEAN FISH PARASITES 10µm AR: AR: b SCALE SCALE Monogenean parasites of fishes have remarkable adaptations to parasitism, but according to Dr Graham Kearn these fascinating organisms are virtually unknown to naturalists MONOGENEANS THE ULTIMATE FISH PARASITES 28 / the biologist / Vol 58 No 2 MAIN IMAGE, LEFT Fig. 4. A lateral view of the haptor of Tetraonchus monenteron from pike gills, showing one of the two lateral pairs of large hooks that impale the gill leaflets by counter-rotation. Photo: Richard Evans-Gowing by scanning electron microscope. Scale bar: 10µm. Reproduced from Kearn (2004) with kind permission of Springer Science and Business Media. © Springer 2004 nyone who has gone bIOgraphy elasmobranchs) as well as bony material or pollution enters the gill pond-dipping will be fishes (teleosts). One of the largest chamber, parasites may also be familiar with monogeneans, measuring up to subjected by their hosts to ‘coughing’ planarians. They glide 2cm in length, is Entobdella pulses, in which the strength of the with no apparent effort hippoglossi from the skin of water flow may be suddenly and Aacross the substrate, propelled as if the halibut. It was also the first briefly increased and its direction on a magic carpet by microscopic monogenean to be recorded, temporarily changed. Thus a parasite motile hairs (cilia). Planarians are by Müller in 1776, but a satisfactory must at all times attach itself securely flatworms (platyhelminths) and are Dr Graham Kearn description was not published to the gills and be capable of resisting free-living (non-parasitic), but many was awarded the until 1858 by Van Beneden, the extra stresses generated during of their relatives have embarked on a degree of D.Sc whose excellent illustration ‘coughing’ episodes. It might be parasitic lifestyle. Some of us may (University of is reproduced in Fig. 2. thought that attachment to fish skin recall from our school days the Birmingham) A surprising recent discovery is would be less challenging, especially in 1974 and was complex life cycles of other parasitic visiting fellow in that Atlantic halibut hosts a second if the host is a flatfish or a fish that flatworms, the pork tapeworm, the Department species of Entobdella (Kearn et al. spends part of the day resting. Taenia solium, and the sheep liver of Parasitology, 2007). This parasite, named However, flatfishes are capable fluke, Fasciola hepatica. Few, University of Entobdella vanbenedeni, is as big of sudden bursts of speed and however, are familiar with Queensland, as, sometimes bigger than, attachment organs of skin parasites Australia in monogeneans, despite the fact that E. hippoglossi. The two parasites must meet these challenges. 1975-1976 and most common fishes harbour one or again in 1990-1991, are superficially similar, but Hooks are the ‘hallmark’ of more species of these parasites and the Seto careful comparison reveals monogeneans. These elegantly (Table 1, page 34). Marine Biological consistent differences in anatomical shaped structures (Fig. 3) occur at As summarised by Kearn (1998, Laboratory, detail that have gone unrecognised the posterior end of the body on a 2004) most monogeneans live on University of Kyoto, since the 18th century. muscular, often disc-shaped Japan in 1990. the skin (Fig. 1) or gills of fishes and He is the author of Two groups of monogeneans make attachment organ called the haptor many are host specific, i.e. each more than 130 an especially large contribution to (Fig. 2). Hooks are of two sizes: up to monogenean species is restricted to research papers our freshwater fauna. These are 16 tiny hooklets, ranging in length a single, or to one or two closely and review articles dactylogyrids, gill parasites that from about 7 to 40 µm, arranged related fish species (Table 1). The and two books. have speciated extensively on fish radially on the haptor disc, and consequence of this phenomenon of the carp family (Cyprinidae), and one or two pairs of more massive is that, following a cursory gyrodactylids, found on the skin and hooks (Fig. 4), which may reach examination of a detached parasite gills of many of our freshwater fishes 0.5mm in length. The hooklets in the absence of the host, a specialist and also on some marine hosts. mainly serve to pin the small larva to is often able to name the host fish. Dactylogyrids and gyrodactylids lie the delicate outer layer of cells Life cycles of tapeworms and at the other (epidermis) of the host’s skin, while flukes involve at least two hosts, but end of the size spectrum from the larger hooks may pass through monogeneans have relatively simple E. hippoglossi, ranging in length the epidermis into the thicker and cycles with only one host. They from 0.5 to 2mm. tougher inner layer of the skin or spread directly from fish to fish A monogenean lives in the bladder dermis, providing anchorage for the either by way of freely swimming of our common frog, Rana much larger adult parasites. larvae (oncomiracidia) propelled temporaria, and others infect by cilia, or by contagion, adult or chelonian reptiles (terrapins). juvenile parasites transferring Another occursin what seems a between fishes when they make most unlikely habitat, beneath the contact. Others infect Chelonian eyelids of the hippopotamus. reptiles (terrapins). Marine hosts Table 1 (page 32) shows a selection include Attachment of common British marine and sharks and Gill parasites are continually freshwater fishes and their rays as well exposed to strong gill- monogenean parasites. Marine hosts as bony fish ventilating currents generated include sharks and rays by their fish hosts. On (cartilaginous fishes or occasions when particulate Vol 58 No 2 / the biologist / 29 PARASITOLOGY B MONOGENEAN FISH PARASITES Some skin parasites like Entobdella use movements of the large hooks embedded in the haptor to generate suction. The gill parasite Tetraonchus uses counter-rotation of its two lateral pairs of large hooks (Fig. 4) to impale the bases of two adjacent gill leaflets (the tiny flaps that contain blood and extract oxygen from the Fig. 1. The lower surface of a common sole (Solea solea) infected gill-ventilating current). by two adult specimens of the monogenean Entobdella soleae. But it is among the gill parasites of Colour lithograph from a water-colour by Annie Willis in bony fishes that bio-engineering has Cunningham, 1890. reached an exceptional level. Some Fig. 2. An early drawing by Van Beneden (1858) of Entobdella of these lowly flatworms have hippoglossi – the first monogenean to be described. developed three or four pairs of Note posterior, saucer-shaped sucker (haptor) with clamps, each with two opposable embedded hooks. semi-circular jaws capable of (a) grasping one or two gill leaflets For Fig. 4 (Fig. 5). Some of these gill parasites see main image Fig. 5. (a) A clamp- are asymmetrical. For example page 28 bearing monogenean, Pseudaxine trachuri on horse Diclidophora minor (Scale bar: 1 mm) mackerel, Trachurus trachurus, has and (b) an enlarged 25 or more clamps on one side of the view of a clamp body (Fig. 6). The parasite must (Scale bar: 100 µm). possess a surprisingly sophisticated Image Dr Paul sensory/motor system to co-ordinate Thomas. the operation of these clamps. The sizes of Tetraonchus and related parasites are limited by the (b) need to fit between two adjacent gill leaflets, but no such restriction applies to the clamp-bearing parasites and many of them are large, from 0.5 to 1cm long (Figs. 5–7). Fig. 3. A variety of monogenean hooks Feeding (not to scale). Skin parasitic monogeneans like Entobdella soleae feed on host Fig. 7. Two fused individuals epidermal cells. A large protrusible of Diplozoon paradoxum. glandular pharynx is used to erode Scale bar: 1 mm. and ingest host epidermis. Image Dr Paul Thomas. Monogeneans have no blood system and intestinal branches transport nutrients to remote parts of the body. The parasites exploit the wound healing properties of host epidermal cells, which migrate from the edge of the feeding wound and repair the lesion. Damage inflicted at a single feeding site by E. soleae probably heals within 24 hours. Damage to the host in the wild is therefore minimal, but this is not the case in fish farms and aquaria. Gill parasites like Tetraonchus also feed on epidermis but the larger clamp-bearing gill parasites like Diclidophora and Pseudaxine ingest blood, as indicated by intestinal Fig. 9. An adult Polystoma deposits of the indigestible brown or Fig. 6. Pseudaxine trachuri, an Fig. 8. A living larva of integerrimum from the black pigment haematin derived asymmetrical clamp-bearing Entobdella soleae. bladder of a common gill parasite. Note brown or frog. Scale bar: 1 mm. from host haemoglobin (Fig. 6). black pigment (haematin) Specimen donated derived from ingested host by Professor Locomotion and mating blood. Scale bar: 500µm. Richard Tinsley. All monogeneans, with the exception Image Dr Paul Thomas. Image Dr Paul Thomas. of clamp-bearing monogeneans, are 30 / the biologist / Vol 58 No 2 capable of moving from place to place monogeneans lay eggs. These eggs reached by its anterior adhesive pads. on the host in the manner of a leech. have shells made of a tough protein In this case the identity of the E. soleae has adhesive glandular pads called sclerotin and are released into chemical hatching stimulus is known on the head that are used for the sea, lake or river. The larva, – it is urea, a waste product of protein temporary attachment when the usually ciliated, embryonates inside metabolism that is retained in the parasite changes the location of its the egg. A detachable lid or bodies of sharks and rays and has an haptor.
Recommended publications
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • Bouguerche Et Al
    Redescription and molecular characterisation of Allogastrocotyle bivaginalis Nasir & Fuentes Zambrano, 1983 (Monogenea: Gastrocotylidae) from Trachurus picturatus (Bowdich) (Perciformes: Carangidae) off the Algerian coast, Mediterranean Sea Chahinez Bouguerche, Fadila Tazerouti, Delphine Gey, Jean-Lou Justine To cite this version: Chahinez Bouguerche, Fadila Tazerouti, Delphine Gey, Jean-Lou Justine. Redescription and molecular characterisation of Allogastrocotyle bivaginalis Nasir & Fuentes Zambrano, 1983 (Monogenea: Gas- trocotylidae) from Trachurus picturatus (Bowdich) (Perciformes: Carangidae) off the Algerian coast, Mediterranean Sea. Systematic Parasitology, Springer Verlag (Germany), 2019, 96 (8), pp.681-694. 10.1007/s11230-019-09883-7. hal-02557974 HAL Id: hal-02557974 https://hal.archives-ouvertes.fr/hal-02557974 Submitted on 29 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bouguerche et al. Allogastrocotyle bivaginalis 1 Systematic Parasitology (2019) 96:681–694 DOI: 10.1007/s11230-019-09883-7 Redescription and molecular characterisation
    [Show full text]
  • Molecular-Based Identification of Polystoma Integerrimum by 28S Rdna, Phylogenetic and Secondary Structure Analysis
    Volume 9, Number 2, June .2016 ISSN 1995-6673 JJBS Pages 117 - 121 Jordan Journal of Biological Sciences Molecular-Based Identification of Polystoma integerrimum by 28S rDNA, Phylogenetic and Secondary Structure Analysis Qaraman M. K. Koyee1, Rozhgar A. Khailany1,2,*, Karwan S. N. Al-Marjan3 and Shamall M. A. Abdullah4 1 Department of Biology, College of Science, University of Salahaddin, Erbil/ Iraq. 2 Scientific Research Center, University of Salahaddin, Erbil/ Iraq. 3 P DepartmentP of Pharmacy, Medical Technical Institute. Erbil Polytechnique University, Erbil/ Iraq. 4 P FishP Resource and Aquatic Animal Department, College of Agriculture, Salahaddin University, Erbil/ Iraq. Received: November 25,2015 Revised: February 21, 2016 Accepted: April 21, 2016 Abstract The present study was carried out to molecular identification, phylogenetic evolutionary and secondary structure prediction of the monogenean, Polystoma integerrimum which was isolated from amphibians Bufo viridis and B. regularis, collected from various regions in Erbil City, Iraq. After the morphological examination of the parasite, molecular identification and phylogenetic relationships were carried out using 28S ribosomal DNA (rDNA) sequence marker. The result indicated that the query sequence (sample sequence) was 100% identical to this species of the parasite and the phylogenetic tree showed 97-99% relationships in the sequence of P. integerrimum and 28S rDNA regions for other species of Polystoma. In addition, the present finding was confirmed by the molecular morphometrics, according to the secondary structure of 28S rDNA region. The topology analysis produced the same data as the acquired tree. In conclusion, the primary sequence analysis showed the validity of P. integerrimum. Phylogenetic tree and secondary structure analysis can be considered as a valuable method for separating species of Polystoma.
    [Show full text]
  • (Monogenea, Dactylogyridae) on Rhamdia Quelen N
    http://dx.doi.org/10.1590/1519-6984.14014 Effect of water temperature and salinity in oviposition, hatching success and infestation of Aphanoblastella mastigatus (Monogenea, Dactylogyridae) on Rhamdia quelen N. C. Marchioria*, E. L. T. Gonçalvesb, K. R. Tancredob, J. Pereira-Juniorc, J. R. E. Garciad and M. L. Martinsb aEmpresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – EPAGRI, Campo Experimental de Piscicultura de Camboriú, Rua Joaquim Garcia, s/n, Centro, CEP 88340-000, Camboriú, SC, Brazil bLaboratório de Sanidade de Organismos Aquáticos – AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina – UFSC, Rodovia Admar Gonzaga, 1346, CEP 88040-900, Florianópolis, SC, Brazil cLaboratório de Biologia de Parasitos de Organismos Aquáticos – LABIPOA, Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande – FURG, Av. Itália, Km 8, Campus Carreiros, CEP 96650-900, Rio Grande, RS, Brazil dUniversidade do Sul de Santa Catarina – Unisul, Av. José Acácio Moreira, 787, Bairro Dehon, CP 370, CEP 88704-900, Tubarão, SC, Brazil *e-mail: [email protected] Received: July 28, 2014 – Accepted: September 23, 2014 – Distributed: November 30, 2015 (With 5 figures) Abstract Several environmental parameters may influence biological processes of several aquatic invertebrates, such as the Monogenea. Current analysis investigates oviposition, hatching success and infestation of Aphanoblastella mastigatus, a parasite of the silver catfish Rhamdia quelen at different temperatures (~ 24 and 28 °C) and salinity (by adding sodium chloride to water, at concentrations 0, 5 and 9 g/L) in laboratory. There was no significant difference in oviposition rate and in A. mastigatus infestation success at 24 and 28 °C.
    [Show full text]
  • Ana Pérez-Del-Olmo
    DEPARTAMENT DE ZOOLOGIA BIODIVERSITY AND STRUCTURE OF PARASITE COMMUNITIES IN BOOPS BOOPS (TELEOSTEI: SPARIDAE) FROM THE WESTERN MEDITERRANEAN AND OFF THE NORTH EAST ATLANTIC COASTS OF SPAIN ANA PÉREZ-DEL-OLMO UNIVERSITAT DE VALÈNCIA Servei de Publicacions 2008 Aquesta Tesi Doctoral va ser presentada a València el dia 25 d’abril de 2008 davant un tribunal format per: - D. Santiago Pascual del Hierro - D. Bernd Sures - Dª. Simonetta Mattiucci - D. Christian Gortázar - D. Juan Antonio Balbuena Díaz-Pinés Va ser dirigida per: D. Juan Antonio Raga Esteve Dª. Mª Mercedes Fernández Martínez Dª. Aneta Kostadinova ©Copyright: Servei de Publicacions Ana Pérez-del-Olmo Depòsit legal: I.S.B.N.: 978-84-370-7234-0 Edita: Universitat de València Servei de Publicacions C/ Artes Gráficas, 13 bajo 46010 València Spain Telèfon: 963864115 INSTITUT CAVANILLES DE BIODIVERSITAT I BIOLOGIA EVOLUTIVA Biodiversity and structure of parasite communities in Boops boops (Teleostei: Sparidae) from the Western Mediterranean and off the North East Atlantic coasts of Spain Ana Pérez-del-Olmo TESIS DOCTORAL Directores: Juan Antonio Raga Esteve Valencia, Febrero 2008 Mª Mercedes Fernández Martínez Aneta Kostadinova INSTITUT CAVANILLES DE BIODIVERSITAT I BIOLOGIA EVOLUTIVA BIODIVERSITY AND STRUCTURE OF PARASITE COMMUNITIES IN BOOPS BOOPS (TELEOSTEI: SPARIDAE) FROM THE WESTERN MEDITERRANEAN AND OFF THE NORTH EAST ATLANTIC COASTS OF SPAIN TESIS DOCTORAL POR ANA PÉREZ-DEL-OLMO DIRECTORES JUAN ANTONIO RAGA ESTEVE Mª MERCEDES FERNÁNDEZ MARTÍNEZ ANETA KOSTADINOVA VALENCIA, FEBRERO
    [Show full text]
  • Ultrastructural Observations on the Oncomiracidium Epidermis and Adult Tegument of Discocotyle Sagittata, a Monogenean Gill Parasite of Salmonids
    Parasitology Research https://doi.org/10.1007/s00436-020-07045-z FISH PARASITOLOGY - ORIGINAL PAPER Ultrastructural observations on the oncomiracidium epidermis and adult tegument of Discocotyle sagittata, a monogenean gill parasite of salmonids Mohamed Mohamed El-Naggar1,2 & Richard C Tinsley3 & Jo Cable2 Received: 14 September 2020 /Accepted: 28 December 2020 # The Author(s) 2021 Abstract During their different life stages, parasites undergo remarkable morphological, physiological, and behavioral “metamorphoses” to meet the needs of their changing habitats. This is even true for ectoparasites, such as the monogeneans, which typically have a free-swimming larval stage (oncomiracidium) that seeks out and attaches to the external surfaces of fish where they mature. Before any obvious changes occur, there are ultrastructural differences in the oncomiracidium’s outer surface that prepare it for a parasitic existence. The present findings suggest a distinct variation in timing of the switch from oncomiracidia epidermis to the syncytial structure of the adult tegument and so, to date, there are three such categories within the Monogenea: (1) Nuclei of both ciliated cells and interciliary cytoplasm are shed from the surface layer and the epidermis becomes a syncytial layer during the later stages of embryogenesis; (2) nuclei of both ciliated cells and interciliary syncytium remain distinct and the switch occurs later after the oncomiracidia hatch (as in the present study); and (3) the nuclei remain distinct in the ciliated epidermis but those of the interciliary epidermis are lost during embryonic development. Here we describe how the epidermis of the oncomiracidium of Discocotyle sagittata is differentiated into two regions, a ciliated cell layer and an interciliary, syncytial cytoplasm, both of which are nucleated.
    [Show full text]
  • A Taxonomic Revision of Octomacrum Mueller, 1934 (Monogenea: Polyopisthocotylea: Octomacridae), Including an 18S DNA Based Phylogeny
    A taxonomic revision of Octomacrum Mueller, 1934 (Monogenea: Polyopisthocotylea: Octomacridae), including an 18S DNA based phylogeny By Jonathon J.H. Forest A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Sciences. August 2011 Halifax, Nova Scotia © Jonathon Forest, 2011 Approved: Dr. David Cone Supervisor Approved: Dr. Roland Cusack Committee member Approved: Dr. Timothy Frasier Committee member Approved: Dr. Florian Reyda External examiner Date: August, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-80947-1 Our file Notre reference ISBN: 978-0-494-80947-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduce, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these.
    [Show full text]
  • YSF 2020-PROGRAMME-1.Pdf
    YOUNG SYSTEMATISTS' FORUM Day 1 Monday 23rd November 2020, Zoom [all timings are GMT+0] 11.50 Opening remarks David Williams, President of the Systematics Association 12.00 Rodrigo Vargas Pêgas Species Concepts and the Anagenetic Process Importance on Evolutionary History 12.15 Katherine Odanaka Insights into the phylogeny and biogeography of the cleptoparasitic bee genus Nomada 12.30 Minette Havenga Association among global populations of the Eucalyptus foliar pathogen Teratosphaeria destructans 12.45 David A. Velasquez-Trujillo Phylogenetic relationships of the whiptail lizards of the genus Holcosus COPE 1862 (Squamata: Teiidae) based on morphological and molecular evidence 13.00 Break 10 minutes 13.10 Arsham Nejad Kourki The Ediacaran Dickinsonia is a stem-eumetazoan 13.25 Flávia F.Petean The role of the American continent on the diversification of the stingrays’ genus Hypanus Rafinesque, 1818 (Myliobatiformes: Dasyatidae) 13.40 Peter M.Schächinger Discovering species diversity in Antarctic marine slugs (Mollusca: Gastropoda) 13.55 Alison Irwin Eight new mitogenomes clarify the phylogenetic relationships of Stromboidea within the gastropod phylogenetic framework 14.10 Break 20 minutes 14.30 Érica Martinha Silva de The lineages of foliage-roosting fruit bat Uroderma spp. (Chiroptera: Souza Phyllostomidae 14.45 Melissa Betters Rethinking Informative Traits: Environmental Influence on Shell Morphology in Deep-Sea Gastropods 15.00 J. Renato Morales-Mérida- New lineages of Holcosus undulatus (Squamata: Teiidae) in Guatemala 15.15 Roberto
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • (Monogenea, Gastrocotylidae) Leads to a Better Understanding of the Systematics of Pseudaxine and Related Genera
    Parasite 27, 50 (2020) Ó C. Bouguerche et al., published by EDP Sciences, 2020 https://doi.org/10.1051/parasite/2020046 urn:lsid:zoobank.org:pub:7589B476-E0EB-4614-8BA1-64F8CD0A1BB2 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS No vagina, one vagina, or multiple vaginae? An integrative study of Pseudaxine trachuri (Monogenea, Gastrocotylidae) leads to a better understanding of the systematics of Pseudaxine and related genera Chahinez Bouguerche1, Fadila Tazerouti1, Delphine Gey2,3, and Jean-Lou Justine4,* 1 Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Laboratoire de Biodiversité et Environnement: Interactions – Génomes, BP 32, El Alia, Bab Ezzouar, 16111 Alger, Algérie 2 Service de Systématique Moléculaire, UMS 2700 CNRS, Muséum National d’Histoire Naturelle, Sorbonne Universités, 43 Rue Cuvier, CP 26, 75231 Paris Cedex 05, France 3 UMR7245 MCAM, Muséum National d’Histoire Naturelle, 61, Rue Buffon, CP52, 75231 Paris Cedex 05, France 4 Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 51, 75231 Paris Cedex 05, France Received 27 May 2020, Accepted 24 July 2020, Published online 18 August 2020 Abstract – The presence/absence and number of vaginae is a major characteristic for the systematics of the Monogenea. Three gastrocotylid genera share similar morphology and anatomy but are distinguished by this character: Pseudaxine Parona & Perugia, 1890 has no vagina, Allogastrocotyle Nasir & Fuentes Zambrano, 1983 has two vaginae, and Pseudaxinoides Lebedev, 1968 has multiple vaginae. In the course of a study of Pseudaxine trachuri Parona & Perugia 1890, we found specimens with structures resembling “multiple vaginae”; we compared them with specimens without vaginae in terms of both morphology and molecular characterisitics (COI barcode), and found that they belonged to the same species.
    [Show full text]
  • Whittington, Ian David. Experimental Infections, Using a Fluorescen
    PUBLISHED VERSION Glennon, Vanessa; Chisholm, Leslie Anne; Whittington, Ian David. Experimental infections, using a fluorescent marker, of two elasmobranch species by unciliated larvae of Branchotenthes octohamatus (Monogenea: Hexabothriidae): invasion route, host specificity and post-larval development, Parasitology, 2007; 134 (9):1243-1252. Copyright © 2007 Cambridge University Press PERMISSIONS http://journals.cambridge.org/action/stream?pageId=4088&level=2#4408 The right to post the definitive version of the contribution as published at Cambridge Journals Online (in PDF or HTML form) in the Institutional Repository of the institution in which they worked at the time the paper was first submitted, or (for appropriate journals) in PubMed Central or UK PubMed Central, no sooner than one year after first publication of the paper in the journal, subject to file availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the journal at Cambridge Journals Online. Inclusion of this definitive version after one year in Institutional Repositories outside of the institution in which the contributor worked at the time the paper was first submitted will be subject to the additional permission of Cambridge University Press (not to be unreasonably withheld). 6th May 2011 http://hdl.handle.net/2440/44414 1243 Experimental infections, using a fluorescent marker, of two elasmobranch species by unciliated larvae of Branchotenthes octohamatus (Monogenea: Hexabothriidae): invasion route, host specificity and post-larval development V. GLENNON1*, L. A. CHISHOLM1 and I.
    [Show full text]
  • Monogenea, Gastrocotylidae
    No vagina, one vagina, or multiple vaginae? An integrative study of Pseudaxine trachuri (Monogenea, Gastrocotylidae) leads to a better understanding of the systematics of Pseudaxine and related genera Chahinez Bouguerche, Fadila Tazerouti, Delphine Gey, Jean-Lou Justine To cite this version: Chahinez Bouguerche, Fadila Tazerouti, Delphine Gey, Jean-Lou Justine. No vagina, one vagina, or multiple vaginae? An integrative study of Pseudaxine trachuri (Monogenea, Gastrocotylidae) leads to a better understanding of the systematics of Pseudaxine and related genera. Parasite, EDP Sciences, 2020, 27, pp.50. 10.1051/parasite/2020046. hal-02917063 HAL Id: hal-02917063 https://hal.archives-ouvertes.fr/hal-02917063 Submitted on 18 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Parasite 27, 50 (2020) Ó C. Bouguerche et al., published by EDP Sciences, 2020 https://doi.org/10.1051/parasite/2020046 urn:lsid:zoobank.org:pub:7589B476-E0EB-4614-8BA1-64F8CD0A1BB2 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS No vagina, one vagina,
    [Show full text]