Identification of Wee1 As a Novel Therapeutic Target for Mutant RAS

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Wee1 As a Novel Therapeutic Target for Mutant RAS Leukemia (2015) 29, 27–37 & 2015 Macmillan Publishers Limited All rights reserved 0887-6924/15 www.nature.com/leu ORIGINAL ARTICLE Identification of Wee1 as a novel therapeutic target for mutant RAS-driven acute leukemia and other malignancies E Weisberg1,4, A Nonami1,4, Z Chen1, F Liu2, J Zhang3, M Sattler1, E Nelson1, K Cowens1, AL Christie1, C Mitsiades1, K-K Wong1, Q Liu2, N Gray3 and JD Griffin1 Direct targeting of rat sarcoma (RAS), which is frequently mutated, has proven to be challenging, and inhibition of individual downstream RAS mediators has resulted in limited clinical efficacy. We designed a chemical screen to identify compounds capable of potentiating mammalian target of rapamycin (mTOR) inhibition in mutant RAS-positive leukemia, and identified a Wee1 inhibitor. Synergy was observed in both mutant neuroblastoma RAS viral oncogene homolog (NRAS)- and mutant kirsten RAS viral oncogene homolog (KRAS)-positive acute myelogenous leukemia (AML) cell lines and primary patient samples. The observed synergy enhanced dephosphorylation of AKT, 4E-binding protein 1 and s6 kinase, and correlated with increased apoptosis. The specificity of Wee1 as the target of MK-1775 was validated by Wee1 knockdown, as well as partial reversal of drug combination-induced apoptosis by a cyclin-dependent kinase 1 (CDK1) inhibitor. Importantly, we also extended our findings to other mutant RAS- expressing malignancies, including mutant NRAS-positive melanoma, and mutant KRAS-positive colorectal cancer, pancreatic cancer and lung cancer. We observed favorable responses with combined Wee1/mTOR inhibition in human cancer cell lines from multiple malignancies, and inhibition of tumor growth in in vivo models of mutant KRAS lung cancer and leukemia. The present study introduces for the first time Wee1 inhibition combined with mTOR inhibition as a novel therapeutic strategy for the selective treatment of mutant RAS-positive leukemia and other mutant RAS-expressing malignancies. Leukemia (2015) 29, 27–37; doi:10.1038/leu.2014.149 INTRODUCTION developing individual targeted therapies a challenge. There is Point mutations in the rat sarcoma (RAS) family, which is thus potential clinical benefit to be gained from the use of a multi- comprised of neuroblastoma RAS viral oncogene homolog (NRAS), targeted therapy approach as opposed to a more narrowly kirsten RAS viral oncogene homolog (KRAS) and V-Ha-ras Harvey focused strategy to enhance efficacy and circumvent the RAS viral oncogene homolog, are the most frequently occurring emergence of drug resistance. mutation in human proto-oncogenes, with around 20–30% of all One promising approach to improving the clinical efficacy of human malignancies characterized by constitutively activated inhibitors of RAS-mediated transformation is the identification of RAS.1 The incidence of mutations in NRAS and KRAS in acute combinations of drugs that target either multiple RAS-driven myelogenous leukemia (AML) has been reported to be pathways, or block bypass or resistance pathways. As mTOR is an approximately 10–11% and 5%, respectively, and around 12% established and important downstream effector of RAS in for myelodysplastic syndromes.2,3 The incidence of NRAS leukemia and mTOR inhibitors are under clinical investigation mutations has been reported to be approximately 10% in for the treatment of mutant RAS-associated malignancies childhood acute lymphoblastic leukemia (ALL).4 (reviewed in McCubrey et al.7), we developed a chemical screen Despite its prevalence and significance with respect to to identify agents capable of enhancing the activity of an mTOR transformation, direct molecular inhibition of mutant RAS has inhibitor, Torin 1.8 As anticipated, this screen identified inhibitors thus far been difficult because of its biochemistry and structure, of phosphatidylinositol 3-kinase (PI3K) and MAPK (mitogen- although KRAS (G12C) mutant-specific inhibitors, which depend activated protein kinase)/ERK kinase (MEK), but unexpectedly on mutant cysteine for their selective inactivation of this mutant, also identified MK-1775, an inhibitor of Wee1, which has not have recently been reported and are in early stages of previously been linked to RAS signaling. development.5,6 The potential to interrupt mutant RAS signaling Wee1 is a protein kinase and inhibitory regulator of the G2/M by inhibiting the major signaling pathways of RAS, PI3K/PTEN checkpoint that prevents cells from going through mitosis by (phosphatase and tensin homolog)/AKT/mammalian target of inhibiting the activity of cell division cycle 2 (cdc2; also known as rapamycin (mTOR) and Raf/MEK/ERK (extracellular signal- cyclin-dependent kinase 1 (Cdk1)).9–11 In response to DNA regulated kinases), has prompted the development of selective damage, such as that induced in tumor cells by cytotoxic inhibitors of these pathways. However, the redundant nature and agents, Wee1 inactivates cdc2 through phosphorylation of its cross-talk of the highly complex signaling cascades associated Tyr15 residue, thus leading to G2 arrest; this allows transformed with RAS can lead to drug resistance and therefore make cells the time needed for repair of damaged DNA and thus confers 1Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; 2High Magnetic Field laboratory, Chinese Academy of Sciences, Hefei, People’s Republic of China and 3Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. Correspondence: Dr E Weisberg or Professor JD Griffin, Department of Medical Oncology, Dana-FarberCancerInstitute,450Brookline Avenue, Mailstop Mayer 540, Boston, MA 022150, USA. E-mail: [email protected] or james_griffi[email protected] 4These authors contributed equally to this work. Received 15 January 2014; revised 21 April 2014; accepted 28 April 2014; accepted article preview online 5 May 2014; advance online publication, 6 June 2014 Wee1: novel target for mutant RAS-positive cancer E Weisberg et al 28 a survival advantage.9–11 Inhibition of Wee1 by MK-1775 results in AML patient cells the removal of cdc2 Tyr15 phosphorylation, activation of cdc2 and Mononuclear cells were isolated from samples from AML patients the entrance of cells into the mitotic phase of the cell cycle.12 identified as harboring mutant NRAS. Cells were tested in liquid culture Wee1 inhibition has been thought to potentiate the effects of (Dulbecco’s modified Eagle’s medium, supplemented with 20% fetal chemotherapy by causing transformed cells with damaged DNA bovine serum) in the presence of different concentrations of single and to go through an untimely mitosis and undergo apoptosis.13 combined agents. All blood and bone marrow samples from AML patients In fact, MK-1775 has been shown to enhance the activity of were obtained under approval of the Dana Farber Cancer Institute 14,15 Institutional Review Board. chemotherapy agents against a variety of malignancies. Mutant NRAS-positive AML5 cells were derived from a 46-year-old patient However, little has been reported on the ability of MK-1775 to with AML, with maturation, harboring NRAS-G13D, with 49% bone marrow potentiate the effects of targeted and selective small-molecule blasts. Mutant NRAS-positive AML6 cells were derived from a 69–year-old inhibitors that offer the potential benefit of less adverse effects patient with AML, harboring NRAS-G13D, with 43% bone marrow blasts. and better tolerability as compared with standard cytotoxic agents. The present study is the first report of the ability of Knockdown of Wee1 by small hairpin RNA (shRNA) Wee1 inhibition to increase the effectiveness of targeted pLKO.1puro lentiviral shRNA vector particles against Wee1 were purchased inhibition of RAS signaling against mutant RAS-positive AML. We from Sigma-Aldrich (St Louis, MO, USA). Cells were incubated with the viral also demonstrate the ability of MK-1775 to potentiate mTOR particles in the presence of 8 mg/ml polybrene for 24 h, and the cells were inhibition in the broader context of additional mutant RAS- selected with 1–2 mg/ml puromycin for 72 h. Following selection, cells were expressing malignancies, including ALL, melanoma, colorectal used for the studies described. cancer, pancreatic cancer and lung cancer. The sequence of shRNA are follows: GFP: 50-ACAACAGCCACAACGTCTATA-30 Wee1: 50-CTAGAAAGAGTGCAGAACAAT-30. MATERIALS AND METHODS Mouse studies Large scale production of perturbagen-induced cellular signatures (LINCS) library chemical screen In vivo model of inducible mutant KRAS-positive lung cancer. A well- established inducible mutant KRAS lung cancer mouse model has The Kinase Inhibitor Focused Library, LINCS, was utilized for a chemical 21 been described previously. Additional details are provided in the screen designed to identify selective kinase inhibitors capable of Supplementary Information. synergizing with the mTOR inhibitor, Torin1,16 against mutant NRAS- driven cells (see schematic, Figure 1a). The LINCS library is available from In vivo model of mutant KRAS-positive leukemia. NB4 cells were Harvard Medical School/NIH LINCS program (https://lincs.hms.harvard.edu/) transduced with a retrovirus encoding firefly luciferase (MSCV-Luc), and and contains 202 known selective and potent kinase inhibitors. selected with neomycin (NB4-luc þ ). Six-week-old female NSG mice (Jackson Laboratories, Bar Harbor, ME, USA) were administered 1 Â 106 þ Cell lines and cell culture NB4-luc cells via tail vein injection, followed 4 days later by imaging and quantification of total
Recommended publications
  • Clinical Candidates Targeting the ATR–CHK1–WEE1 Axis in Cancer
    cancers Review Clinical Candidates Targeting the ATR–CHK1–WEE1 Axis in Cancer Lukas Gorecki 1 , Martin Andrs 1,2 and Jan Korabecny 1,* 1 Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; [email protected] (L.G.); [email protected] (M.A.) 2 Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-495-833-447 Simple Summary: Selective killing of cancer cells is privileged mainstream in cancer treatment and targeted therapy represents the new tool with a potential to pursue this aim. It can also aid to overcome resistance of conventional chemo- or radio-therapy. Common mutations of cancer cells (defective G1 control) favor inhibiting intra-S and G2/M-checkpoints, which are regulated by ATR–CHK1–WEE1 pathway. The ATR–CHK1–WEE1 axis has produced several clinical candidates currently undergoing clinical trials in phase II. Clinical results from randomized trials by ATR and WEE1 inhibitors warrant ongoing clinical trials in phase III. Abstract: Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra-S or G2/M checkpoints has also been extensively Citation: Gorecki, L.; Andrs, M.; pursued.
    [Show full text]
  • Wee1 Rather Than Plk1 Is Inhibited by AZD1775 at Therapeutically Relevant Concentrations
    cancers Article Wee1 Rather Than Plk1 Is Inhibited by AZD1775 at Therapeutically Relevant Concentrations Angela Flavia Serpico 1,2, Giuseppe D’Alterio 1,2, Cinzia Vetrei 1,2, Rosa Della Monica 1, Luca Nardella 1,2, Roberta Visconti 3 and Domenico Grieco 1,4,* 1 CEINGE Biotecnologie Avanzate, 80145 Naples, Italy; angelafl[email protected] (A.F.S.); [email protected] (G.D.); [email protected] (C.V.); [email protected] (R.D.M.); [email protected] (L.N.) 2 DMMBM, University of Naples “Federico II”, 80131 Naples, Italy 3 IEOS, CNR, 80131 Naples, Italy; [email protected] 4 Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy * Correspondence: [email protected] Received: 24 April 2019; Accepted: 10 June 2019; Published: 13 June 2019 Abstract: Wee1 kinase is an inhibitor of cyclin-dependent kinase (cdk)s, crucial cell cycle progression drivers. By phosphorylating cdk1 at tyrosine 15, Wee1 inhibits activation of cyclin B-cdk1 (Cdk1), preventing cells from entering mitosis with incompletely replicated or damaged DNA. Thus, inhibiting Wee1, alone or in combination with DNA damaging agents, can kill cancer cells by mitotic catastrophe, a tumor suppressive response that follows mitosis onset in the presence of under-replicated or damaged DNA. AZD1775, an orally available Wee1 inhibitor, has entered clinical trials for cancer treatment following this strategy, with promising results. Recently, however, AZD1775 has been shown to inhibit also the polo-like kinase homolog Plk1 in vitro, casting doubts on its mechanism of action. Here we asked whether, in the clinically relevant concentration range, AZD1775 inhibited Wee1 or Plk1 in transformed and non-transformed human cells.
    [Show full text]
  • Application of a MYC Degradation
    SCIENCE SIGNALING | RESEARCH ARTICLE CANCER Copyright © 2019 The Authors, some rights reserved; Application of a MYC degradation screen identifies exclusive licensee American Association sensitivity to CDK9 inhibitors in KRAS-mutant for the Advancement of Science. No claim pancreatic cancer to original U.S. Devon R. Blake1, Angelina V. Vaseva2, Richard G. Hodge2, McKenzie P. Kline3, Thomas S. K. Gilbert1,4, Government Works Vikas Tyagi5, Daowei Huang5, Gabrielle C. Whiten5, Jacob E. Larson5, Xiaodong Wang2,5, Kenneth H. Pearce5, Laura E. Herring1,4, Lee M. Graves1,2,4, Stephen V. Frye2,5, Michael J. Emanuele1,2, Adrienne D. Cox1,2,6, Channing J. Der1,2* Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adeno- carcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, Downloaded from UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage- dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability 62 through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser .
    [Show full text]
  • Therapeutic Co-Targeting of WEE1 and ATM Downregulates PD-L1 Expression in Pancreatic Cancer
    pISSN 1598-2998, eISSN 2005-9256 Cancer Res Treat. 2020;52(1):149-166 https://doi.org/10.4143/crt.2019.183 Original Article Open Access Therapeutic Co-targeting of WEE1 and ATM Downregulates PD-L1 Expression in Pancreatic Cancer Mei Hua Jin, MD, MS1 Purpose Ah-Rong Nam, MS1 Pancreatic cancer (PC) is one of the most lethal cancers worldwide, but there are currently no effective treatments. The DNA damage response (DDR) is under investigation for the Ji Eun Park, MS1 development of novel anti-cancer drugs. Since DNA repair pathway alterations have been MS1 Ju-Hee Bang, found frequently in PC, the purpose of this study was to test the DDR-targeting strategy in 1,2 Yung-Jue Bang, MD, PhD PC using WEE1 and ATM inhibitors. Do-Youn Oh, MD, PhD1,2 Materials and Methods We performed in vitro experiments using a total of ten human PC cell lines to evaluate anti- tumor effect of AZD1775 (WEE1 inhibitor) alone or combination with AZD0156 (ATM inhi- bitor). We established Capan-1–mouse model for in vivo experiments to confirm our findings. Results In our research, we found that WEE1 inhibitor (AZD1775) as single agent showed anti-tumor 1Cancer Research Institute, Seoul National effects in PC cells, however, targeting WEE1 upregulated p-ATM level. Here, we observed University College of Medicine, Seoul, that co-targeting of WEE1 and ATM acted synergistically to reduce cell proliferation and 2Department of Internal Medicine, Seoul migration, and to induce DNA damage in vitro. Notably, inhibition of WEE1 or WEE1/ATM National University Hospital, Seoul, Korea downregulated programmed cell death ligand 1 expression by blocking glycogen synthase kinase-3! serine 9 phosphorylation and decrease of CMTM6 expression.
    [Show full text]
  • A Haploid Genetic Screen Identifies the G1/S Regulatory Machinery As a Determinant of Wee1 Inhibitor Sensitivity
    A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity Anne Margriet Heijinka, Vincent A. Blomenb, Xavier Bisteauc, Fabian Degenera, Felipe Yu Matsushitaa, Philipp Kaldisc,d, Floris Foijere, and Marcel A. T. M. van Vugta,1 aDepartment of Medical Oncology, University Medical Center Groningen, University of Groningen, 9723 GZ Groningen, The Netherlands; bDivision of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; cInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos#3-09, Singapore 138673, Republic of Singapore; dDepartment of Biochemistry, National University of Singapore, Singapore 117597, Republic of Singapore; and eEuropean Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands Edited by Stephen J. Elledge, Harvard Medical School, Boston, MA, and approved October 21, 2015 (received for review March 17, 2015) The Wee1 cell cycle checkpoint kinase prevents premature mitotic Wee1 kinase at tyrosine (Tyr)-15 to prevent unscheduled Cdk1 entry by inhibiting cyclin-dependent kinases. Chemical inhibitors activity (5, 6). Conversely, timely activation of Cdk1 depends on of Wee1 are currently being tested clinically as targeted anticancer Tyr-15 dephosphorylation by one of the Cdc25 phosphatases drugs. Wee1 inhibition is thought to be preferentially cytotoxic in (7–10). When DNA is damaged, the downstream DNA damage p53-defective cancer cells. However, TP53 mutant cancers do not response (DDR) kinases Chk1 and Chk2 inhibit Cdc25 phos- respond consistently to Wee1 inhibitor treatment, indicating the phatases through direct phosphorylation, which blocks Cdk1 existence of genetic determinants of Wee1 inhibitor sensitivity other activation (11–13).
    [Show full text]
  • Cyclin-Dependent Kinases and Their Role in Inflammation, Endothelial Cell Migration
    Cyclin-Dependent Kinases and their role in Inflammation, Endothelial Cell Migration and Autocrine Activity Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shruthi Ratnakar Shetty Graduate Program in Pharmaceutical Sciences The Ohio State University 2020 Dissertation Committee Dale Hoyt, Advisor Liva Rakotondraibe Moray Campbell Keli Hu Copyrighted by Shruthi Ratnakar Shetty 2020 Abstract Inflammation is the body’s response to infection or injury. Endothelial cells are among the different players involved in an inflammatory cascade. In response to an inflammatory stimuli such as bacterial lipopolysaccharide (LPS), endothelial cells get activated which is characterized by the production of important mediators, such as inducible nitric oxide synthase (iNOS) which, catalyzes the production of nitric oxide (NO) and reactive nitrogen species and cyclooxygenase-2 (COX-2) that catalyzes the production of prostaglandins. Though the production of these mediators is required for an inflammatory response, it is important that their levels are regulated. Continued production of iNOS results in increased accumulation of reactive nitrogen species (RNS) that might lead to cytotoxicity, whereas lack of/suppression results in endothelial and vascular dysfunction. On the other hand, severe cardiovascular, intestinal and renal side effects are observed with significant suppression of COX-2. Thus, studying factors that could regulate the levels of iNOS and COX-2 could provide useful insights for developing novel therapeutic targets. Regulation of protein levels involves control of protein induction or turnover. Since protein induction requires transcription, in this dissertation we studied the role of a promoter of transcription “Cyclin- dependent kinase 7 (CDK7)” in iNOS and COX-2 protein induction.
    [Show full text]
  • CPTC-CDK1-1 (CAB079974) Immunohistochemistry
    CPTC-CDK1-1 (CAB079974) Uniprot ID: P06493 Protein name: CDK1_HUMAN Full name: Cyclin-dependent kinase 1 Tissue specificity: Isoform 2 is found in breast cancer tissues. Function: Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition via association with multiple interphase cyclins. Required in higher cells for entry into S-phase and mitosis. Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, LMNA, LMNB, LMNC, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2 and RUNX2. CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs. Essential for early stages of embryonic development. During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation. Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis.
    [Show full text]
  • Functional Genetic Screen Identifies Increased Sensitivity to WEE1 Inhibition in Cells with Defects in Fanconi Anemia and HR Pathways
    Published OnlineFirst February 11, 2015; DOI: 10.1158/1535-7163.MCT-14-0845 Small Molecule Therapeutics Molecular Cancer Therapeutics Functional Genetic Screen Identifies Increased Sensitivity to WEE1 Inhibition in Cells with Defects in Fanconi Anemia and HR Pathways Marieke Aarts1, Ilirjana Bajrami1, Maria T. Herrera-Abreu1, Richard Elliott1, Rachel Brough1, Alan Ashworth1, Christopher J. Lord1, and Nicholas C. Turner1,2 Abstract WEE1 kinase regulates CDK1 and CDK2 activity to facilitate increased replication stress and forced mitotic entry of S-phase DNA replication during S-phase and to prevent unscheduled cells. Loss of multiple components of the Fanconi anemia entry into mitosis. WEE1 inhibitors synergize with DNA-dam- (FA) and homologous recombination (HR) pathways, in par- aging agents that arrest cells in S-phase by triggering direct ticular DNA helicases, sensitized to WEE1 inhibition. Silencing mitotic entry without completing DNA synthesis, resulting in of FA/HR genes resulted in excessive replication stress and catastrophic chromosome fragmentation and apoptosis. Here, nucleotide depletion following WEE1 inhibition, which ulti- we investigated how WEE1 inhibition could be best exploited mately led to increased unscheduled mitotic entry. Our results for cancer therapy by performing a functional genetic screen to suggest that cancers with defects in FA and HR pathways may be identify novel determinants of sensitivity to WEE1 inhibition. targeted by WEE1 inhibition, providing a basis for a novel Inhibition of kinases that regulate CDK activity, CHK1 and synthetic lethal strategy for cancers harboring FA/HR defects. MYT1, synergized with WEE1 inhibition through both Mol Cancer Ther; 14(4); 865–76. Ó2015 AACR. Introduction activation (5).
    [Show full text]
  • Targeting the WEE1 Kinase As a Molecular Targeted Therapy for Gastric Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 31 Research Paper Targeting the WEE1 kinase as a molecular targeted therapy for gastric cancer Hye-Young Kim1,2, Yunhee Cho1,3, HyeokGu Kang1,3, Ye-Seal Yim1,3, Seok-Jun Kim1,3, Jaewhan Song2, Kyung-Hee Chun1,3 1Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea 2Department of Biochemistry, College of Life Science and Biotechnology, Seodaemun-gu, Seoul 03722, Korea 3Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea Correspondence to: Kyung-Hee Chun, email: [email protected] Keywords: WEE1, AZD1775 (MK-1775), 5-FU, Paclitaxel, gastric cancer Received: September 07, 2015 Accepted: May 28, 2016 Published: June 23, 2016 ABSTRACT Wee1 is a member of the Serine/Threonine protein kinase family and is a key regulator of cell cycle progression. It has been known that WEE1 is highly expressed and has oncogenic functions in various cancers, but it is not yet studied in gastric cancers. In this study, we investigated the oncogenic role and therapeutic potency of targeting WEE1 in gastric cancer. At first, higher expression levels of WEE1 with lower survival probability were determined in stage 4 gastric cancer patients or male patients with accompanied lymph node metastasis. To determine the function of WEE1 in gastric cancer cells, we determined that WEE1 ablation decreased the proliferation, migration, and invasion, while overexpression of WEE1 increased these effects in gastric cancer cells. We also validated the clinical application of WEE1 targeting by a small molecule, AZD1775 (MK-1775), which is a WEE1 specific inhibitor undergoing clinical trials.
    [Show full text]
  • Newfound Coding Potential of Transcripts Unveils Missing Members Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.406710; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Newfound coding potential of transcripts unveils missing members of 2 human protein communities 3 4 Sebastien Leblanc1,2, Marie A Brunet1,2, Jean-François Jacques1,2, Amina M Lekehal1,2, Andréa 5 Duclos1, Alexia Tremblay1, Alexis Bruggeman-Gascon1, Sondos Samandi1,2, Mylène Brunelle1,2, 6 Alan A Cohen3, Michelle S Scott1, Xavier Roucou1,2,* 7 1Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, 8 Quebec, Canada. 9 2 PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering. 10 3Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada. 11 12 *Corresponding author: Tel. (819) 821-8000x72240; E-Mail: [email protected] 13 14 15 Running title: Alternative proteins in communities 16 17 Keywords: alternative proteins, protein network, protein-protein interactions, pseudogenes, 18 affinity purification-mass spectrometry 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.406710; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 Abstract 22 23 Recent proteogenomic approaches have led to the discovery that regions of the transcriptome 24 previously annotated as non-coding regions (i.e.
    [Show full text]
  • Cyclin-Dependent Kinases and CDK Inhibitors in Virus-Associated Cancers Shaian Tavakolian, Hossein Goudarzi and Ebrahim Faghihloo*
    Tavakolian et al. Infectious Agents and Cancer (2020) 15:27 https://doi.org/10.1186/s13027-020-00295-7 REVIEW Open Access Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers Shaian Tavakolian, Hossein Goudarzi and Ebrahim Faghihloo* Abstract The role of several risk factors, such as pollution, consumption of alcohol, age, sex and obesity in cancer progression is undeniable. Human malignancies are mainly characterized by deregulation of cyclin-dependent kinases (CDK) and cyclin inhibitor kinases (CIK) activities. Viruses express some onco-proteins which could interfere with CDK and CIKs function, and induce some signals to replicate their genome into host’scells.By reviewing some studies about the function of CDK and CIKs in cells infected with oncoviruses, such as HPV, HTLV, HERV, EBV, KSHV, HBV and HCV, we reviewed the mechanisms of different onco-proteins which could deregulate the cell cycle proteins. Keywords: CDK, CIKs, Cancer, Virus Introduction the key role of the phosphorylation in the entrance of Cell division is controlled by various elements [1–10], the cells to the S phase of the cell cycle [19]. especially serine/ threonine protein kinase complexes, CDK genes are classified in mammalian cells into differ- called cyclin-dependent kinases (CDKs), and cyclins, ent classes of CDKs, especially some important regulatory whose expression is prominently regulated by the bind- ones (The regulatory CDKs play important roles in medi- ing to CDK inhibitors [11, 12]. In all eukaryotic species, ating cell cycle). Each of these CDKs could interact with a these genes are classified into different families. It is specific cyclin and thereby regulating the expression of well-established that the complexes of cyclin and CDK different genes [20, 21].
    [Show full text]
  • Title Mtorc1 Upregulation Via ERK-Dependent Gene Expression Change Confers Intrinsic Resistance to MEK Inhibitors in Oncogenic Kras-Mutant Cancer Cells
    mTORC1 upregulation via ERK-dependent gene expression Title change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. Komatsu, Naoki; Fujita, Yoshihisa; Matsuda, Michiyuki; Aoki, Author(s) Kazuhiro Citation Oncogene (2015), 34(45): 5607-5616 Issue Date 2015-11-05 URL http://hdl.handle.net/2433/207613 This is the accepted manuscrip of the article is available at http://dx.doi.org/10.1038/onc.2015.16.; The full-text file will be made open to the public on 5 May 2016 in accordance with Right publisher's 'Terms and Conditions for Self-Archiving'.; この論 文は出版社版でありません。引用の際には出版社版をご 確認ご利用ください。; This is not the published version. Please cite only the published version. Type Journal Article Textversion author Kyoto University 1 Title mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. Authors Naoki Komatsu1, Yoshihisa Fujita2, Michiyuki Matsuda1,2, and Kazuhiro Aoki3 Affiliations 1. Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Japan 2. Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Japan 3. Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Japan To whom correspondence should be addressed Kazuhiro Aoki, Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Tel.: 81-75-753-9450; Fax: 81-75-753-4698; E-mail: [email protected] Running title (less than 50 letters and spaces): Transcriptional control of mTORC1 activity by ERK 2 Abstract Cancer cells harboring oncogenic BRaf mutants, but not oncogenic KRas mutants, are sensitive to MEK inhibitors (MEKi).
    [Show full text]