Molecular Phylogeny and Homology Debates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diet Composition and Overlap in a Montane Frog Community in Vietnam
Herpetological Conservation and Biology 13(1):205–215. Submitted: 5 November 2017; Accepted: 19 March 2018; Published 30 April 2018. DIET COMPOSITION AND OVERLAP IN A MONTANE FROG COMMUNITY IN VIETNAM DUONG THI THUY LE1,4, JODI J. L. ROWLEY2,3, DAO THI ANH TRAN1, THINH NGOC VO1, AND HUY DUC HOANG1 1Faculty of Biology and Biotechnology, University of Science, Vietnam National University-HCMC, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam 2Australian Museum Research Institute, Australian Museum,1 William Street, Sydney, New South Wales 2010, Australia 3Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia 4Corresponding author, e-mail: [email protected] Abstract.—Southeast Asia is home to a highly diverse and endemic amphibian fauna under great threat. A significant obstacle to amphibian conservation prioritization in the region is a lack of basic biological information, including the diets of amphibians. We used stomach flushing to obtain data on diet composition, feeding strategies, dietary niche breadth, and overlap of nine species from a montane forest in Langbian Plateau, southern Vietnam: Feihyla palpebralis (Vietnamese Bubble-nest Frog), Hylarana montivaga (Langbian Plateau Frog), Indosylvirana milleti (Dalat Frog), Kurixalus baliogaster (Belly-spotted Frog), Leptobrachium pullum (Vietnam Spadefoot Toad), Limnonectes poilani (Poilane’s Frog), Megophrys major (Anderson’s Spadefoot Toad), Polypedates cf. leucomystax (Common Tree Frog), and Raorchestes gryllus (Langbian bubble-nest Frog). To assess food selectivity of these species, we sampled available prey in their environment. We classified prey items into 31 taxonomic groups. Blattodea was the dominant prey taxon for K. -
(Rhacophoridae, Pseudophilautus) in Sri Lanka
Molecular Phylogenetics and Evolution 132 (2019) 14–24 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Diversification of shrub frogs (Rhacophoridae, Pseudophilautus) in Sri Lanka T – Timing and geographic context ⁎ Madhava Meegaskumburaa,b,1, , Gayani Senevirathnec,1, Kelum Manamendra-Arachchid, ⁎ Rohan Pethiyagodae, James Hankenf, Christopher J. Schneiderg, a College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning 530004, PR China b Department of Molecular Biology & Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka c Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA d Postgraduate Institute of Archaeology, Colombo 07, Sri Lanka e Ichthyology Section, Australian Museum, Sydney, NSW 2010, Australia f Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA g Department of Biology, Boston University, Boston, MA 02215, USA ARTICLE INFO ABSTRACT Keywords: Pseudophilautus comprises an endemic diversification predominantly associated with the wet tropical regions ofSri Ancestral-area reconstruction Lanka that provides an opportunity to examine the effects of geography and historical climate change on diversi- Biogeography fication. Using a time-calibrated multi-gene phylogeny, we analyze the tempo of diversification in thecontextof Ecological opportunity past climate and geography to identify historical drivers of current patterns of diversity and distribution. Molecular Diversification dating suggests that the diversification was seeded by migration across a land-bridge connection from India duringa Molecular dating period of climatic cooling and drying, the Oi-1 glacial maximum around the Eocene-Oligocene boundary. Lineage- Speciation through-time plots suggest a gradual and constant rate of diversification, beginning in the Oligocene and extending through the late Miocene and early Pliocene with a slight burst in the Pleistocene. -
Anura, Rhacophoridae)
Zoologica Scripta Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae) MADHAVA MEEGASKUMBURA,GAYANI SENEVIRATHNE,S.D.BIJU,SONALI GARG,SUYAMA MEEGASKUMBURA,ROHAN PETHIYAGODA,JAMES HANKEN &CHRISTOPHER J. SCHNEIDER Submitted: 3 December 2014 Meegaskumbura, M., Senevirathne, G., Biju, S. D., Garg, S., Meegaskumbura, S., Pethiya- Accepted: 7 May 2015 goda, R., Hanken, J., Schneider, C. J. (2015). Patterns of reproductive-mode evolution in doi:10.1111/zsc.12121 Old World tree frogs (Anura, Rhacophoridae). —Zoologica Scripta, 00, 000–000. The Old World tree frogs (Anura: Rhacophoridae), with 387 species, display a remarkable diversity of reproductive modes – aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well-resolved phylogeny from which we determine major patterns of reproductive-mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral-state reconstruc- tions suggest that terrestrial gel-encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of ter- restrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being ter- restrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently. -
Predation of Feihyla Hansenae (Hansen's Bush Frog) Eggs by A
NATURAL HISTORY NOTE The Herpetological Bulletin 139, 2017: 36-37 Predation of Feihyla hansenae (Hansen’s bush frog) eggs by a nursery web spider SINLAN POO1,2*, FRANCESCA T. ERICKSON3, SARA A. MASON4 & BRADLEY D. NISSEN5 1Memphis Zoo, 2000 Prentiss Place, Memphis, Tennessee 38112, USA 2Sakaerat Environmental Research Station, Wang Nam Khieo, Nakhon Ratchasima 30370, Thailand. 3U.S. Geological Survey Brown Treesnake Project, P.O. Box 8255 MOU-3, Dededo, 96912 Guam. 4Nicholas Institute for Environmental Policy Solutions, Duke University, Durham, North Carolina 27710, USA. 5Watershed Protection Department, City of Austin, 505 Barton Springs Road, Austin, Texas 78704, USA. *Corresponding author Email: [email protected] eihyla hansenae (Cochran, 1927) is an arboreal- breeding frog distributed in Thailand, Cambodia, and FMyanmar (Taylor, 1962; Aowphol et al., 2013). Eggs are laid in a gelatinous hemispherical clutch overhanging ponds and are cared for by female frogs until they hatch (Average egg stage = 5 days). Maternal care, viz. suppling water (Poo & Bickford, 2013) and deterring invertebrate predators (Poo et al., 2016a), is essential to the development and survival of eggs. The primary source of egg mortality is predation (Poo & Bickford, 2013). Known egg predators include ants, katydids, and snakes (Poo & Bickford, 2013; Poo et al., 2016b). In cases of partial clutch predation, threats from egg predators can lead to premature hatching in F. hansenae (Poo & Bickford, 2014), which can negatively affect the fitness and survival of hatchlings in subsequent Figure 1. Predation of F. hansenae egg clutch by N. cf. life stages (Gomez-Mestre & Warkentin, 2007). albocinctus. Here, we report the first observation of F. -
Phylogeny and Classification of the Melastomataceae and Memecylaceae
Nord. J. Bot. - Section of tropical taxonomy Phylogeny and classification of the Melastomataceae and Memecy laceae Susanne S. Renner Renner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecy- laceae. - Nord. J. Bot. 13: 519-540. Copenhagen. ISSN 0107-055X. A systematic analysis of the Melastomataceae, a pantropical family of about 4200- 4500 species in c. 166 genera, and their traditional allies, the Memecylaceae, with c. 430 species in six genera, suggests a phylogeny in which there are two major lineages in the Melastomataceae and a clearly distinct Memecylaceae. Melastomataceae have close affinities with Crypteroniaceae and Lythraceae, while Memecylaceae seem closer to Myrtaceae, all of which were considered as possible outgroups, but sister group relationships in this plexus could not be resolved. Based on an analysis of all morph- ological and anatomical characters useful for higher level grouping in the Melastoma- taceae and Memecylaceae a cladistic analysis of the evolutionary relationships of the tribes of the Melastomataceae was performed, employing part of the ingroup as outgroup. Using 7 of the 21 characters scored for all genera, the maximum parsimony program PAUP in an exhaustive search found four 8-step trees with a consistency index of 0.86. Because of the limited number of characters used and the uncertain monophyly of some of the tribes, however, all presented phylogenetic hypotheses are weak. A synapomorphy of the Memecylaceae is the presence of a dorsal terpenoid-producing connective gland, a synapomorphy of the Melastomataceae is the perfectly acrodro- mous leaf venation. Within the Melastomataceae, a basal monophyletic group consists of the Kibessioideae (Prernandra) characterized by fiber tracheids, radially and axially included phloem, and median-parietal placentation (placentas along the mid-veins of the locule walls). -
SMC 136 Gazin 1958 1 1-112.Pdf
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 136, NUMBER 1 Cftarlesi 3B, anb JKarp "^aux OTalcott 3^es(earcf) Jf unb A REVIEW OF THE MIDDLE AND UPPER EOCENE PRIMATES OF NORTH AMERICA (With 14 Plates) By C. LEWIS GAZIN Curator, Division of Vertebrate Paleontology United States National Museum Smithsonian Institution (Publication 4340) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 7, 1958 THE LORD BALTIMORE PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Introduction i Acknowledgments 2 History of investigation 4 Geographic and geologic occurrence 14 Environment I7 Revision of certain lower Eocene primates and description of three new upper Wasatchian genera 24 Classification of middle and upper Eocene forms 30 Systematic revision of middle and upper Eocene primates 31 Notharctidae 31 Comparison of the skulls of Notharctus and Smilodectcs z:^ Omomyidae 47 Anaptomorphidae 7Z Apatemyidae 86 Summary of relationships of North American fossil primates 91 Discussion of platyrrhine relationships 98 References 100 Explanation of plates 108 ILLUSTRATIONS Plates (All plates follow page 112) 1. Notharctus and Smilodectes from the Bridger middle Eocene. 2. Notharctus and Smilodectes from the Bridger middle Eocene. 3. Notharctus and Smilodectcs from the Bridger middle Eocene. 4. Notharctus and Hemiacodon from the Bridger middle Eocene. 5. Notharctus and Smilodectcs from the Bridger middle Eocene. 6. Omomys from the middle and lower Eocene. 7. Omomys from the middle and lower Eocene. 8. Hemiacodon from the Bridger middle Eocene. 9. Washakius from the Bridger middle Eocene. 10. Anaptomorphus and Uintanius from the Bridger middle Eocene. 11. Trogolemur, Uintasorex, and Apatcmys from the Bridger middle Eocene. 12. Apatemys from the Bridger middle Eocene. -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters. -
ZR-2020-246-Supplementary Materials.Pdf
SUPPLEMENTARY MATERIALS Materials and Methods Taxon sampling Our dataset included 13 species of Polypedates (P. otilophus, P. colletti, P. cruciger, P. maculatus, P. pseudocruciger, P. macrotis, P. mutus, P. braueri, P. impresus, P. megacephalus, P. teraiensis, P. leucomystax, and P. discantus). Eight additional species belonging to the genera Feihyla, Ghatixalus, and Taruga, which are closely related to Polypedates (Li et al., 2013), and two outgroup species (Kurixalus idiootocus and Kurixalus banaensis) were also sampled (Supplementary Table S1). The sampling localities covered most distribution areas, including India, Sri Lanka, South China (including Hainan and Taiwan islands), mainland Southeast Asia (Vietnam, Laos, Thailand, Myanmar, and Bangladesh), Malay Peninsula and associated islands, Sundaland (Borneo, Java, Sumatra, and Sulawesi), Philippine Archipelago, and Japan (Supplementary Figure S1). DNA extraction, polymerase chain reaction (PCR) amplification, and sequencing Sequences of mitochondrial (12S rRNA, tRNAVal, and 16S rRNA) and nuclear genes (exon 1 of tyrosinase (TYR), exon 1 of rhodopsin (RHOD), proopiomelanocortin (POMC)) from previous studies (Brown et al., 2010; Grosjean et al., 2015; Haas & Das, 2008; Hasan et al., 2014; Hertwig et al., 2013; Kuraishi et al., 2013; Li et al., 2009, 2013; Matsui et al., 2014a, 2014b; Pan et al., 2013; Rujirawan et al., 2013; Yu et al., 2008) were retrieved from GenBank. Candidate DNA fragments, including three mtDNA and three nuclear DNA fragments of 15 individuals from six species, were newly acquired in this study. Genomic DNA was extracted from either muscle or liver tissues and initially preserved in 95% ethanol. An Ezup Column Animal Genomic DNA Purification Kit (Sangon Biotech, China) was used for genomic DNA extraction, with minor modifications to the manufacturer’s protocols. -
Fauna of Australia 2A
FAUNA of AUSTRALIA 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA Mark N. Hutchinson & Stephen C. Donnellan 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA This review summarises the current hypotheses of the origin, antiquity and history of the order Squamata, the dominant living reptile group which comprises the lizards, snakes and worm-lizards. The primary concern here is with the broad relationships and origins of the major taxa rather than with local distributional or phylogenetic patterns within Australia. In our review of the phylogenetic hypotheses, where possible we refer principally to data sets that have been analysed by cladistic methods. Analyses based on anatomical morphological data sets are integrated with the results of karyotypic and biochemical data sets. A persistent theme of this chapter is that for most families there are few cladistically analysed morphological data, and karyotypic or biochemical data sets are limited or unavailable. Biogeographic study, especially historical biogeography, cannot proceed unless both phylogenetic data are available for the taxa and geological data are available for the physical environment. Again, the reader will find that geological data are very uncertain regarding the degree and timing of the isolation of the Australian continent from Asia and Antarctica. In most cases, therefore, conclusions should be regarded very cautiously. The number of squamate families in Australia is low. Five of approximately fifteen lizard families and five or six of eleven snake families occur in the region; amphisbaenians are absent. Opinions vary concerning the actual number of families recognised in the Australian fauna, depending on whether the Pygopodidae are regarded as distinct from the Gekkonidae, and whether sea snakes, Hydrophiidae and Laticaudidae, are recognised as separate from the Elapidae. -
Phylogeny of Early Tertiary Carnivora, with a Description of a New Species of Protictis from the Middle Eocene of Northwestern Wyoming
AMERICAN MUSEUM Nov itates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2725, pp. 1-64, figs. 1-9, tables 1, 2 April 15, 1982 Phylogeny of Early Tertiary Carnivora, With a Description of a New Species of Protictis From the Middle Eocene of Northwestern Wyoming JOHN J. FLYNN1 AND HENRY GALIANO2 ABSTRACT Since Cope erected the Miacidae in 1880, all for the suprageneric taxa Carnivora, Feliformia, early Tertiary carnivorans have generally been Caniformia, Didymictidae (Didymictida) (new), grouped in this family because of their overall Aeluroida (new), Feloidea, and Viverravidae. primitive morphology. A historical review of the Protictis, including the subgenera P. (Protictis), classifications and definitions of the Miacidae is P. (Bryanictis), and P. (Protictoides) (new), is provided. Discovery of a new subgenus of Pro- diagnosed and discussed. Simpsonictis is consid- tictis from the Uintan (mid Eocene) of north- ered a valid genus and is allied with Viverravus western Wyoming led to a reevaluation of the in the Viverravidae (Aeluroida, Feliformia). Pa- phylogeny of the Carnivora. The Miacidae (Mia- laeogale is removed from the Mustelidae (Cani- coidea), as previously constructed, is a paraphy- formia) and is considered a close relative of the letic assemblage of all the early Tertiary Carniv- Viverravidae. Ictidopappus is placed incertae ora. Phylogenetic analysis of the distribution of sedis within the Aeluroida. "Plesiomiacis" and cranial, dental, and postcranial morphology indi- Quercygale, which were previously considered cates that the bipartite division recognized in liv- members of the "Viverravinae," are considered ing Carnivora may be traced to the earliest Ter- members of the Caniformia. -
Brief Report Acta Palaeontologica Polonica 55 (4): 761–764, 2010
Brief report Acta Palaeontologica Polonica 55 (4): 761–764, 2010 A new genus of “miacid” carnivoran from the earliest Eocene of Europe and North America THIERRY SMITH and RICHARD SMITH “Miacid” carnivorans comprise one of the modern mammal groups from North America (Smith et al. 1996; Smith and groups appearing around the Palaeocene–Eocene Thermal Smith 2001; Smith et al. 2006). Here we describe a new genus Maximum (PETM) in the Northern Hemisphere. Here we of a very small and primitive “miacid” carnivoran that is pres− describe a new very small “miacid” carnivoran from the ent in Dormaal and other early Eocene localities of northwest− earliest Eocene of Dormaal, Belgium, that shares a particu− ern Europe and in the early Eocene of Wyoming (Wa−0 to lar dental morphology with the species “Miacis” winkleri Wa−2, early Wasatchian NALMA). It shows characters that are and “Miacis” rosei from the early Eocene of North America. quite distinct from those of other “miacid” genera, indicating The three species present very gracile and sharp teeth, and higher morphological diversity among basal “miacids” than are hereby placed in the new genus Gracilocyon.Compara− previously thought. tive dental analysis of Gracilocyon with other early “mia− cids” contributes to better resolve the polarity of dental Institutional abbreviations.—IRSNB, Institut royal des Scien− characters and indicates that this genus is one of the most ces naturelles de Belgique, Brussels, Belgium; UCMP, Univer− primitive members of the family. Diversity of early modern sity of California Museum of Paleontology, Berkeley, USA; carnivorans is greater than previously considered and early UM(VP), University of Michigan (Vertebrate Paleontology), “miacids” seem to have dispersed into North America from Ann Arbor, USA; YPM, Yale Peabody Museum−Princeton Col− two different geographic origins.