Torin1-Mediated TOR Kinase Inhibition Reduces Wee1 Levels And

Total Page:16

File Type:pdf, Size:1020Kb

Torin1-Mediated TOR Kinase Inhibition Reduces Wee1 Levels And ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 1346–1356 doi:10.1242/jcs.146373 RESEARCH ARTICLE Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells Jane Atkin1, Lenka Halova1, Jennifer Ferguson1, James R. Hitchin2, Agata Lichawska-Cieslar3, Allan M. Jordan2, Jonathon Pines3, Claudia Wellbrock1 and Janni Petersen1,* ABSTRACT target the kinase domain of mTOR, such as Torin1 (Thoreen et al., 2009), mimics the impact of rapamycin treatment in The target of rapamycin (TOR) kinase regulates cell growth and budding yeast, in that they induce autophagy, reduce protein division. Rapamycin only inhibits a subset of TOR activities. Here we synthesis and arrest cell cycle progression in G1 with a reduced show that in contrast to the mild impact of rapamycin on cell division, cell size (Thoreen et al., 2009). These effects of Torin1 blocking the catalytic site of TOR with the Torin1 inhibitor completely established that there are rapamycin-resistant roles for arrests growth without cell death in Schizosaccharomyces pombe.A mTORC1 that are essential for growth and proliferation. Torin1 mutation of the Tor2 glycine residue (G2040D) that lies adjacent to interacts with tryptophan-2239 in the catalytic, active site of the key Torin-interacting tryptophan provides Torin1 resistance, mTOR kinase (Yang et al., 2013). Crucially, this residue is absent confirming the specificity of Torin1 for TOR. Using this mutation, we in other kinases, including the mTOR-related phosphoinositide 3- show that Torin1 advanced mitotic onset before inducing growth kinases (PI3Ks). arrest. In contrast to TOR inhibition with rapamycin, regulation by Here, we describe the isolation of a tor2 mutation that maps to either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced a conserved glycine located next to the key tryptophan (W2239 of mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in mTOR) that directly interacts with Torin. This mutation conferred Wee1 levels. Experiments in human cell lines recapitulated these resistance to Torin1 and functionally validated the specificity of yeast observations: mammalian TOR (mTOR) was inhibited by Torin1 for TOR kinases. We have exploited this Torin1-resistant Torin1, Wee1 levels declined and mitotic commitment was advanced mutation to show that complete TORC1 inhibition advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by mitotic commitment. Torin1 treatment reduced the levels of the TOR signalling is a conserved mechanism that helps to couple cell mitotic inhibitor Wee1. Experiments in human cell lines cycle and growth controls. recapitulated these yeast observations: Wee1 levels decreased and mitotic commitment advanced when HeLa mTOR was KEY WORDS: HeLa, S. pombe, TOR, Torin1, Wee1 inhibited by Torin1. These findings provide novel insight into the mechanisms by which inhibition of TOR activity impacts upon INTRODUCTION mitosis and cell division. Cells regulate growth, metabolism and proliferation through target of rapamycin (TOR) kinase signalling. Fission yeast RESULTS Schizosaccharomyces pombe contains two TOR kinases: the Growth of S. pombe is inhibited without cell death or G1 arrest non-essential Tor1 and the essential Tor2 (Weisman and Choder, following Torin1-induced TOR inhibition 2001). TOR kinases participate in at least two distinct protein We wanted to exploit TOR inhibition by Torin1 to further complexes: TORC1 (mainly containing Tor2) and TORC2 characterise TOR signalling in the model eukaryote S. pombe.A (predominantly containing Tor1) (Alvarez and Moreno, 2006; recent study has shown that a low concentration of Torin1 Hayashi et al., 2007; Matsuo et al., 2007). It is established that (0.2 mM) inhibits TORC1; however, no growth arrest of wild- rapamycin inhibits a subset of TOR activities in TORC1 type (wt) cells is observed (Ma et al., 2013). As the tor2+ complexes. In Saccharomyces cerevisiae rapamycin promotes (TORC1 complex) gene of fission yeast is essential (Weisman growth arrest (Barbet et al., 1996); however, it does not show the and Choder, 2001), TOR inhibition would be expected to halt same effect in either S. pombe or some mammalian cells (Neshat growth and proliferation. The ATP analogue (25 mM) did indeed et al., 2001; Pedersen et al., 1997; Weisman et al., 1997). In inhibit growth of wild-type cells on minimal solid media or in contrast, treatment of mammalian cells with ATP-analogues that liquid cultures (Fig. 1A–C). On rich media (YES), the growth of wt cells was inhibited by 5 mM Torin1 (data not shown). 1Faculty of Life Sciences, University of Manchester, Michael Smith Building, Incubation with the drug for 24 hours reduced proliferation to less Manchester M13 9PT, UK. 2Cancer Research UK Drug Discovery Unit, Paterson than 10% of vehicle-treated control cultures (Fig. 1C). As Institute for Cancer Research, University of Manchester, Wilmslow Road, previously reported, rapamycin had only a marginal impact on Manchester, M20 4BX, UK. 3The Gurdon Institute and Department of Zoology, Tennis Court Road, Cambridge CB2 1QN, UK. growth (Fig. 1A) (Weisman et al., 1997). To address whether Torin1 was promoting cell death, cells were treated with Torin1 *Author for correspondence ([email protected]) for 9 or 24 hours and spread on plates containing rich medium This is an Open Access article distributed under the terms of the Creative Commons Attribution without Torin1 to assess viability. Torin1-treated and vehicle- License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. treated control cultures gave similar numbers of colony forming units (CFU) (Fig. 1D), indicating that cells resumed growth Received 15 November 2013; Accepted 13 December 2013 following Torin1 withdrawal. In other words, Torin1 inhibition Journal of Cell Science 1346 RESEARCH ARTICLE Journal of Cell Science (2014) 127, 1346–1356 doi:10.1242/jcs.146373 Torin1 inhibits both TORC1 and TORC2 in S. pombe In fission yeast, both TORC1 and TORC2 signalling is regulated when cells are starved of nitrogen (Matsuo et al., 2007; Murai et al., 2009; Nakase et al., 2013; Nakashima et al., 2012; Petersen and Nurse, 2007; Takahara and Maeda, 2012; Uritani et al., 2006; Weisman and Choder, 2001; Weisman et al., 2007). Cells arrest cell cycle progression in G1 to undergo sexual differentiation and mating (Egel, 2003). Both TORC1 and TORC2 regulate this physiological cell cycle exit and, importantly, TORC2 activity is essential for the G1 arrest. We found that Torin1 completely prevented mating of wild-type cells. In contrast, rapamycin treatment, which only inhibits TORC1, had only a marginal impact on mating proficiency (Fig. 2A). Thus, because Torin1 inhibited growth (which is TORC1-dependent) without inducing a G1 arrest (Fig. 1E) and TORC2 activity is required for G1 arrest, these data suggested that Torin1 inhibited the TOR kinases in both TORC1 and TORC2. To confirm that Torin1 targets both TOR kinases, we used biochemical read-outs of both TORC1 and TORC2 activity. Phosphorylation of the ribosomal protein S6 (Rps6) is regulated by both TORC1 and TORC2 (Du et al., 2012; Nakashima et al., 2012; Nakashima et al., 2010). In wild-type cells, Rps6 phosphorylation was lost within 30 minutes of Torin1 treatment (Ma et al., 2013), but was only marginally reduced by rapamycin treatment (Fig. 2B). This indicated that Torin1 is targeting TOR. We next monitored the impact of Torin1 addition upon the phosphorylation status of TORC1- and TORC2-specific substrates. Phosphorylation of Maf1, a repressor of RNA polymerase III, is solely dependent on TORC1 activity (Du et al., 2012; Michels et al., 2010), whereas phosphorylation of the AGC kinase Gad8 at serine-546 is uniquely dependent on TORC2 (Matsuo et al., 2003; Tatebe et al., 2010). Maf1 phosphorylation was severely reduced following treatment with Torin1 for 30 minutes (Fig. 2C: note the collapse of the three phosphorylated Maf1 forms (Du et al., 2012) into a single faster- migrating band). Thus, Torin1 inhibited TORC1. Rapamycin also reduced Maf1 phosphorylation, but to a lesser extent, suggesting that rapamycin was a less potent inhibitor of TORC1 than Torin1. Because Ponceau S staining is linear with protein concentration R250.99 (Kowalczyk et al., 2013), it was used as loading control for Maf1–pk. Gad8 dephosphorylation was seen after Torin1 addition, whereas rapamycin had no impact upon Gad8 Fig. 1. Growth of S. pombe is inhibited without cell death or G1 arrest phosphorylation status (Fig. 2D). This suggested that, unlike following inhibition of TOR signalling by Torin1. (A) Wild-type cells grown on EMMG plates containing 25 mM Torin1, 300 ng/ml rapamycin or solvent. rapamycin, Torin1 inhibited TORC2. In summary we have MeOH, methanol. (B-F) Liquid cultures were treated with 25 mM Torin1 or shown that, in contrast to rapamycin, Torin1 inhibited TOR in + DMSO. (B) Cell number was measured and proliferation relative to vehicle both the TORC1 and TORC2 complexes. Only tor2 (TORC1 calculated after 24 hours (C). (D) 500 cells were spread on YES plates and complex) is essential for cell growth (Weisman and Choder, 2001), colony-forming units counted and shown relative to vehicle-treated cultures. making it likely that the growth arrest was a consequence of (E) DNA content was analysed by flow cytometry. (F) Cell size was inhibition of TORC1 alone. determined by forward-scatter flow cytometry. A mutation in the ATP-binding pocket of Tor2 provides Torin1 resistance did not induce cell death. We therefore asked whether the growth We next isolated mutations that allowed cells to grow in the arrest arose from cell cycle arrest in G1, as seen in mammalian presence of the drug. Following random mutagenesis by exposure cells (Thoreen et al., 2009) and in fission yeast following Tor2 to ultraviolet light, cells were plated onto medium containing inhibition (Matsuo et al., 2007; Uritani et al., 2006).
Recommended publications
  • Cell Type–Dependent Effects of Polo-Like Kinase 1 Inhibition Compared with Targeted Polo Box Interference in Cancer Cell Lines
    3189 Cell type–dependent effects of Polo-like kinase 1 inhibition compared with targeted polo box interference in cancer cell lines Jenny Fink, Karl Sanders, Alexandra Rippl, certain cell lines but highly contrasting effects in others. Sylvia Finkernagel, Thomas L. Beckers, This may point to subtle differences in the molecular and Mathias Schmidt machinery of mitosis regulation in cancer cells. [Mol Cancer Ther 2007;6(12):3189–97] Nycomed GmbH, Konstanz, Germany Introduction Abstract Polo-like kinase 1 (Plk1) has been identified as key player Multiple critical roles within mitosis have been assigned for G2-M transition and mitotic progression in both normal to Polo-like kinase 1 (Plk1), making it an attractive and tumor cells (1). Multiple roles have been assigned to candidate for mitotic targeting of cancer cells. Plk1 Plk1 at the entry into M phase, mitotic spindle formation, contains two domains amenable for targeted interference: condensation and separation of chromosomes, exit from a kinase domain responsible for the enzymatic function mitosis by activation of the anaphase-promoting complex, and a polo box domain necessary for substrate recogni- and in cytokinesis (reviewed in ref. 2). Moreover, recent tion and subcellular localization. Here, we compare two reports implicated an involvement of Plk1 in the resump- approaches for targeted interference with Plk1 function, tion of cell cycle reentry after checkpoint activation through either by a Plk1 small-molecule enzyme inhibitor or by DNA-damaging agents (3). It is therefore not surprising inducible overexpression of the polo box in human cancer that targeted interference with Plk1, primarily by anti- cell lines.
    [Show full text]
  • Review Article Mitotic Kinases and P53 Signaling
    Hindawi Publishing Corporation Biochemistry Research International Volume 2012, Article ID 195903, 14 pages doi:10.1155/2012/195903 Review Article Mitotic Kinases and p53 Signaling Geun-Hyoung Ha1 and Eun-Kyoung Yim Breuer1, 2 1 Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA 2 Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA Correspondence should be addressed to Eun-Kyoung Yim Breuer, [email protected] Received 6 April 2012; Accepted 18 May 2012 Academic Editor: Mandi M. Murph Copyright © 2012 G.-H. Ha and E.-K. Y. Breuer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling.
    [Show full text]
  • Α-Synuclein-Sy-Synucleinnuclein Phosphorylationphosphorylation Andand Re Relatedlated Kinaseskinases Inin Parkinsonparkinson’S Diseasedisease
    αα-Synuclein-Sy-Synucleinnuclein phosphorylationphosphorylation andand relatedrelated kinaseskinases inin ParkinsonParkinson’s diseasedisease Jin-XiaJin-Xia ZhouZhou A thesis submitted in fulfillment of the requirement of the degree of Doctor of Philosophy School of Medical Sciences, Faculty of Medicine and Neuroscience Research Australia November 2013 I PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Zhou First name: Jin-Xia Other name/s: I Abbreviation for degree as given in the University calendar: PhD School: School of Medical Sciences Faculty: Medicine lation and related kinases in Parkinson's disease Abstract 350 words maximum: (PLEASE TYPE) ' Parkinson's disease (PO) is the most common neurodegenerative movement disorder pathologically identified by degeneration of the nigrostriatal system and the presence of Lcwy bodies (LBs) and neurites. structuTal pathologies largely made from insoluble a-synuclein phosphorylated at serine 129 (S 129P). Several kinases have been suggested to facilitate a-synuciein phosphorylation in PD, but without significant human data the changes that precipitate such pathology remain conjecture. The major aims of this pr~ject were to assess the dynamic changes of a -synuclein phosphorylation and related kinases in the progression of PD and in animal models of PD. and to determine whether Tenuigenin (TEN), a Chinese medicinal herb, can prevent cc-synucleln-induc.?d toxicity in a cell model. The levels of non-phosphorylated a-synuclein decreased over the course ofPD, becoming increasingly phosphorylated and insoluble. There was a dramatic increase in phosphorylated a-synuclein that preceded LB formation. Importantly, three a-synuc!ein-relatec ki nases [polo-like kinase 2 {PLK2), lcuc.:inc- rich repeat kinase 2 (LRRK2l and cyclin G-~tssoc i ated kinase (GAK)] were found to be involved at different times in the evolution of LB formation in P.O.
    [Show full text]
  • PLK-1 Promotes the Merger of the Parental Genome Into A
    RESEARCH ARTICLE PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly Griselda Velez-Aguilera1, Sylvia Nkombo Nkoula1, Batool Ossareh-Nazari1, Jana Link2, Dimitra Paouneskou2, Lucie Van Hove1, Nicolas Joly1, Nicolas Tavernier1, Jean-Marc Verbavatz3, Verena Jantsch2, Lionel Pintard1* 1Programme Equipe Labe´llise´e Ligue Contre le Cancer - Team Cell Cycle & Development - Universite´ de Paris, CNRS, Institut Jacques Monod, Paris, France; 2Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria; 3Universite´ de Paris, CNRS, Institut Jacques Monod, Paris, France Abstract Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN- 1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development. *For correspondence: [email protected] Introduction Competing interests: The After fertilization, the haploid gametes of the egg and sperm have to come together to form the authors declare that no genome of a new diploid organism.
    [Show full text]
  • Clinical Candidates Targeting the ATR–CHK1–WEE1 Axis in Cancer
    cancers Review Clinical Candidates Targeting the ATR–CHK1–WEE1 Axis in Cancer Lukas Gorecki 1 , Martin Andrs 1,2 and Jan Korabecny 1,* 1 Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; [email protected] (L.G.); [email protected] (M.A.) 2 Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-495-833-447 Simple Summary: Selective killing of cancer cells is privileged mainstream in cancer treatment and targeted therapy represents the new tool with a potential to pursue this aim. It can also aid to overcome resistance of conventional chemo- or radio-therapy. Common mutations of cancer cells (defective G1 control) favor inhibiting intra-S and G2/M-checkpoints, which are regulated by ATR–CHK1–WEE1 pathway. The ATR–CHK1–WEE1 axis has produced several clinical candidates currently undergoing clinical trials in phase II. Clinical results from randomized trials by ATR and WEE1 inhibitors warrant ongoing clinical trials in phase III. Abstract: Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra-S or G2/M checkpoints has also been extensively Citation: Gorecki, L.; Andrs, M.; pursued.
    [Show full text]
  • Wee1 Rather Than Plk1 Is Inhibited by AZD1775 at Therapeutically Relevant Concentrations
    cancers Article Wee1 Rather Than Plk1 Is Inhibited by AZD1775 at Therapeutically Relevant Concentrations Angela Flavia Serpico 1,2, Giuseppe D’Alterio 1,2, Cinzia Vetrei 1,2, Rosa Della Monica 1, Luca Nardella 1,2, Roberta Visconti 3 and Domenico Grieco 1,4,* 1 CEINGE Biotecnologie Avanzate, 80145 Naples, Italy; angelafl[email protected] (A.F.S.); [email protected] (G.D.); [email protected] (C.V.); [email protected] (R.D.M.); [email protected] (L.N.) 2 DMMBM, University of Naples “Federico II”, 80131 Naples, Italy 3 IEOS, CNR, 80131 Naples, Italy; [email protected] 4 Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy * Correspondence: [email protected] Received: 24 April 2019; Accepted: 10 June 2019; Published: 13 June 2019 Abstract: Wee1 kinase is an inhibitor of cyclin-dependent kinase (cdk)s, crucial cell cycle progression drivers. By phosphorylating cdk1 at tyrosine 15, Wee1 inhibits activation of cyclin B-cdk1 (Cdk1), preventing cells from entering mitosis with incompletely replicated or damaged DNA. Thus, inhibiting Wee1, alone or in combination with DNA damaging agents, can kill cancer cells by mitotic catastrophe, a tumor suppressive response that follows mitosis onset in the presence of under-replicated or damaged DNA. AZD1775, an orally available Wee1 inhibitor, has entered clinical trials for cancer treatment following this strategy, with promising results. Recently, however, AZD1775 has been shown to inhibit also the polo-like kinase homolog Plk1 in vitro, casting doubts on its mechanism of action. Here we asked whether, in the clinically relevant concentration range, AZD1775 inhibited Wee1 or Plk1 in transformed and non-transformed human cells.
    [Show full text]
  • Application of a MYC Degradation
    SCIENCE SIGNALING | RESEARCH ARTICLE CANCER Copyright © 2019 The Authors, some rights reserved; Application of a MYC degradation screen identifies exclusive licensee American Association sensitivity to CDK9 inhibitors in KRAS-mutant for the Advancement of Science. No claim pancreatic cancer to original U.S. Devon R. Blake1, Angelina V. Vaseva2, Richard G. Hodge2, McKenzie P. Kline3, Thomas S. K. Gilbert1,4, Government Works Vikas Tyagi5, Daowei Huang5, Gabrielle C. Whiten5, Jacob E. Larson5, Xiaodong Wang2,5, Kenneth H. Pearce5, Laura E. Herring1,4, Lee M. Graves1,2,4, Stephen V. Frye2,5, Michael J. Emanuele1,2, Adrienne D. Cox1,2,6, Channing J. Der1,2* Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adeno- carcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, Downloaded from UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage- dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability 62 through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser .
    [Show full text]
  • Therapeutic Co-Targeting of WEE1 and ATM Downregulates PD-L1 Expression in Pancreatic Cancer
    pISSN 1598-2998, eISSN 2005-9256 Cancer Res Treat. 2020;52(1):149-166 https://doi.org/10.4143/crt.2019.183 Original Article Open Access Therapeutic Co-targeting of WEE1 and ATM Downregulates PD-L1 Expression in Pancreatic Cancer Mei Hua Jin, MD, MS1 Purpose Ah-Rong Nam, MS1 Pancreatic cancer (PC) is one of the most lethal cancers worldwide, but there are currently no effective treatments. The DNA damage response (DDR) is under investigation for the Ji Eun Park, MS1 development of novel anti-cancer drugs. Since DNA repair pathway alterations have been MS1 Ju-Hee Bang, found frequently in PC, the purpose of this study was to test the DDR-targeting strategy in 1,2 Yung-Jue Bang, MD, PhD PC using WEE1 and ATM inhibitors. Do-Youn Oh, MD, PhD1,2 Materials and Methods We performed in vitro experiments using a total of ten human PC cell lines to evaluate anti- tumor effect of AZD1775 (WEE1 inhibitor) alone or combination with AZD0156 (ATM inhi- bitor). We established Capan-1–mouse model for in vivo experiments to confirm our findings. Results In our research, we found that WEE1 inhibitor (AZD1775) as single agent showed anti-tumor 1Cancer Research Institute, Seoul National effects in PC cells, however, targeting WEE1 upregulated p-ATM level. Here, we observed University College of Medicine, Seoul, that co-targeting of WEE1 and ATM acted synergistically to reduce cell proliferation and 2Department of Internal Medicine, Seoul migration, and to induce DNA damage in vitro. Notably, inhibition of WEE1 or WEE1/ATM National University Hospital, Seoul, Korea downregulated programmed cell death ligand 1 expression by blocking glycogen synthase kinase-3! serine 9 phosphorylation and decrease of CMTM6 expression.
    [Show full text]
  • A Haploid Genetic Screen Identifies the G1/S Regulatory Machinery As a Determinant of Wee1 Inhibitor Sensitivity
    A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity Anne Margriet Heijinka, Vincent A. Blomenb, Xavier Bisteauc, Fabian Degenera, Felipe Yu Matsushitaa, Philipp Kaldisc,d, Floris Foijere, and Marcel A. T. M. van Vugta,1 aDepartment of Medical Oncology, University Medical Center Groningen, University of Groningen, 9723 GZ Groningen, The Netherlands; bDivision of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; cInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos#3-09, Singapore 138673, Republic of Singapore; dDepartment of Biochemistry, National University of Singapore, Singapore 117597, Republic of Singapore; and eEuropean Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands Edited by Stephen J. Elledge, Harvard Medical School, Boston, MA, and approved October 21, 2015 (received for review March 17, 2015) The Wee1 cell cycle checkpoint kinase prevents premature mitotic Wee1 kinase at tyrosine (Tyr)-15 to prevent unscheduled Cdk1 entry by inhibiting cyclin-dependent kinases. Chemical inhibitors activity (5, 6). Conversely, timely activation of Cdk1 depends on of Wee1 are currently being tested clinically as targeted anticancer Tyr-15 dephosphorylation by one of the Cdc25 phosphatases drugs. Wee1 inhibition is thought to be preferentially cytotoxic in (7–10). When DNA is damaged, the downstream DNA damage p53-defective cancer cells. However, TP53 mutant cancers do not response (DDR) kinases Chk1 and Chk2 inhibit Cdc25 phos- respond consistently to Wee1 inhibitor treatment, indicating the phatases through direct phosphorylation, which blocks Cdk1 existence of genetic determinants of Wee1 inhibitor sensitivity other activation (11–13).
    [Show full text]
  • Structures, Functions, and Mechanisms of Filament Forming Enzymes: a Renaissance of Enzyme Filamentation
    Structures, Functions, and Mechanisms of Filament Forming Enzymes: A Renaissance of Enzyme Filamentation A Review By Chad K. Park & Nancy C. Horton Department of Molecular and Cellular Biology University of Arizona Tucson, AZ 85721 N. C. Horton ([email protected], ORCID: 0000-0003-2710-8284) C. K. Park ([email protected], ORCID: 0000-0003-1089-9091) Keywords: Enzyme, Regulation, DNA binding, Nuclease, Run-On Oligomerization, self-association 1 Abstract Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI system are also highlighted. 2 Contents INTRODUCTION…………………………………………………………..4 STRUCTURALLY CHARACTERIZED ENZYME FILAMENTS…….5 Acetyl CoA Carboxylase (ACC)……………………………………………………………………5 Phosphofructokinase (PFK)……………………………………………………………………….6
    [Show full text]
  • CPTC-CDK1-1 (CAB079974) Immunohistochemistry
    CPTC-CDK1-1 (CAB079974) Uniprot ID: P06493 Protein name: CDK1_HUMAN Full name: Cyclin-dependent kinase 1 Tissue specificity: Isoform 2 is found in breast cancer tissues. Function: Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition via association with multiple interphase cyclins. Required in higher cells for entry into S-phase and mitosis. Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, LMNA, LMNB, LMNC, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2 and RUNX2. CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs. Essential for early stages of embryonic development. During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation. Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis.
    [Show full text]
  • Mtor REGULATES AURORA a VIA ENHANCING PROTEIN STABILITY
    mTOR REGULATES AURORA A VIA ENHANCING PROTEIN STABILITY Li Fan Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology, Indiana University December 2013 Accepted by the Graduate Faculty, of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Lawrence A. Quilliam, Ph.D., Chair Doctoral Committee Simon J. Atkinson, Ph.D. Mark G. Goebl, Ph.D. October 22, 2013 Maureen A. Harrington, Ph.D. Ronald C. Wek, Ph.D. ii © 2013 Li Fan iii DEDICATION I dedicate this thesis to my family: to my parents, Xiu Zhu Fan and Shu Qin Yang, who have been loving, supporting, and encouraging me from the beginning of my life; to my husband Fei Huang, who provided unconditional support and encouragement through these years; to my son, David Yan Huang, who has made my life highly enjoyable and meaningful. iv ACKNOWLEDGMENTS I sincerely thank my mentor Dr. Lawrence Quilliam for his guidance, motivation, support, and encouragement during my dissertation work. His passion for science and the scientific and organizational skills I have learned from Dr. Quilliam made it possible for me to achieve this accomplishment. Many thanks to Drs. Ron Wek, Mark Goebl, Maureen Harrington, and Simon Atkinson for serving on my committee and providing constructive suggestions and technical advice during my Ph.D. program. I have had a pleasurable experience working with all the people in our laboratory. Thanks Drs. Justin Babcock and Sirisha Asuri, and Mr.
    [Show full text]