Next Generation Storage with AWS | Cognizant

Total Page:16

File Type:pdf, Size:1020Kb

Next Generation Storage with AWS | Cognizant COGNIZANT CLOUD SERVICES ACCELERATE DIGITAL BUSINESS WITH THE AWS CLOUD POWER NEXT GENERATION HYBRID STORAGE AND DATA SOLUTIONS WITH COGNIZANT AND AWS Cognizant draws on the power of Amazon Web Services (AWS) to provide an array of hybrid cloud storage and data solutions. The agility, scalability and cost effectiveness AT A GLANCE of cloud storage enables us to design solutions without constraints. Your organization can experience optimal Digital data in all its forms continues its storage performance and features while still reducing overall explosive growth. Managing that data storage costs. effectively becomes critical to a company’s ability to drive innovation and deliver great KEY FEATURES AND BENEFITS customer experiences. Cognizant hybrid cloud storage features and benefits on Cognizant leverages AWS Cloud and best-in- class tools from its rich partner ecosystem to AWS include: provide flexible, scalable and secure hybrid • Assured data protection leveraging AWS service level storage and data solutions that enable agreements organizations to transform their applications in both on-premises and on cloud with the power • Reduced time-to-store, backup, archive, recover and of AWS. retrieve to accelerate use of data in analytics and applications, so new products and services get to market Turn data into a business accelerator with faster Cognizant and AWS hybrid cloud storage and data solutions. • Strong data platform for business continuity and disaster recovery environments • Secure, reliable, dependable and cost-effective cloud backup replaces risky tape drives and other physical media • Ensure secured and optimized data transactions by deduplication, encryption and compression • Built-in cloud security and industry-specific compliance Remote Office and Branch Office Solutions: We measures. optimize bandwidth, speed data access, reduce time-to- provision, improve application performance, meet mobility • Complete end-to-end platform for Big Data and requirements and centralize management with storage Analytics: Collect, store, process, analyse, visualize and solutions for your remote locations and branches. We exploit visualize big data easily and quickly leverage accelerators such as WAN optimizers and caching appliances integrated with a wide range of AWS storage • Ingest, store and explore almost unlimited data on services and our Cloud360 platform for Cloud monitoring AWS Cloud with cost-effective and seamless data lake and management. solutions Business Continuity and Disaster Recovery (BCDR): We AWS HYBRID CLOUD STORAGE AND build powerful, proactive end-to-end Business Continuity DATA SOLUTIONS and Disaster Recovery (BCDR) solutions. We continuously monitor the solution to ensure disaster readiness; monitor Primary Storage: We leverage AWS storage gateway, your infrastructure for issues; and enable pre-emptive Amazon S3, Amazon EBS, Amazon EFS and partner seamless switchovers to disaster recovery sites. Solutions solutions for virtually unlimited and automatically scalable can encompass scenarios such as on-premises to AWS; amounts of active data storage. These solutions are AWS to AWS; and any Cloud to AWS. integrated into our managed services framework powered by Cloud360, a comprehensive platform for end-to-end Big Data Solutions: We build big data solutions by cloud monitoring and management. integrating a wide range of services from AWS such as Amazon S3, Amazon Redshift, AWS DynamoDB, Amazon Data Protection Solutions: We leverage innovative EMR, Amazon Kinesis Firehose, AWS Data Pipeline etc. niche solutions from our partners that exploit the wide We use best-in-class partner tools for building big data range of AWS storage features including Amazon EBS, solutions, powered by Cognizant’s innovative approach, Amazon S3, Amazon S3-IA and Amazon Glacier. Our effortlessly collect, store, process, analyse and visualize Backup and Recovery solutions transform complex the data and gain valuable insights into your business data. backup environments to reduce cost and minimize effort while increasing durability, reliability and flexibility. These Data Lake Solutions: We make the lives of the developers solutions are boosted with performance accelerators such and data scientists easy by building innovative large scale as deduplication, compression, etc., and include encryption data lake solutions by integrating AWS services such as for security and compliance requirements. Amazon S3, Amazon Redshift, AWS DynamoDB, Amazon QuickSight, AWS Data Pipeline, Amazon Elasticsearch, AWS Data Archival Solutions: Low-cost yet highly durable Lambda etc., and partner tools leveraging Cognizant’s rich storage services such as Amazon S3, Amazon S3-IA and set of IPs and blueprints. Amazon Glacier reduce time, cost and data volume by up to 90% and shrink retrieval time from days to minutes. AWS Solutions Cognizant Value Propositions Cognizant Use Cases Transformation Services • Primary Storage Solutions Cloud Steps 2.0 framework Amazon AWS AWS Amazon Partner Ecosystem • Data Protection Solutions EFS Snowball DynamoDB EMR Best-in-class tools from partners • Data Archival Solutions Accelerators Build factory, Application migration factory, Partner tools Amazon AWS Storage AWS Amazon • Remote Office Solutions Glacier Gateway Lambda Kinesis IPs and Assets • Business Continuity and • Disaster Recovery (BCDR) Managed Services Amazon Amazon Amazon Amazon S3 CloudFront Elasticsearch QuickSight Cloud Governance, Application Service Migration Foundry, Cloud • Data Lake Solutions Management Fabric, SLAs, Monitoring & Billing, Integration with on-premise resources • Big Data Solutions Amazon Amazon AWS Direct AWS Date EBS Redshift Connect Pipeline CASE STUDY The migration was carried out in multiple phases: The Client • Phase 1 The client is a global advance clinical, analytical and Theon Web, application server and database: This phase technical product for Healthcare. includes migration of data into database. Scope • Phase 1.5 The client specializes in the development of advance Creation of Aver and Mirth applications interfacing clinical, analytical and technical products for Healthcare with instances created in phase 1: This phase involves and has engaged Cognizant to assist with the assessment creation of a No SQL database to be utilized in future and migration of their IT infrastructure on AWS Cloud. for data analytics. Cognizant Solution • Phase 2 The client’s AWS environment consists of production, High impact migration: This phase involved setting up staging, testing and development to reside in virtual private the client portal. cloud (VPC) of client’s choice based on AWS region. All VPCs will leverage multiple availability zones (AZs) to allow • Phase 3 for data backup and HA capabilities. All infrastructure and Portal Creation: Marketing portals for client and application components will be self-sustained in the VPC. SharePoint in AWS were created in this phase. Architecture Data Center AWS Cloud Benefits 10 TB VPC • 10 TB transferred through AWS export / import AWS Import / Export • To consider establishing direct EBS Volumes connect connectivity between AWS and data center as the bandwidth requirement increased in future when the number of products in On-Premise production environment increases Servers Amazon S3 IPSec VPN • Data ingestion for cloud workloads • Snapshot backup for EBS volumes • Staging for cloud data management tools S3 Bucket Pragmatic approach to cloud transformation starting Key Benefits • with high value workloads • Storage migration that involved moving of ~10 TB of data to AWS • Highly scalable systems based on workloads • Optimally used Amazon EBS storage, Amazon EBS • Lower cost of IT infrastructure and operations snapshots and Amazon S3 storage during migration • Improved SLAs and qualities of service • Vertica DB cluster migration with negligible interruption For more details on the overall solution implementation, please refer https://www.cognizant.com/cognizant-campaign/ healthcare analytics company.pdf WHY COGNIZANT AND AWS Cognizant is a Premier Consulting Partner for AWS, with over 2000 AWS practitioners, including more than 1000 certified professionals. We are also an AWS Channel Reseller, an AWS Managed Services Partner, AWS Migration Acceleration Program (MAP) Partner and an AWS Marketplace Reseller. In addition to this, Cognizant has accredited status with AWS for Service Delivery, Healthcare and Life Sciences, Financial Services, Migration Competency, Big Data, Workspaces and SharePoint. Choose Cognizant and AWS to gain industry leading partners with proven solutions. We’ll blend our system integration capabilities, accelerators, frameworks, and toolkits with our advisory, implementation and managed services along with best-in-class AWS Cloud computing technologies and services to deliver a reliable, flexible cloud infrastructure that will drive business acceleration and transform your organization. For more information, contact [email protected] ABOUT COGNIZANT Cognizant (NASDAQ-100: CTSH) is one of the world’s leading professional services companies, transforming clients’ business, operating and technology models for the digital era. Our unique industry-based, consultative approach helps clients envision, build and run more innovative and efficient businesses. Headquartered in the U.S., Cognizant is ranked 205 on the Fortune 500 and is consistently listed among the most admired companies in the world. Learn how Cognizant helps clients lead with digital at www.cognizant.com or follow us
Recommended publications
  • Commvault on AWS Comprehensive Cloud Data Management for Hybrid IT Table of Contents
    Commvault on AWS Comprehensive Cloud Data Management for Hybrid IT Table of Contents The Data Management Challenge 3 Commvault and Amazon Web Services 4 Benefits 7 Case Study: Dow Jones 8 Getting Started 9 2 The Data Management Challenge Today, more data is being generated than ever before. Keeping up with the rapid pace of data growth presents a series of challenges. Enterprise organizations are collecting petabytes of customer and application data that must be backed up and accessible to meet compliance requirements. Increased regulation around data retention policies make it more difficult to manage backup and archive storage, as critical data may be required to be kept for years and maybe difficult to find. Further complicating matters, point solutions often overlap and leave gaps where data is unprotected and require additional staff to manage them. These issues lead to increased costs, yet many IT departments are facing budget cuts and cannot expand upon their capital to meet increased performance demands. Today’s hybrid IT organizations realize cloud can help solve many data storage issues. With cloud storage comes the need for a comprehensive data management platform to manage data both on-premises and in the cloud. Savvy organizations streamline IT operations and reduce cloud waste with flexible orchestration to automate resource provisioning, policies and routine tasks. This eBook will demonstrate how Commvault and Amazon Web Services (AWS) deliver a cost-effective data management solution that addresses all of these challenges with a single, scalable solution. 3 Commvault and Amazon Web Services Unlike most backup and recovery solutions, Commvault offers a single data platform solution for all backup and recovery needs; as opposed to having to several point solutions for each use case (i.e.
    [Show full text]
  • Timeline 1994 July Company Incorporated 1995 July Amazon
    Timeline 1994 July Company Incorporated 1995 July Amazon.com Sells First Book, “Fluid Concepts & Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought” 1996 July Launches Amazon.com Associates Program 1997 May Announces IPO, Begins Trading on NASDAQ Under “AMZN” September Introduces 1-ClickTM Shopping November Opens Fulfillment Center in New Castle, Delaware 1998 February Launches Amazon.com Advantage Program April Acquires Internet Movie Database June Opens Music Store October Launches First International Sites, Amazon.co.uk (UK) and Amazon.de (Germany) November Opens DVD/Video Store 1999 January Opens Fulfillment Center in Fernley, Nevada March Launches Amazon.com Auctions April Opens Fulfillment Center in Coffeyville, Kansas May Opens Fulfillment Centers in Campbellsville and Lexington, Kentucky June Acquires Alexa Internet July Opens Consumer Electronics, and Toys & Games Stores September Launches zShops October Opens Customer Service Center in Tacoma, Washington Acquires Tool Crib of the North’s Online and Catalog Sales Division November Opens Home Improvement, Software, Video Games and Gift Ideas Stores December Jeff Bezos Named TIME Magazine “Person Of The Year” 2000 January Opens Customer Service Center in Huntington, West Virginia May Opens Kitchen Store August Announces Toys “R” Us Alliance Launches Amazon.fr (France) October Opens Camera & Photo Store November Launches Amazon.co.jp (Japan) Launches Marketplace Introduces First Free Super Saver Shipping Offer (Orders Over $100) 2001 April Announces Borders Group Alliance August Introduces In-Store Pick Up September Announces Target Stores Alliance October Introduces Look Inside The BookTM 2002 June Launches Amazon.ca (Canada) July Launches Amazon Web Services August Lowers Free Super Saver Shipping Threshold to $25 September Opens Office Products Store November Opens Apparel & Accessories Store 2003 April Announces National Basketball Association Alliance June Launches Amazon Services, Inc.
    [Show full text]
  • AWS Managed Services (AMS)
    AWS Managed Services (AMS) Application Developer's Guide AMS Advanced Operations Plan Version September 16, 2020 AWS Managed Services (AMS) Application Developer's Guide AMS Advanced Operations Plan AWS Managed Services (AMS) Application Developer's Guide: AMS Advanced Operations Plan Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. AWS Managed Services (AMS) Application Developer's Guide AMS Advanced Operations Plan Table of Contents Application Onboarding to AMS Introduction ........................................................................................ 1 What is Application Onboarding? ................................................................................................. 1 What we do, what we do not do .................................................................................................. 1 AMS Amazon Machine Images (AMIs) ............................................................................................ 2 Security enhanced AMIs ...................................................................................................... 4 Key terms .................................................................................................................................
    [Show full text]
  • Performance at Scale with Amazon Elasticache
    Performance at Scale with Amazon ElastiCache July 2019 Notices Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents current AWS product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. © 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved. Contents Introduction .......................................................................................................................... 1 ElastiCache Overview ......................................................................................................... 2 Alternatives to ElastiCache ................................................................................................. 2 Memcached vs. Redis ......................................................................................................... 3 ElastiCache for Memcached ............................................................................................... 5 Architecture with ElastiCache for Memcached ...............................................................
    [Show full text]
  • Performance Efficiency Pillar
    Performance Efficiency Pillar AWS Well-Architected Framework Performance Efficiency Pillar AWS Well-Architected Framework Performance Efficiency Pillar: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Performance Efficiency Pillar AWS Well-Architected Framework Table of Contents Abstract and Introduction ................................................................................................................... 1 Abstract .................................................................................................................................... 1 Introduction .............................................................................................................................. 1 Performance Efficiency ....................................................................................................................... 2 Design Principles ........................................................................................................................ 2 Definition .................................................................................................................................
    [Show full text]
  • Amazon Elasticache Deep Dive Powering Modern Applications with Low Latency and High Throughput
    Amazon ElastiCache Deep Dive Powering modern applications with low latency and high throughput Michael Labib Sr. Manager, Non-Relational Databases © 2020, Amazon Web Services, Inc. or its Affiliates. Agenda • Introduction to Amazon ElastiCache • Redis Topologies & Features • ElastiCache Use Cases • Monitoring, Sizing & Best Practices © 2020, Amazon Web Services, Inc. or its Affiliates. Introduction to Amazon ElastiCache © 2020, Amazon Web Services, Inc. or its Affiliates. Purpose-built databases © 2020, Amazon Web Services, Inc. or its Affiliates. Purpose-built databases © 2020, Amazon Web Services, Inc. or its Affiliates. Modern real-time applications require Performance, Scale & Availability Users 1M+ Data volume Terabytes—petabytes Locality Global Performance Microsecond latency Request rate Millions per second Access Mobile, IoT, devices Scale Up-out-in E-Commerce Media Social Online Shared economy Economics Pay-as-you-go streaming media gaming Developer access Open API © 2020, Amazon Web Services, Inc. or its Affiliates. Amazon ElastiCache – Fully Managed Service Redis & Extreme Secure Easily scales to Memcached compatible performance and reliable massive workloads Fully compatible with In-memory data store Network isolation, encryption Scale writes and open source Redis and cache for microsecond at rest/transit, HIPAA, PCI, reads with sharding and Memcached response times FedRAMP, multi AZ, and and replicas automatic failover © 2020, Amazon Web Services, Inc. or its Affiliates. What is Redis? Initially released in 2009, Redis provides: • Complex data structures: Strings, Lists, Sets, Sorted Sets, Hash Maps, HyperLogLog, Geospatial, and Streams • High-availability through replication • Scalability through online sharding • Persistence via snapshot / restore • Multi-key atomic operations A high-speed, in-memory, non-Relational data store. • LUA scripting Customers love that Redis is easy to use.
    [Show full text]
  • Migrating to Google Cloud Storage Nearline from Amazon Glacier
    Migrating to Google Cloud PAUL NEWSON | 07/23/15 Storage Nearline ​ Migrating to Google Cloud Storage Nearline From Amazon Glacier Page 1 Migrating to Google Cloud PAUL NEWSON | 07/23/15 Storage Nearline ​ Migrating to Google Cloud Storage Nearline From Amazon Glacier Table of contents: Summary Overview Prerequisites Create a Workspace and Staging Area Create a Bucket Using the Nearline Storage Class Choose a Naming Convention Begin Storing New Data in Cloud Storage Nearline Migrating Data Stored Directly in Amazon Glacier Get an Inventory of Archives Make an Archive Available for Download Download the Archive to a Staging Area Upload Data to Cloud Storage Nearline Migrating in Batches Migrating Data Stored in Amazon Glacier via Amazon S3 Get an Inventory of Archives Make an Archive Available for Download Upload Data to Cloud Storage Nearline Migrating in Batches Understanding the Cost of Retrieving Data from Amazon Glacier Recommendations Appendix A: Creating a Workspace and Staging Area Create or Select a Cloud Platform Project Install and Configure the Cloud SDK Create and Configure a Compute Engine Instance References Page 2 Migrating to Google Cloud PAUL NEWSON | 07/23/15 Storage Nearline ​ Page 3 Migrating to Google Cloud PAUL NEWSON | 07/23/15 Storage Nearline ​ Summary Google Cloud Storage Nearline is a low cost storage class available in Google Cloud Storage which is attractive for archival workloads, such as cold storage and disaster recovery. Amazon Glacier also provides a storage service suitable for archival workloads, but retrieval latency in Amazon Glacier is measured in hours whereas Google Cloud Storage Nearline provides retrieval latency measured in seconds.
    [Show full text]
  • Amazon Mechanical Turk Developer Guide API Version 2017-01-17 Amazon Mechanical Turk Developer Guide
    Amazon Mechanical Turk Developer Guide API Version 2017-01-17 Amazon Mechanical Turk Developer Guide Amazon Mechanical Turk: Developer Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Amazon Mechanical Turk Developer Guide Table of Contents What is Amazon Mechanical Turk? ........................................................................................................ 1 Mechanical Turk marketplace ....................................................................................................... 1 Marketplace rules ............................................................................................................... 2 The sandbox marketplace .................................................................................................... 2 Tasks that work well on Mechanical Turk ...................................................................................... 3 Tasks can be completed within a web browser ....................................................................... 3 Work can be broken into distinct, bite-sized tasks .................................................................
    [Show full text]
  • Integration with Amazon S3
    Integration with Amazon S3 YourDataConnect has developed a solution to ingest metadata from the AWS S3 file system into YourDataConnect. Amazon S3 can store multiple object types which enables storage for Internet applications, backup and recovery, disaster recovery, data archives, data lakes for analytics, and hybrid cloud storage. Figure 1 shows an AWS S3 bucket and folders. Figure 1: AWS S3 bucket and folders. Figure 2 shows a preview of the csv file in AWS S3. Figure 2: Preview of data in AWS Copyright © 2020, YourDataConnect. All rights reserved. Integration of Amazon S3 with YourDataConnect has developed a solution to import the file system, S3 bucket, directory, filegroup, file, and field metadata from Amazon S3 intoYourDataConnect while maintaining the hierarchy between S3 objects (see Figure 3). Figure 3: End-to-end traceability of Amazon S3 objects in YourDataConnect To learn more about this solution, please request a demo by contacting [email protected] or visit our website at yourdataconnect.com. Copyright © 2020, YourDataConnect. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor is it subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contrac tual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission..
    [Show full text]
  • Amazon Dossier
    Fluch und Segen für Markenhersteller Markus Fost Inhalt des Dossiers amazon – Fluch und Segen für Markenhersteller 1 Facts & Figures von Amazon 2 Das Amazon Geschäftsmodell – ein komplexes Ökosystem 3 Technische Infrastruktur von Amazon 4 Relevanz von Amazon im Herstellerumfeld 5 Das Amazon Ranking – Entscheidend für die Sichtbarkeit von Markenhersteller 6 Ausblick und Thesen Seite . 2 Dossier | amazon – Fluch und Segen für Markenhersteller | © FOSTEC Commerce Consultants Vorstellung Leistungsspektrum FOSTEC Commerce Consultants ANALYSE . Pragmatische Analyse von Strategie, USP, Geschäftsmodell und Prozessen mit dem Fokus auf die digitale Welt mittels einer Umfeld- und Customer Journey Analyse . Ergebnis: Status quo, Handlungsoptionen und Optimierungsansätze ZIELDEFINITION . Auf Basis Ihrer Ziele mit unserem Know-How gemeinsames Entwickeln eines Best-in-Class Digitalstrategie . Ergebnis: Blueprint Ihrer Digitalstrategie inklusive (E-Commerce) Distributionsstrategie, Quick-wins, Systemevaluation UMSETZUNG . Mit Projekterfahrung und Methodenkompetenz unterstützen wir Ihre Umsetzung zur digitalen Transformation . Ergebnis: Nachhaltig erfolgreiches Geschäftsmodell Seite . 3 Dossier | amazon – Fluch und Segen für Markenhersteller | © FOSTEC Commerce Consultants Vorstellung Warum FOSTEC der richtige Diskussionspartner ist . Erfahrene Experten beraten Sie individuell und auf Augenhöhe . Persönliche Betreuung durch ein inhabergeführtes Beratungsunternehmen . Wir wählen effiziente Methoden, um Sie schnellstmöglich an das Ziel zu bringen . Hohe
    [Show full text]
  • Labeling Parts of Speech Using Untrained Annotators on Mechanical Turk THESIS Presented in Partial Fulfillment of the Requiremen
    Labeling Parts of Speech Using Untrained Annotators on Mechanical Turk THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jacob Emil Mainzer Graduate Program in Computer Science and Engineering The Ohio State University 2011 Master's Examination Committee: Professor Eric Fosler-Lussier, Advisor Professor Mikhail Belkin Copyright by Jacob Emil Mainzer 2011 Abstract Supervised learning algorithms often require large amounts of labeled data. Creating this data can be time consuming and expensive. Recent work has used untrained annotators on Mechanical Turk to quickly and cheaply create data for NLP tasks, such as word sense disambiguation, word similarity, machine translation, and PP attachment. In this experiment, we test whether untrained annotators can accurately perform the task of POS tagging. We design a Java Applet, called the Interactive Tagging Guide (ITG) to assist untrained annotators in accurately and quickly POS tagging words using the Penn Treebank tagset. We test this Applet on a small corpus using Mechanical Turk, an online marketplace where users earn small payments for the completion of short tasks. Our results demonstrate that, given the proper assistance, untrained annotators are able to tag parts of speech with approximately 90% accuracy. Furthermore, we analyze the performance of expert annotators using the ITG and discover nearly identical levels of performance as compared to the untrained annotators. ii Vita 2009................................................................B.S. Physics, University of Rochester September 2009 – August 2010 .....................Distinguished University Fellowship, The Ohio State University September 2010 – June 2011 .........................Graduate Teaching Assistant, The Ohio State University Fields of Study Major Field: Computer Science and Engineering iii Table of Contents Abstract ..............................................................................................................................
    [Show full text]
  • Analytics Lens AWS Well-Architected Framework Analytics Lens AWS Well-Architected Framework
    Analytics Lens AWS Well-Architected Framework Analytics Lens AWS Well-Architected Framework Analytics Lens: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Analytics Lens AWS Well-Architected Framework Table of Contents Abstract ............................................................................................................................................ 1 Abstract .................................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Definitions ................................................................................................................................. 2 Data Ingestion Layer ........................................................................................................... 2 Data Access and Security Layer ............................................................................................ 3 Catalog and Search Layer ...................................................................................................
    [Show full text]