Principles of Haematology 1

Total Page:16

File Type:pdf, Size:1020Kb

Principles of Haematology 1 Principles of haematology 1 PRINCIPLES Platelets Like red cells, platelets lack nuclei. Platelets (thrombocytes) Haematology is the medical specialty concerned with the are derived from megakaryocytes, which derive from the study, diagnosis, treatment and prevention of diseases re- colony-forming unit megakaryocyte (CFU-Meg) progeni- lated to blood and is the subject of the first part of this book. tor cell. They play a pivotal role in haemostasis (Chapter 6). This chapter discusses blood cells, their production (hae- matopoiesis), bone marrow and the spleen. White blood cells White blood cells (leucocytes) are large unpigmented cells with primarily immune roles. They are also found in the BLOOD bloodstream, along with red blood cells and platelets. Leucocytes are further classified into granulocytes, mono- Blood is the fluid contained within the heart, arteries, capil- cytes/macrophages and lymphocytes. Each group fulfils laries and veins of the circulatory system. It delivers oxygen different immunological roles, participating in immune de- and nutrients to organs and tissues and carries carbon diox- fences against infection. ide and metabolic ‘waste’ products to excretory organs such as the kidneys, liver and lungs. Granulocytes Blood consists of several components: ‘Granulocytes’ is the collective term for white blood cells with • Plasma granules in their cytoplasm. The term encompasses neutro- • Cells (red cells, white cells, platelets) phils, eosinophils and basophils. The specific chemical content • Electrolytes (e.g., Na+, K+, Ca++) of the granules (and thus the cell’s function role) varies accord- • Proteins (including hormones and immunoglobulins) ing to subtype. Note that some clinicians misleadingly use the • Lipids term ‘granulocytes’ for neutrophils, which can cause confusion. • Glucose Neutrophils The cellular components of blood are synthesized in the Neutrophils (aka ‘polymorphs’) have multilobed nuclei. bone marrow in a process called ‘haematopoiesis’. Neutrophils (diameter 12–14 μm) comprise ≈60% of the bloodstream white cell population. They leave the bone marrow, where they are synthesized, and circulate in the bloodstream for ≤10 hours before entering tissues. BLOOD CELLS Neutrophils are an essential component of the innate immune system, due to their ability to phagocytose (en- This section discusses mature blood cells found in the gulf) microorganisms and kill them by releasing cytotoxic bloodstream. molecules from their granules. Once they arrive at the site of an infection or inflammation, they also recruit further Red blood cells immune cells with chemotactic mediators (see Chapter 9: Neutrophils). Neutrophils therefore represent a key com- Red blood cells (‘erythrocytes’) are derived from the eryth- ponent of the first-line defence against bacterial infections. roid blast-forming unit (BFU-E) progenitor cell. Red cells lack a nucleus and have a biconcave discoid shape. Eosinophils Their primary role is the transportation of oxygen Eosinophils (diameter 12–17 μm) have bilobed nuclei. (from lung to tissue) and carbon dioxide (from tis- They stain strongly with acidic dyes and comprise ≈1%– sue to lung). They contain haemoglobin, a specialized 6% of the bloodstream white cell population. Like other molecule that avidly binds these gases under condi- granulocytes, eosinophils release specific cytotoxic and tions of high partial pressure and releases them under messenger molecules. These are released directly into conditions of low partial pressure, thus allowing bulk the extracellular space by degranulation. Note how eo- transport of O2 and CO2 to proceed in the appropriate sinophils differ in this respect from neutrophils, which direction. Red blood cells are discussed in further detail phagocytose pathogens before releasing cytotoxic mole- in Chapter 2. cules. Eosinophils migrate into areas of inflammation or 1 Principles of haematology infection, particularly infection with multicellular par- HINTS AND TIPS asites, e.g., helminths (worms). They are also important in both innate (see Chapter 9: Eosinophils) and adaptive ‘CD’ DESIGNATION immunity and allergic responses. Cells can be classified according to the type of Basophils molecules expressed at their surface membranes. Basophils (diameter 14–16 μm) have bilobed nuclei and These are given numerical subdivisions with the granular cytoplasm, like eosinophils, but stain strongly with cluster of differentiation index. A CD4 ve cell, for basic dyes. Basophils represent ≤1% of the bloodstream’s + example, expresses CD4 surface receptors. Since white cell population. In concert with eosinophils and mast cells, they contribute strongly to innate and adaptive immu- the array of surface receptors in part governs the nity. Physiological histamine is derived in part from baso- behaviour and therefore function of the cell, it is philic granules. an appropriate mechanism to subclassify cells, particularly leucocytes. CD-type surface molecules Monocytes/macrophages are expressed by all haemopoietic cells. Monocytes and macrophages are larger than granulo- cytes (diameter ≤25 μm). They have a large eccentri- cally placed reniform (kidney-shaped) nucleus. In the Natural killer cells bloodstream, they are called monocytes and account These large granular lymphocytes are also cytotoxic lym- for ~2%–10% of the white cell population. They circu- phocytes, like T cells, but natural killer (NK) cells are larger. late for 1–3 days, then leave the circulation and enter the Their behaviour differs from that of T cells in that they do tissues, where they differentiate further, developing into not require major histocompatibility complex (MHC) or macrophages. antibody-bound antigen complexes to recognize and de- Macrophages comprise the reticuloendothelial system stroy foreign or infected cells. They are thus prominent in and are found in tissues throughout the body. They phago- the innate immune response (Chapter 9). cytose cellular debris and pathogens and produce various cytokines. They also process and present antigens to lym- phocytes as part of the adaptive immune response (see HAEMATOPOIESIS Chapter 10: MHC processing). Lymphocytes Haematopoiesis is the formation and development of blood These white blood cells are small and have a relatively large, cells. The haematopoietic system is composed of the bone round nucleus relative to their nongranular, basophilic marrow, spleen, liver, lymph nodes and thymus. cytoplasm volume. They all originate from the lymphoid lineage. Pluripotent haemopoietic stem cells B lymphocytes All blood cells originally derive from a population of plu- ripotent, CD34 ve haemopoietic stem cells, residing in These cells are small lymphocytes (diameter 6–9 μm) express- + ing the B cell receptor. They secrete immunoglobulins (anti- haematopoietic tissues. These stem cells may either: bodies). A large proportion of B lymphocytes reside in lymph • Remain as pluripotent stem cells, dividing to form identical node germinal centres, where they are known as memory B daughter cells, maintaining the haemopoietic population cells. Some B lymphocytes also mature further into plasma cells. • Differentiate into specific progenitor cells, which ultimately Plasma cells are larger than B lymphocytes and have a develop into specific cellular components of blood strongly basophilic cytoplasm and an eccentric round nu- After initially differentiating into either a myeloid or lym- cleus. They are mainly seen in the bone marrow, but a few phoid progenitor cell, further developmental changes fol- may be seen circulating in the peripheral blood. low. As cells progress down their respective development T lymphocytes pathways, they sequentially acquire characteristic recep- tors and functions, ultimately forming a mature blood cell These cells are small lymphocytes (diameter 6–9 μm) (Fig. 1.1) with characteristics specific to the cell type. expressing the T cell receptor. T cells are subclassified by type of surface glycoproteins they express, indicated Progenitor cells by the CD prefix. Cytotoxic T cells (CD8 +ve) medi- ate destruction of cells infected by intracellular organ- The pluripotent stem cells can differentiate into one of the isms, while T helper cells (CD4 +ve) release cytokines two multipotent progenitors: to regulate and assist in the adaptive immune response • Myeloid lineage progenitor cell (Chapter 10). • Lymphoid lineage progenitor cell 2 Haematopoiesis 1 Bone marrow Identical division Pluripotent HSC Lymphopoiesis Myelopoiesis Common lymphoid Common myeloid progenitor progenitor aka CFU-GEMM Pro T cell Pro B cell BFU-E CFU-MEG CFU-BASO CFU-EOS CFU-GM CFU-GCFU-M T cell B cell NK cell Thymus Erythrocyte Megakaryocyte Basophil Eosinophil Neutrophil Monocyte (red blood cell) T cell Plasma cell Platelets Blood Erythropoiesis Thrombopoiesis Granulopoiesis CD4 CD8 Other T cell T cell T cells Tissue Basophil Eosinophil Macrophage Fig. 1.1 Overview of haemopoiesis. Note the four relevant zones: bone marrow, blood, tissues and thymus. For information on growth factors important for various specific maturations, please see Table 1.2. HSC, haematopoietic stem cell Myeloid lineage multipotent progenitor cell HINTS AND TIPS The CFU generating myeloid cells (CFU-GEMM) multi- potent stem cell subsequently further differentiates into COLONY-FORMING UNITS (CFU) either: CFU describes a progenitor cell committed • Red cell progenitor (BFU-E) to the development of a particular blood • Platelet progenitor (CFU-Meg) cell. For example, CFU-Baso is a progenitor • Eosinophil
Recommended publications
  • The Ageing Haematopoietic Stem Cell Compartment
    REVIEWS The ageing haematopoietic stem cell compartment Hartmut Geiger1,2, Gerald de Haan3 and M. Carolina Florian1 Abstract | Stem cell ageing underlies the ageing of tissues, especially those with a high cellular turnover. There is growing evidence that the ageing of the immune system is initiated at the very top of the haematopoietic hierarchy and that the ageing of haematopoietic stem cells (HSCs) directly contributes to changes in the immune system, referred to as immunosenescence. In this Review, we summarize the phenotypes of ageing HSCs and discuss how the cell-intrinsic and cell-extrinsic mechanisms of HSC ageing might promote immunosenescence. Stem cell ageing has long been considered to be irreversible. However, recent findings indicate that several molecular pathways could be targeted to rejuvenate HSCs and thus to reverse some aspects of immunosenescence. HSC niche The current demographic shift towards an ageing popu- The innate immune system is also affected by ageing. A specialized lation is an unprecedented global phenomenon that has Although an increase in the number of myeloid precur- microenvironment that profound implications. Ageing is associated with tissue sors has been described in the bone marrow of elderly interacts with haematopoietic attrition and an increased incidence of many types of can- people, the oxidative burst and the phagocytic capacity of stem cells (HSCs) to regulate cers, including both myeloid and lymphoid leukaemias, and both macrophages and neutrophils are decreased in these their fate. other haematopoietic cell malignancies1,2. Thus, we need individuals12,13. Moreover, the levels of soluble immune to understand the molecular and cellular mechanisms of mediators are altered with ageing.
    [Show full text]
  • Diverse T-Cell Differentiation Potentials of Human Fetal Thymus, Fetal Liver, Cord Blood and Adult Bone Marrow CD34 Cells On
    IMMUNOLOGY ORIGINAL ARTICLE Diverse T-cell differentiation potentials of human fetal thymus, fetal liver, cord blood and adult bone marrow CD34 cells on lentiviral Delta-like-1-modified mouse stromal cells Ekta Patel,1 Bei Wang,1 Lily Lien,2 Summary Yichen Wang,2 Li-Jun Yang,3 Jan Human haematopoietic progenitor/stem cells (HPCs) differentiate into S. Moreb4 and Lung-Ji Chang1 functional T cells in the thymus through a series of checkpoints. A conve- 1Department of Molecular Genetics and nient in vitro system will greatly facilitate the understanding of T-cell Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA, 2Vectorite development and future engineering of therapeutic T cells. In this report, Biomedica Inc., Taipei, Taiwan, 3Department we established a lentiviral vector-engineered stromal cell line (LSC) of Pathology, Immunology and Laboratory expressing the key lymphopoiesis regulator Notch ligand, Delta-like 1 Medicine, University of Florida, Gainesville, (DL1), as feeder cells (LSC-mDL1) supplemented with Flt3 ligand (fms- 4 FL, USA, and Department of Medicine, like tyrosine kinase 3, Flt3L or FL) and interleukin-7 for the development University of Florida, Gainesville, FL, USA of T cells from CD34+ HPCs. We demonstrated T-cell development from human HPCs with various origins including fetal thymus (FT), fetal liver (FL), cord blood (CB) and adult bone marrow (BM). The CD34+ HPCs from FT, FL and adult BM expanded more than 100-fold before reaching the b-selection and CD4/CD8 double-positive T-cell stage. The CB HPCs, on the other hand, expanded more than 1000-fold before b-selection.
    [Show full text]
  • Pulp Border in L1-Deficient Mice Selective Malformation of the Splenic White
    Selective Malformation of the Splenic White Pulp Border in L1-Deficient Mice Shih-Lien Wang, Michael Kutsche, Gino DiSciullo, Melitta Schachner and Steven A. Bogen This information is current as of September 27, 2021. J Immunol 2000; 165:2465-2473; ; doi: 10.4049/jimmunol.165.5.2465 http://www.jimmunol.org/content/165/5/2465 Downloaded from References This article cites 45 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/165/5/2465.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Selective Malformation of the Splenic White Pulp Border in L1-Deficient Mice1 Shih-Lien Wang,* Michael Kutsche,† Gino DiSciullo,* Melitta Schachner,† and Steven A. Bogen2* Lymphocytes enter the splenic white pulp by crossing the poorly characterized boundary of the marginal sinus. In this study, we describe the importance of L1, an adhesion molecule of the Ig superfamily, for marginal sinus integrity.
    [Show full text]
  • Autologous Haematopoietic Stem Cell Transplantation (Ahsct) for Severe Resistant Autoimmune and Inflammatory Diseases - a Guide for the Generalist
    This is a repository copy of Autologous haematopoietic stem cell transplantation (aHSCT) for severe resistant autoimmune and inflammatory diseases - a guide for the generalist. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/144052/ Version: Published Version Article: Snowden, J.A. orcid.org/0000-0001-6819-3476, Sharrack, B., Akil, M. et al. (5 more authors) (2018) Autologous haematopoietic stem cell transplantation (aHSCT) for severe resistant autoimmune and inflammatory diseases - a guide for the generalist. Clinical Medicine, 18 (4). pp. 329-334. ISSN 1470-2118 https://doi.org/10.7861/clinmedicine.18-4-329 © Royal College of Physicians 2018. This is an author produced version of a paper subsequently published in Clinical Medicine. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/
    [Show full text]
  • Assessment of the Degree of Permanent Impairment Guide
    SAFETY, REHABILITATION AND COMPENSATION ACT 1988 – GUIDE TO THE ASSESSMENT OF THE DEGREE OF PERMANENT IMPAIRMENT EDITION 2.1 (CONSOLIDATION 1) This consolidation incorporates the Safety, Rehabilitation and Compensation Act 1988 – Guide to the Assessment of the Degree of Permanent Impairment Edition 2.1 (‘Edition 2.1’) as prepared by Comcare and approved by the Minister for Tertiary Education, Skills, Jobs and Workplace Relations on 2 November 2011 with effect from 1 December 2011 and as varied by the Safety, Rehabilitation and Compensation Act 1988 – Guide to the Assessment of the Degree of Permanent Impairment Edition 2.1 – Variation No.1 of 2011 (‘Variation 1 of 2011’) as approved by Comcare and approved by the Minister for Tertiary Education, Skills, Jobs and Workplace Relations on 29 November 2011 with effect from 1 December 2011. NOTES: 1. Edition 2.1 and Variation 1 of 2011 were each prepared by Comcare under subsection 28(1) of the Safety, Rehabilitation and Compensation Act 1988 and approved by the Minister under subsection 28(3) of that Act. 2. Edition 2.1 was registered on the Federal Register of Legislative Instruments as F2011L02375 and Variation 1 of 2011 was registered as F2011L02519. 3. This compilation was prepared on 30 November 2011 in accordance with section 34 of the Legislative Instruments Act 2003 substituting paragraph 3 (Application of this Guide) to Edition 2.1 as in force on 1 December 2011. 1 Federal Register of Legislative Instruments F2012C00537 GUIDE TO THE ASSESSMENT OF THE DEGREE OF PERMANENT IMPAIRMENT Edition 2.1 2 Federal Register of Legislative Instruments F2012C00537 INTRODUCTION TO EDITION 2.1 OF THE GUIDE 1.
    [Show full text]
  • 201028 the Lymphatic System 2 – Structure and Function of The
    Copyright EMAP Publishing 2020 This article is not for distribution except for journal club use Clinical Practice Keywords Immunity/Anatomy/Stem cell production/Lymphatic system Systems of life This article has been Lymphatic system double-blind peer reviewed In this article... l How blood and immune cells are produced and developed by the lymphatic system l Clinical significance of the primary and secondary lymphoid organs l How the lymphatic system mounts an immune response and filters pathogens The lymphatic system 2: structure and function of the lymphoid organs Key points Authors Yamni Nigam is professor in biomedical science; John Knight is associate The lymphoid professor in biomedical science; both at the College of Human and Health Sciences, organs include the Swansea University. red bone marrow, thymus, spleen Abstract This article is the second in a six-part series about the lymphatic system. It and clusters of discusses the role of the lymphoid organs, which is to develop and provide immunity lymph nodes for the body. The primary lymphoid organs are the red bone marrow, in which blood and immune cells are produced, and the thymus, where T-lymphocytes mature. The Blood and immune lymph nodes and spleen are the major secondary lymphoid organs; they filter out cells are produced pathogens and maintain the population of mature lymphocytes. inside the red bone marrow, during a Citation Nigam Y, Knight J (2020) The lymphatic system 2: structure and function of process called the lymphoid organs. Nursing Times [online]; 116: 11, 44-48. haematopoiesis The thymus secretes his article discusses the major become either erythrocytes, leucocytes or hormones that are lymphoid organs and their role platelets.
    [Show full text]
  • Haematologica 1999;84:Supplement No. 4
    Educational Session 1 Chairman: W.E. Fibbe Haematologica 1999; 84:(EHA-4 educational book):1-3 Biology of normal and neoplastic progenitor cells Emergence of the haematopoietic system in the human embryo and foetus MANUELA TAVIAN,* FERNANDO CORTÉS,* PIERRE CHARBORD,° MARIE-CLAUDE LABASTIE,* BRUNO PÉAULT* *Institut d’Embryologie Cellulaire et Moléculaire, CNRS UPR 9064, Nogent-sur-Marne; °Laboratoire d’Étude de l’Hé- matopoïèse, Etablissement de Transfusion Sanguine de Franche-Comté, Besançon, France he first haematopoietic cells are observed in es. In this setting, the recent identification in animal the third week of human development in the but also in human embryos of unique intraembryonic Textraembryonic yolk sac. Recent observations sites of haematopoietic stem cell emergence and pro- have indicated that intraembryonic haematopoiesis liferation could be of particular interest. occurs first at one month when numerous clustered We shall briefly review here the successive steps of CD34+ Lin– haematopoietic cells have been identi- human haematopoietic development, emphasising fied in the ventral aspect of the aorta and vitelline the recent progresses made in our understanding of artery. These emerging progenitors express tran- the origin and identity of human embryonic and fetal scription factors and growth factor receptors known stem cells. to be acting at the earliest stages of haematopoiesis, and display high proliferative potential in culture. Primary haematopoiesis in the human Converging results obtained in animal embryos sug- embryo and foetus gest that haematopoietic stem cells derived from the As is the case in other mammals, human haema- para-aortic mesoderm – in which presumptive endo- topoiesis starts outside the embryo, in the yolk sac, thelium and blood-forming activity could be detect- then proceeds transiently in the liver before getting ed as early as 3 weeks in the human embryo by dif- stabilised until adult life in the bone marrow.
    [Show full text]
  • Review Article Making Blood: the Haematopoietic Niche Throughout Ontogeny
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Publishing Corporation Stem Cells International Volume 2015, Article ID 571893, 14 pages http://dx.doi.org/10.1155/2015/571893 Review Article Making Blood: The Haematopoietic Niche throughout Ontogeny Mohammad A. Al-Drees,1,2 Jia Hao Yeo,3 Badwi B. Boumelhem,1 Veronica I. Antas,1 Kurt W. L. Brigden,1 Chanukya K. Colonne,1 and Stuart T. Fraser1,3 1 Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW 2050, Australia 2LaboratoryofBoneMarrowandStemCellProcessing,DepartmentofMedicalOncology,MedicalOncologyandStemCellTransplant Center, Al-Sabah Medical Area, Kuwait 3Discipline of Anatomy & Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW 2050, Australia Correspondence should be addressed to Stuart T. Fraser; [email protected] Received 24 March 2015; Accepted 10 May 2015 Academic Editor: Valerie Kouskoff Copyright © 2015 Mohammad A. Al-Drees et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Approximately one-quarter of all cells in the adult human body are blood cells. The haematopoietic system is therefore massive in scale and requires exquisite regulation to be maintained under homeostatic conditions. It must also be able to respond when needed, such as during infection or following blood loss, to produce more blood cells. Supporting cells serve to maintain haematopoietic stem and progenitor cells during homeostatic and pathological conditions. This coalition of supportive cell types, organised in specific tissues, is termed the haematopoietic niche.
    [Show full text]
  • Differential Contributions of Haematopoietic Stem Cells to Foetal and Adult Haematopoiesis: Insights from Functional Analysis of Transcriptional Regulators
    Oncogene (2007) 26, 6750–6765 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Differential contributions of haematopoietic stem cells to foetal and adult haematopoiesis: insights from functional analysis of transcriptional regulators C Pina and T Enver MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK An increasing number of molecules have been identified ment and appropriate differentiation down the various as candidate regulators of stem cell fates through their lineages. involvement in leukaemia or via post-genomic gene dis- In the adult organism, HSC give rise to differentiated covery approaches.A full understanding of the function progeny following a series of relatively well-defined steps of these molecules requires (1) detailed knowledge of during the course of which cells lose proliferative the gene networks in which they participate and (2) an potential and multilineage differentiation capacity and appreciation of how these networks vary as cells progress progressively acquire characteristics of terminally differ- through the haematopoietic cell hierarchy.An additional entiated mature cells (reviewed in Kondo et al., 2003). layer of complexity is added by the occurrence of different As depicted in Figure 1, the more primitive cells in the haematopoietic cell hierarchies at different stages of haematopoietic differentiation hierarchy are long-term ontogeny.Beyond these issues of cell context dependence, repopulating HSC (LT-HSC),
    [Show full text]
  • And Function in Aged Spleens Attrition of T Cell Zone Fibroblastic
    Attrition of T Cell Zone Fibroblastic Reticular Cell Number and Function in Aged Spleens April R. Masters, Evan R. Jellison, Lynn Puddington, Kamal M. Khanna and Laura Haynes Downloaded from ImmunoHorizons 2018, 2 (5) 155-163 doi: https://doi.org/10.4049/immunohorizons.1700062 http://www.immunohorizons.org/content/2/5/155 This information is current as of September 24, 2021. http://www.immunohorizons.org/ Supplementary http://www.immunohorizons.org/content/suppl/2018/05/21/2.5.155.DCSupp Material lemental References This article cites 61 articles, 19 of which you can access for free at: http://www.immunohorizons.org/content/2/5/155.full#ref-list-1 Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: by guest on September 24, 2021 http://www.immunohorizons.org/alerts ImmunoHorizons is an open access journal published by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. ISSN 2573-7732. RESEARCH ARTICLE Adaptive Immunity Attrition of T Cell Zone Fibroblastic Reticular Cell Number and Function in Aged Spleens April R. Masters,*,† Evan R. Jellison,* Lynn Puddington,* Kamal M. Khanna,*,‡ and Laura Haynes*,† *Department of Immunology, UConn Health, Farmington, CT 06030; †Center on Aging, UConn Health, Farmington, CT 06030; and ‡Department of Microbiology, New York University, New York, NY 10003 Downloaded from ABSTRACT Aging has a profound impact on multiple facets of the immune system, culminating in aberrant functionality. The architectural disorganization http://www.immunohorizons.org/ of splenic white pulp is a hallmark of the aging spleen, yet the factors underlying these structural changes are unclear.
    [Show full text]
  • Lymphoid Tissue and Lymphatic Organs Defense Mechanisms
    Lymphoid Tissue and Lymphatic Organs Defense Mechanisms Innate / Non-specific Adaptive / Specific Epithelial Barriers Humoral Immune reaction (B cells) Cell-mediated immune reaction (T cells) Phagocytic cells Pattern Recognition Receptors Acute inflammation Neutrophils, Macrophages, Mast cells, other granulocytes NK cells Antigen Presenting Cells (APCs) Complement system Pattern Recognition Receptors Innate (non-specific) immune system Recognize molecular patterns Found on phagocytes Types Endocytic PRRs Signaling PRRs Toll-like receptors (TLRs) CD 14 receptor NOD receptor Natural Killer cells (NK cells) Adaptive / Specific Some Definitions Antigen Self: Major Histocompatibility Complex (MHC) – I and II Non-self: Foreign Epitope Antibody IgG, IgM, IgD, IgE, IgA Adaptive Immune System: Cells B cells Humoral immune response B cells receptors: Immunoglobulins (antibodies) T cells T cytotoxic cell (CD8+) Cell-mediated immune response T helper cell (CD4+) Active in initial phase of both types Antigen Presenting Cells (APCs) Professional Non Professional Lymphoid Tissue Reticular connective tissue Network of reticular fibers Network of stellate reticular cells Fibroblasts, Macrophages, Dendritic cells Very numerous lymphocytes Localization of Lymphoid Tissue Lymphatic Organs Lymph node Spleen Thymus Mucosa-Associated Lymphoid Tissue (MALT) Tonsils GALT BALT (Bronchi-Associated LT) Types of Lymphoid Tissue Diffuse: B and T cells Nodular (Follicular): Mainly B cells Spherical aggregates of lymphoid tissue Primary and secondary B cell selection Follicular Dendritic cells Th cells Macrophages Lymph Node Spleen White pulp PALS (T cells) Splenic (lymphoid) nodules (B cells) Red pulp Splenic cords Splenic Sinusoids Pulpal veins Primary follicle Thymus Epithelial origin No reticular connective tissue Only T cells No lymphoid nodules No immune reactions against non-self antigens T cell school Thymus Thymus Autoimmunity Involution .
    [Show full text]
  • Intersections of Lung Progenitor Cells, Lung Disease and Lung Cancer
    LUNG SCIENCE CONFERENCE LUNG PROGENITOR CELLS Intersections of lung progenitor cells, lung disease and lung cancer Carla F. Kim1,2,3 Affiliations: 1Stem Cell Program, Division of Hematology/Oncology and Division of Respiratory Disease, Boston Children’s Hospital, Boston, MA, USA. 2Dept of Genetics, Harvard Medical School, Boston, MA, USA. 3Harvard Stem Cell Institute, Cambridge, MA, USA. Correspondence: Carla F. Kim, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. E-mail: [email protected] @ERSpublications Stem cell biology has brought new techniques to the lung field and has elucidated possible therapeutic pathways http://ow.ly/h74x30cA6Lo Cite this article as: Kim CF. Intersections of lung progenitor cells, lung disease and lung cancer. Eur Respir Rev 2017; 26: 170054 [https://doi.org/10.1183/16000617.0054-2017]. ABSTRACT The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today’s better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.
    [Show full text]