Migration Confirms Asynchronous Marine Mesozoic Revolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Cretaceous-Early Palaeogene Echinoderms and the K/T Boundary in the Southeast Netherlands and Northeast Belgium — Part 6: Conclusions
pp 507-580 15-01-2007 14:51 Pagina 505 Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions John W.M. Jagt Jagt, J.W.M. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions. — Scripta Geol., 121: 505-577, 8 figs., 9 tables, Leiden, December 2000. John W.M. Jagt, Natuurhistorisch Museum Maastricht, Postbus 882, NL-6200 AW Maastricht, The Netherlands, E-mail: [email protected] Key words: Echinodermata, Late Cretaceous, Early Palaeogene, palaeobiology, K/T boundary, extinc- tion. The palaeobiology of echinoderms occurring in the Meerssen and Geulhem members is discussed and changes in diversity across the K/T boundary are documented. Using literature data on the ecology of extant faunas, the various echinoderm groups are considered. Naturally, such data can only be applied with due caution to fossil forms, whose skeletal morphology is often incompletely known. This holds especially true for asteroids, ophiuroids, and crinoids, which, upon death, rapidly disinte- grate into jumbles of dissociated ossicles. Bioturbation, scavenging, and current winnowing all con- tribute to blurring the picture still further. However, data on extant forms do allow a preliminary sub- division of fossil species into various ecological groups, which are discussed herein. Combining recently published data on K/T boundary sections in Jylland and Sjælland (Denmark) with the pic- ture drawn here for the Maastricht area results in the following best constrained scenario. The demise of the highly diverse latest Maastrichtian echinoderm faunas, typical of shallow-water settings with local palaeorelief and associated unconsolidated bottoms, was rapid, suggestive of a catastrophic event (e.g. -
Early Stalked Stages in Ontogeny of the Living Isocrinid Sea Lily Metacrinus Rotundus
Published for The Royal Swedish Academy of Sciences and The Royal Danish Academy of Sciences and Letters Acta Zoologica (Stockholm) 97: 102–116 (January 2016) doi: 10.1111/azo.12109 Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus Shonan Amemiya,1,2,3 Akihito Omori,4 Toko Tsurugaya,4 Taku Hibino,5 Masaaki Yamaguchi,6 Ritsu Kuraishi,3 Masato Kiyomoto2 and Takuya Minokawa7 Abstract 1Department of Integrated Biosciences, Amemiya,S.,Omori,A.,Tsurugaya,T.,Hibino,T.,Yamaguchi,M.,Kuraishi,R., Graduate School of Frontier Sciences, The Kiyomoto,M.andMinokawa,T.2016.Earlystalkedstagesinontogenyoftheliving University of Tokyo, Kashiwa, Chiba, isocrinid sea lily Metacrinus rotundus. — Acta Zoologica (Stockholm) 97: 102–116. 277-8526, Japan; 2Marine and Coastal Research Center, Ochanomizu University, The early stalked stages of an isocrinid sea lily, Metacrinus rotundus,wereexam- Ko-yatsu, Tateyama, Chiba, 294-0301, ined up to the early pentacrinoid stage. Larvae induced to settle on bivalve shells 3 Japan; Research and Education Center of and cultured in the laboratory developed into late cystideans. Three-dimensional Natural Sciences, Keio University, Yoko- (3D) images reconstructed from very early to middle cystideans indicated that hama, 223-8521, Japan; 4Misaki Marine 15 radial podia composed of five triplets form synchronously from the crescent- Biological Station, Graduate School of Sci- ence, The University of Tokyo, Misaki, shaped hydrocoel. The orientation of the hydrocoel indicated that the settled Kanagawa, 238-0225, Japan; 5Faculty of postlarvae lean posteriorly. In very early cystideans, the orals, radials, basals and Education, Saitama University, 255 Shim- infrabasals, with five plates each in the crown, about five columnals in the stalk, o-Okubo, Sakura-ku, Saitama City, 338- and five terminal stem plates in the attachment disc, had already formed. -
Echinodermata) and Their Permian-Triassic Origin
Molecular Phylogenetics and Evolution 66 (2013) 161-181 Contents lists available at SciVerse ScienceDirect FHYLÖGENETICS a. EVOLUTION Molecular Phylogenetics and Evolution ELSEVIER journal homepage:www.elsevier.com/locate/ympev Fixed, free, and fixed: The fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian-Triassic origin Greg W. Rouse3*, Lars S. Jermiinb,c, Nerida G. Wilson d, Igor Eeckhaut0, Deborah Lanterbecq0, Tatsuo 0 jif, Craig M. Youngg, Teena Browning11, Paula Cisternas1, Lauren E. Helgen-1, Michelle Stuckeyb, Charles G. Messing k aScripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA b CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia c School of Biological Sciences, The University of Sydney, NSW 2006, Australia dThe Australian Museum, 6 College Street, Sydney, NSW 2010, Australia e Laboratoire de Biologie des Organismes Marins et Biomimétisme, University of Mons, 6 Avenue du champ de Mars, Life Sciences Building, 7000 Mons, Belgium fNagoya University Museum, Nagoya University, Nagoya 464-8601, Japan s Oregon Institute of Marine Biology, PO Box 5389, Charleston, OR 97420, USA h Department of Climate Change, PO Box 854, Canberra, ACT 2601, Australia 1Schools of Biological and Medical Sciences, FI 3, The University of Sydney, NSW 2006, Sydney, Australia * Department of Entomology, NHB E513, MRC105, Smithsonian Institution, NMNH, P.O. Box 37012, Washington, DC 20013-7012, USA k Oceanographic Center, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL 33004, USA ARTICLE INFO ABSTRACT Añicle history: Although the status of Crinoidea (sea lilies and featherstars) as sister group to all other living echino- Received 6 April 2012 derms is well-established, relationships among crinoids, particularly extant forms, are debated. -
Zoogeography of Tropical Western Atlantic Crinoidea (Echinodermata) David L
Nova Southeastern University NSUWorks Oceanography Faculty Articles Department of Marine and Environmental Sciences 7-1-1978 Zoogeography of Tropical Western Atlantic Crinoidea (Echinodermata) David L. Meyer University of Cincinnati - Main Campus Charles G. Messing University of Miami, [email protected] Donald B. Macurda Jr. University of Michigan - Ann Arbor Find out more information about Nova Southeastern University and the Oceanographic Center. Follow this and additional works at: http://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Meyer, David L., Charles G. Messing, and Donald B. Macurda Jr. "Biological results of the University of Miami deep-sea expeditions. 129. Zoogeography of tropical western Atlantic Crinoidea (Echinodermata)." Bulletin of Marine Science 28, no. 3 (1978): 412-441. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Oceanography Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. BULLETIN OF MARINE SCIENCE, 28(3): 412-441, 1978 BIOLOGICAL RESULTS OF THE UNIVERSITY OF MTAMI DEEP-SEA EXPEDITIONS. 129. ZOOGEOGRAPHY OF TROPICAL WESTERN ATLANTIC CRINOIDEA (ECHINODERMATA) David L. Meyer, Charles G. Messing, and Donald B. Macurda, Jr. ABSTRACT Recent collcctions of crinoids from the intertidal zone to ],650 m in the tropical western Atlantic have provided significant range extensions for more than half of the 44 comatulid and stalked species known from the region. Of the 34 comatulid species, over 60% are endemic to the region; of the 10 stalked species, 90% are endemic. -
Isocrinid Crinoids from the Late Cenozoic of Jamaica
A tlantic G eology 195 Isocrinid crinoids from the late Cenozoic of Jamaica Stephen K. Donovan Department of Geology, University of the West Indies, Mona, Kingston 7, Jamaica Date Received April 8, 1994 Date A ccepted A ugust 26, 1994 Eight species of isocrinines have been documented from the Lower Cretaceous to Pleistocene of Jamaica. New finds include a second specimen of a Miocene species from central north Jamaica, previously regarded as Diplocrinus sp. but reclassified as Teliocrinus? sp. herein. Extant Teliocrinus is limited to the Indian Ocean, although Miocene specimens have been recorded from Japan, indicating a wider distribution during the Neogene. One locality in the early Pleistocene Manchioneal Formation of eastern Jamaica has yielded three species of isocrinine, Cenocrirtus asterius (Linne), Diplocrinus maclearanus (Thomson) and Neocrinus decorus Thomson. These occur in association with the bourgueticrinine Democrinus sp. or Monachocrinus sp. These taxa are all extant and suggest a minimum depositional depth for the Manchioneal Formation at this locality of about 180 m. This early Pleistocene fauna represents the most diverse assemblage of fossil crinoids docu mented from the Antillean region. Huit especes d’isocrinines de la periode du Cretace inferieur au Pleistocene de la Jamai'que ont ete documentees. Les nouvelles decouvertes comprennent un deuxieme specimen d’une espece du Miocene du nord central de la Jamai'que, auparavant consideree comme l’espece Diplocrinus, mais reclassifiee en tant que Teliocrinus? aux presentes. Le Teliocrinus existant est limite a l’ocean Indien, meme si on a releve des specimens du Miocene au Japon, ce qui est revelateur d’une distribution plus repandue au cours du Neogene. -
Predation, Resistance, and Escalation in Sessile Crinoids
Predation, resistance, and escalation in sessile crinoids by Valerie J. Syverson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in the University of Michigan 2014 Doctoral Committee: Professor Tomasz K. Baumiller, Chair Professor Daniel C. Fisher Research Scientist Janice L. Pappas Professor Emeritus Gerald R. Smith Research Scientist Miriam L. Zelditch © Valerie J. Syverson, 2014 Dedication To Mark. “We shall swim out to that brooding reef in the sea and dive down through black abysses to Cyclopean and many-columned Y'ha-nthlei, and in that lair of the Deep Ones we shall dwell amidst wonder and glory for ever.” ii Acknowledgments I wish to thank my advisor and committee chair, Tom Baumiller, for his guidance in helping me to complete this work and develop a mature scientific perspective and for giving me the academic freedom to explore several fruitless ideas along the way. Many thanks are also due to my past and present labmates Alex Janevski and Kris Purens for their friendship, moral support, frequent and productive arguments, and shared efforts to understand the world. And to Meg Veitch, here’s hoping we have a chance to work together hereafter. My committee members Miriam Zelditch, Janice Pappas, Jerry Smith, and Dan Fisher have provided much useful feedback on how to improve both the research herein and my writing about it. Daniel Miller has been both a great supervisor and mentor and an inspiration to good scholarship. And to the other paleontology grad students and the rest of the department faculty, thank you for many interesting discussions and much enjoyable socializing over the last five years. -
Helgen IS05050.Qxd
CSIRO PUBLISHING www.publish.csiro.au/journals/is Invertebrate Systematics, 2006, 20, 395-414 Species delimitation and distribution in Aporometra (Crinoidea:Echinodermata): endemic Australian featherstars Lauren E. Helgen^''~ and Greg W. Rouse^'^ "^School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005 Australia. ^South Australian Museum, North Terrace, Adelaide, SA 5000 Australia. "^Corresponding author. Email: [email protected] Abstract. Aporometra Clark, 1938, which belongs to the monotypic Aporometridae, is a crinoid genus endemic to temperate Australian waters. It has been described as being 'viviparous' and is among the smallest of comatulids. The small size of specimens, and poor morphological justifications for specific diagnoses have created uncertainty over the number of species in the genus and their distributions. This study identified a suite of characters using data from scanning electron microscopy and mtDNA sequencing {COI and ND2) to assess the number of species of Aporometra. Specimens were obtained from museimis and collected from Western Australia, South Australia, Victoria and New South Wales. Type material was also examined when possible. Phylogenetic hypotheses were generated using maximum parsimony-based analyses of the separate and combined datasets. The results support the monophyly oí Aporometra and the presence of two species, Aporometra wilsoni (Bell, 1888) aaà Aporometra occidentalis A. H. Clark, 1938, along the southern Australian coast. The status of the third nominal species, Aporometra paedophora (H. L. Clark, 1909), remains to be resolved, but it may be a junior synonym of ^. wilsoni. Morphological diagnoses are reviewed. Aporometra occidentalis was only found in Western Australia, while A. wilsoni was found from Western Australia to Victoria. -
Crinoids from the Barremian (Lower Cretaceous) of the Serre De Bleyton (Drôme, SE France)
©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien, Serie A 112 733-774 Wien, Juni 2010 Crinoids from the Barremian (Lower Cretaceous) of the Serre de Bleyton (Drôme, SE France) By Manfred JÄGER (With 2 figures and 7 plates) Manuscript submitted on September 11th 2009, the revised manuscript on January 11th 2010 Abstract The Barremian of the Serre de Bleyton has yielded many disarticulated but well-preserved ele- ments of a diverse crinoid fauna of at least six species, dominated by comatulids (three species) and isocrinids (two species). The single apiocrinitid species is rare. Except for the large and well- known comatulid Decameros ricordeanus D’ORBIGNY, 1850, with specimens similar to the subspe- cies or variety vagnasensis (DE LORIOL, 1888), five of the six species are new. However, only for three of them a new species name is introduced, Isocrinus? bleytonensis nov. spec., Comatulina moosleitneri nov. spec. and Semiometra barremiensis nov. spec. Two fairly rare species, Per- cevalicrinus sp. and Apiocrinites sp., are described in open nomenclature. This Barremian fauna fills a stratigraphic gap from which only few crinoids had so far been de- scribed. Apart from some Hauterivian crinoids (mainly isocrinids), the stratigraphically nearest crinoid-rich (and especially comatulid-rich) horizons are the Valanginian of western Switzerland and southeastern France and especially the Aptian of southeastern France and Spain. The high percentage of new species is not surprising due to phylogenetic changes during the time span Valanginian – Aptian. Apart from these differences at species level, the crinoid fauna from the Serre de Bleyton fits well into the overall faunal composition known from Late Jurassic to Early Cretaceous sites. -
Experimental Neoichnology of Crawling Stalked Crinoids
Swiss Journal of Palaeontology https://doi.org/10.1007/s13358-018-0158-9 (0123456789().,-volV)(0123456789().,-volV) REGULAR RESEARCH ARTICLE Experimental neoichnology of crawling stalked crinoids 1,2 3 4 1,2 5 Krzysztof R. Brom • Kazumasa Oguri • Tatsuo Oji • Mariusz A. Salamon • Przemysław Gorzelak Received: 13 June 2018 / Accepted: 5 July 2018 Ó The Author(s) 2018 Abstract Stalked crinoids have long been considered sessile. In the 1980s, however, observations both in the field and of laboratory experiments proved that some of them (isocrinids) can actively relocate by crawling with their arms on the substrate, and dragging the stalk behind them. Although it has been argued that this activity may leave traces on the sediment surface, no photographs or images of the traces produced by crawling crinoids have been available. Herein, we present results of neoichnological experiments using the shallowest species of living stalked crinoid, Metacrinus rotundus, dredged from Suruga Bay (near the town of Numazu, Shizuoka Prefecture, * 140 m depth). Our results demonstrate that isocrinids produce characteristic locomotion traces, which have some preservation potential. They are composed of rather deep and wide, sometimes weakly sinuous, central drag marks left by the stalk and cirri, and short, shallow scratch marks made by the arms. Based on the functional morphology and taphonomy, it has been argued that the ability to autotomize the stalk and relocate had already evolved in the oldest stem-group isocrinids (holocrinids), likely in response to increased benthic predation pressure during the so-called Mesozoic marine revolution. Our data show that this hypothesis may be corrob- orated in the future by ichnological findings, which may provide more direct proof of active locomotion in Triassic holocrinids. -
The Effect of Sublethal Predation on the Biology of Echinoderms
OCEANOLOGICA ACTA- VOL. 19- W 3-4 ~ -----~- Dis turban ce The effect of sublethal predation Predation Sublethal predation on the biology of echinoderms Echinoderms Perturbation Prédation Prédation sublétale Echinoderme John M. LA WREN CE a and Julio VASQUEZ b a Department of Biology, University of South Florida, Tampa, FL 33620, U.S.A. b Departamento de Biologia Marina, Universidad Cat6lica del Norte, Coquimbo, Chile. Received 17/01/95, in revised form 08/01196, accepted 11101196. ABSTRACT In contrast to plants, predation on animais is usually lethal. Analysis of the effect of predation on animal populations and on predator-prey dynamics typically assumes this is the case. However, sublethal predation occurs in echinoderms, primarily on the arms of crinoids, asteroids, and ophiuroids. Sublethal predation is important in the se echinoderms as it meets one of Harris' ( 1989) major crite ria, affecting basic biological processes such as acquisition of food and allocation of nutrients to growth and reproduction. Sublethal predation would have an effect on their ecological role. It is essential to consider sublethal predation in the analysis of the life-histories of these species. RÉSUMÉ Les effets de la prédation sublétale sur la biologie des échino dermes. A l'inverse de la plante, l'animal subit une prédation qui lui est habituellement mortelle. Ceci est confirmé par la plupart des analyses de prédation au sein des populations animales et de la dynamique prédateur/proie. Cependant une préda tion sublétale c'est-à-dire sans effet fatal, existe chez les échinodermes, principa lement chez les crinoïdes, astéries et ophiures. Pour répondre à cette définition, ce genre de prédation doit répondre au critère de Harris ( 1989) c'est-à-dire influencer les processus de base tels que la croissance et la reproduction et varier en fonction de la densité de la population en cause. -
Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda. -
The Pelagic Propagule's Toolkit
The pelagic propagule’s toolkit: An exploration of the morphology, swimming capacity and behaviour of marine invertebrate propagules by © Emaline M. Montgomery A Dissertation submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Biology, Department of Ocean Sciences, Faculty of Science, Memorial University of Newfoundland June 2017 St. John’s, Newfoundland and Labrador Abstract The pelagic propagules of benthic marine animals often exhibit behavioural responses to biotic and abiotic cues. These behaviours have implications for understanding the ecological trade-offs among complex developmental strategies in the marine environment, and have practical implications for population management and aquaculture. But the lack of life stage-specific data leaves critical questions unanswered, including: (1) Why are pelagic propagules so diverse in size, colour, and development mode; and (2) do certain combinations of traits yield propagules that are better adapted to survive in the plankton and under certain environments? My PhD research explores these questions by examining the variation in echinoderm propagule morphology, locomotion and behaviour during ontogeny, and in response to abiotic cues. Firstly, I examined how egg colour patterns of lecithotrophic echinoderms correlated with behavioural, morphological, geographic and phylogenetic variables. Overall, I found that eggs that developed externally (pelagic and externally-brooded eggs) had bright colours, compared