Herpes Simplex Virus and Cytomegalovirus Reactivation

Total Page:16

File Type:pdf, Size:1020Kb

Herpes Simplex Virus and Cytomegalovirus Reactivation Hraiech et al. Ann. Intensive Care (2019) 9:142 https://doi.org/10.1186/s13613-019-0616-6 RESEARCH Open Access Herpes simplex virus and Cytomegalovirus reactivation among severe ARDS patients under veno-venous ECMO Sami Hraiech1,2* , Eline Bonnardel3, Christophe Guervilly1,2, Cyprien Fabre2, Anderson Loundou2, Jean‑Marie Forel1,2, Mélanie Adda1,2, Gabriel Parzy1,2, Guilhem Cavaille1,2, Benjamin Coifard1,2, Antoine Roch1,2 and Laurent Papazian1,2 Abstract Background: Herpesviridae reactivation among non‑immunocompromised critically ill patients is associated with impaired prognosis, especially during acute respiratory distress syndrome (ARDS). However, little is known about herpes simplex virus (HSV) and Cytomegalovirus (CMV) reactivation occurring in patients with severe ARDS under veno‑venous extracorporeal membrane oxygenation (ECMO). We tried to determine the frequency of Herpesviridae reactivation and its impact on patients’ prognosis during ECMO for severe ARDS. Results: During a 5‑year period, 123 non‑immunocompromised patients with a severe ARDS requiring a veno‑ venous ECMO were included. Sixty‑seven patients (54%) experienced HSV and/or CMV reactivation during ECMO course (20 viral co‑infection, 40 HSV alone, and 7 CMV alone). HSV reactivation occurred earlier than CMV after the beginning of MV [(6–15) vs. 19 (13–29) days; p < 0.01] and after ECMO implementation [(2–8) vs. 14 (10–20) days; p < 0.01]. In univariate analysis, HSV/CMV reactivation was associated with a longer duration of mechanical ventila‑ tion [(22–52.5) vs. 17.5 (9–28) days; p < 0.01], a longer duration of ECMO [15 (10–22.5) vs. 9 (5–14) days; p < 0.01], and a prolonged ICU [29 (19.5–47.5) vs. 16 (9–30) days; p < 0.01] and hospital stay [44 (29–63.5) vs. 24 (11–43) days; p < 0.01] as compared to non‑reactivated patients. However, in multivariate analysis, viral reactivation remained associated with prolonged MV only. When considered separately, both HSV and CMV reactivation were associated with a longer dura‑ tion of MV as compared to non‑reactivation patients [29 (19.5–41) and 28 (20.5–37), respectively, vs. 17.5 (9–28) days; p < 0.05]. Co‑reactivation patients had a longer duration of MV [58.5 (38–72.3); p < 0.05] and ICU stay [51.5 (32.5–69) vs. 27.5 (17.75–35.5) and 29 (20–30.5), respectively] as compared to patients with HSV or CMV reactivation alone. In multivariate analysis, HSV reactivation remained independently associated with a longer duration of MV and hospital length of stay. Conclusions: Herpesviridae reactivation is frequent among patients with severe ARDS under veno‑venous ECMO and is associated with a longer duration of mechanical ventilation. The direct causative link between HSV and CMV reacti‑ vation and respiratory function worsening under ECMO remains to be confrmed. Keywords: ExtraCorporeal Membrane Oxygenation, Acute respiratory distress syndrome, Herpes simplex virus reactivation, Cytomegalovirus reactivation *Correspondence: sami.hraiech@ap‑hm.fr 1 Service de Médecine Intensive ‑ Réanimation, APHM, Hôpital Nord, Marseille, France Full list of author information is available at the end of the article © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. Hraiech et al. Ann. Intensive Care (2019) 9:142 Page 2 of 8 Background and ARDS, no study has investigated the occurrence Herpes simplex virus (HSV) and Cytomegalovirus (CMV) of HSV and/or CMV reactivation in patients under VV belong to the Herpesviridae family and are characterized ECMO. In this study, we aimed to assess the frequency of by an often asymptomatic primo-infection generally dur- herpesviruses reactivation during ECMO course and to ing childhood followed by a latency phase. In immuno- determine its impact on patients’ prognosis. compromised subjects, Herpesviridae are common viral causes of opportunistic infections. But HSV and CMV Methods reactivations are also frequently reported in intensive Study population care unit (ICU) non-immunocompromised patients [1, We conducted an observational, retrospective study in 2]. Reactivation ranges from 13 to 64% and 15 to 45% a medical ICU (ARDS and ECMO referee center) at the for HSV and CMV, respectively [3, 4]. Herpesviridae Marseille University Hospital between December 2011 reactivation in immunocompetent ICU patients is asso- and April 2017. Patients aged 18 or more, hospitalized ciated with poorer outcome [5]. HSV pulmonary reacti- in the ICU for severe ARDS requiring a VV ECMO for vation has been described to be associated with a longer 2 days or more were included. HSV and/or CMV reac- mechanical ventilation (MV) duration, ICU stay and tivation (see defnition below) occurring after ECMO mortality [2, 6, 7]. CMV reactivation is also associated insertion was screened for these patients. Patients with with a higher mortality, MV duration and ICU length of immunosuppression (immunosuppressive treatments stay [8]. In particular, CMV has been identifed as a cause including corticosteroids > 0.5 mg/kg/day prednisone- of persistent acute respiratory distress syndrome (ARDS) equivalent within 30 days prior to inclusion, severe neu- [9] and has also been shown to increase the mortality in tropenia < 0.5 G/L of neutrophils, HIV seropositivity, ARDS patients [10]. However, despite these associations, bone marrow or solid organ transplantation), antiviral the debate on the proper pathogen role of Herpesviridae therapy against HSV and/or CMV prior to inclusion, or rather than being a witness of patients’ severity is still HSV/CMV reactivation known at the time of ECMO ongoing. Studies failed to demonstrate that CMV proph- insertion were excluded. ylaxis was able to decrease Il-6 plasma levels in CMV seropositive critically ill patients [11] or to decrease mor- HSV and CMV reactivation tality [12]. Te role of Herpesviridae pre-emptive treat- At the time of the study, HSV and CMV screening were ment among ICU patients has been recently evaluated in routinely performed twice weekly in all patients under a randomized controlled trial (RCT) (NCT 02152358). MV. Te data concerning HSV showed that preemptive acy- HSV reactivation was defned by a positive qualitative clovir did not decrease the duration of MV although throat sample (Virocult®) PCR. a trend towards lower mortality was found in treated CMV reactivation was defned by a positive quantita- patients [13]. tive blood PCR with a copy number > 500/ml. Te most frequent risk factors for CMV and HSV reac- When a broncho-alveolar lavage (BAL) was performed tivation in the ICU are patients severity, sepsis, prolonged for suspicion of ventilator-associated pneumonia, HSV MV [14], high-dose corticosteroid therapy, acute renal and CMV PCR were systematically realized in BAL and failure or massive transfusion [15], with a strong associa- blood. tion for MV and sepsis [16]. Patients under veno-venous CMV viral loads were converted in IU/ml and quali- extracorporeal membrane oxygenation (VV ECMO) for fed as “high reactivation” for viral loads greater than or severe ARDS [17] often combine several or all of these equal to 1000 IU/ml or “low reactivation” for viral loads risk factors [18]. Despite the uncertainties regarding the of 100–999 IU/ml [10]. exact role of Herpesviridae reactivation in immunocom- CMV antigenemia was also researched in case of reac- petent critically ill patients, it might add to the pulmo- tivation suspicion. nary pathology in patients with ARDS. In experimental studies, CMV reactivation led to increased pulmonary Baseline assessment and data collection fbrosis [19] and accessing bacterial pneumonia [20]. Te following data were retrospectively recorded from Tese fndings suggest that Herpesviridae-related pul- the patients’ medical fle: age, sex, Simplifed Acute Phys- monary pathology may be causally linked to the clinical iologic Score II (SAPS II) [21], Sequential Organ Failure disease course following ARDS onset, especially in the Assessment (SOFA) score [22], presence of co-morbidi- most severely ill patients who require prolonged mechan- ties, presence of previous immunosuppression, cause of ical ventilation, and might particularly concern patients ARDS, date of MV initiation, date of ECMO implemen- under ECMO. However, despite the tight link that seems tation, other organ failure associated with ARDS during to exist between Herpesviridae, mechanical ventilation ICU stay (in particular need for catecholamines or renal Hraiech et al. Ann. Intensive Care (2019) 9:142 Page 3 of 8 replacement therapy), blood transfusion, post-aggressive Ten a multivariate analysis was performed to assess pulmonary fbrosis (defned by an alveolar procollagen III the independent efect of viral reactivation on diferent higher than 9 µg/l) [23], time of HSV/CMV reactivation, outcomes. delay between MV and HSV/CMV reactivation, delay Multiple linear regression was used to construct mod- between ECMO and HSV/CMV reactivation, duration of els. Variables that were marginally signifcant (p < 0.10) MV (from the day of intubation to the day of MV wean- in the univariate analysis, and that had clinical relevance ing), ECMO duration (from the day of ECMO implemen- were included in the regression models. Beta coefcients tation to its removal or death), ECMO-free days at day 28, and their p values were presented.
Recommended publications
  • Cytomegalovirus Disease Fact Sheet
    WISCONSIN DIVISION OF PUBLIC HEALTH Department of Health Services Cytomegalovirus (CMV) Disease Fact Sheet Series What is Cytomegalovirus infection? Cytomegalovirus (CMV) is a common viral infection that rarely causes disease in healthy individuals. When it does cause disease, the symptoms vary depending on the patient’s age and immune status. Who gets CMV infection? In the United States, approximately 1% of newborns is infected with CMV while growing in their mother's womb (congenital CMV infection). Many newborns however, will acquire CMV infection during delivery by passage through an infected birth canal or after birth through infected breast milk (perinatal CMV infection). Children, especially those attending day-care centers, who have not previously been infected with CMV, may become infected during the toddler or preschool years. Most people will have been infected with CMV by the time they reach puberty. How is CMV spread? CMV is excreted in urine, saliva, breast milk, cervical secretions and semen of infected individuals, even if the infected person has never experienced clinical symptoms. CMV may also be transmitted through blood transfusions, and through bone marrow, organ and tissue transplants from donors infected with CMV. CMV is not spread by casual contact with infected persons. Transmission requires repeated prolonged contact with infected items. What are the signs and symptoms of CMV infection? While most infants with congenital CMV infection do not show symptoms at birth, some will develop psychomotor, hearing, or dental abnormalities over the first few years of their life. Prognosis for infants with profound congenital CMV infection is poor and survivors may exhibit mental retardation, deficiencies in coordination of muscle movements, hearing losses, and chronic liver disease.
    [Show full text]
  • Infection Status of Human Parvovirus B19, Cytomegalovirus and Herpes Simplex Virus-1/2 in Women with First-Trimester Spontaneous
    Gao et al. Virology Journal (2018) 15:74 https://doi.org/10.1186/s12985-018-0988-5 RESEARCH Open Access Infection status of human parvovirus B19, cytomegalovirus and herpes simplex Virus- 1/2 in women with first-trimester spontaneous abortions in Chongqing, China Ya-Ling Gao1, Zhan Gao3,4, Miao He3,4* and Pu Liao2* Abstract Background: Infection with Parvovirus B19 (B19V), Cytomegalovirus (CMV) and Herpes Simplex Virus-1/2 (HSV-1/2) may cause fetal loses including spontaneous abortion, intrauterine fetal death and non-immune hydrops fetalis. Few comprehensive studies have investigated first-trimester spontaneous abortions caused by virus infections in Chongqing, China. Our study intends to investigate the infection of B19V, CMV and HSV-1/2 in first-trimester spontaneous abortions and the corresponding immune response. Methods: 100 abortion patients aged from 17 to 47 years were included in our study. The plasma samples (100) were analyzed qualitatively for specific IgG/IgM for B19V, CMV and HSV-1/2 (Virion\Serion, Germany) according to the manufacturer’s recommendations. B19V, CMV and HSV-1/2 DNA were quantification by Real-Time PCR. Results: No specimens were positive for B19V, CMV, and HSV-1/2 DNA. By serology, 30.0%, 95.0%, 92.0% of patients were positive for B19V, CMV and HSV-1/2 IgG respectively, while 2% and 1% for B19V and HSV-1/2 IgM. Conclusion: The low rate of virus DNA and a high proportion of CMV and HSV-1/2 IgG for most major of abortion patients in this study suggest that B19V, CMV and HSV-1/2 may not be the common factor leading to the spontaneous abortion of early pregnancy.
    [Show full text]
  • Hsv1&2 Vzv R-Gene®
    HSV1&2 VZV R-GENE® REAL TIME PCR ASSAYS - ARGENE® TRANSPLANT RANGE The power of true experience HSV1&2 VZV R-GENE® KEY FEATURES CLINICAL CONTEXT 1-5 • Ready-to-use reagents Herpes Simplex Viruses (HSV) 1 and 2 and Varicella-Zoster Complete qualitative and quantitative kit Virus (VZV) are DNA viruses belonging to the Herpesviridae • family. Primary infection is generally limited to the mucous • Simultaneous detection and quantification of membranes and the skin. After primary infection, the virus HSV1 and HSV2 persists in the host by establishing a latent infection. In case • Detection and quantification of VZV of chronic or transient immunosuppression, the virus may Validated on most relevant sample types reactivate to generate recurrent infection. Usually benign, • the infections with these viruses can develop in severe Validated with the major extraction and • clinical forms such as encephalitis, meningitis, retinitis, amplification platforms fulminant hepatitis, bronchopneumonia and neonatal infections. • Designed for low to high throughput analysis Various antivirals have proven their efficacy in treating these pathologies when •Same procedure for all the ARGENE® prescribed early and at appropriate doses. In case of severe infections, it is therefore Transplant kits essential to obtain an early and rapid diagnosis of the infection. TECHNICAL INFORMATION ORDERING INFORMATION HSV1&2 VZV R-GENE® - Ref. 69-014B Parameters HSV1 HSV2 VZV Gene target US7 UL27 gp19 protein CSF, Whole blood, Plasma, BAL, CSF, Whole blood, Plasma, Mucocutaneous
    [Show full text]
  • Where Do We Stand After Decades of Studying Human Cytomegalovirus?
    microorganisms Review Where do we Stand after Decades of Studying Human Cytomegalovirus? 1, 2, 1 1 Francesca Gugliesi y, Alessandra Coscia y, Gloria Griffante , Ganna Galitska , Selina Pasquero 1, Camilla Albano 1 and Matteo Biolatti 1,* 1 Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] (F.G.); gloria.griff[email protected] (G.G.); [email protected] (G.G.); [email protected] (S.P.); [email protected] (C.A.) 2 Complex Structure Neonatology Unit, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 March 2020; Accepted: 5 May 2020; Published: 8 May 2020 Abstract: Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance.
    [Show full text]
  • Cytomegalovirus (CMV) Fact Sheet
    Cytomegalovirus (CMV) Fact Sheet Cytomegalovirus (CMV) infection is caused by a virus CMV is a virus that is harmless to most people. CMV is a member of the herpes group of viruses. Most people get CMV at some time in their lives Most adults and children who catch CMV have no symptoms and are not harmed by the virus. Symptoms some people may get are fever, sore throat, fatigue, and swollen glands. CMV can stay in the body (latent form) and can reactivate in some people. CMV is usually spread through close person-to-person contact CMV may be found in body secretions, such as urine, saliva, feces, blood and blood products, breast milk, semen and cervical secretions. CMV can be in these secretions for months to years after the infection. Infection is spread from person to person through close contact, including kissing as well as getting saliva or urine on your hands and then touching your nose or mouth. A pregnant woman who is infected may also pass the virus to her developing baby. A baby may also be infected during birth, as a newborn, and through breast feeding. CMV can be spread through blood transfusion and organ transplantation. Two groups of people are at higher risk of problems from CMV: § Unborn children of women who get CMV for the first time or have a reactivation of infection during pregnancy. About 7 to 10% of these babies will have symptoms at birth or will develop disabilities including mental retardation, small head size, hearing loss, and delays in development. § People with certain illnesses or on certain medicines that weaken the immune system (for example, persons with HIV, or persons taking chemotherapy or organ transplant medicines).
    [Show full text]
  • Herpes: a Patient's Guide
    Herpes: A Patient’s Guide Herpes: A Patient’s Guide Introduction Herpes is a very common infection that is passed through HSV-1 and HSV-2: what’s in a name? ....................................................................3 skin-to-skin contact. Canadian studies have estimated that up to 89% of Canadians have been exposed to herpes simplex Herpes symptoms .........................................................................................................4 type 1 (HSV-1), which usually shows up as cold sores on the Herpes transmission: how do you get herpes? ................................................6 mouth. In a British Columbia study, about 15% of people tested positive for herpes simplex type 2 (HSV-2), which Herpes testing: when is it useful? ..........................................................................8 is the type of herpes most commonly thought of as genital herpes. Recently, HSV-1 has been showing up more and Herpes treatment: managing your symptoms ...................................................10 more on the genitals. Some people can have both types of What does herpes mean to you: receiving a new diagnosis ......................12 herpes. Most people have such minor symptoms that they don’t even know they have herpes. What does herpes mean to you: accepting your diagnosis ........................14 While herpes is very common, it also carries a lot of stigma. What does herpes mean to you: dating with herpes ....................................16 This stigma can lead to anxiety, fear and misinformation
    [Show full text]
  • Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People
    International Journal of Molecular Sciences Article Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People Sandra Skuja 1,* , Simons Svirskis 2 and Modra Murovska 2 1 Institute of Anatomy and Anthropology, R¯ıga Stradin, š University, Kronvalda blvd 9, LV-1010 R¯ıga, Latvia 2 Institute of Microbiology and Virology, R¯ıga Stradin, š University, Ratsup¯ ¯ıtes str. 5, LV-1067 R¯ıga, Latvia; [email protected] (S.S.); [email protected] (M.M.) * Correspondence: [email protected]; Tel.: +371-673-20421 Abstract: During persistent human beta-herpesvirus (HHV) infection, clinical manifestations may not appear. However, the lifelong influence of HHV is often associated with pathological changes in the central nervous system. Herein, we evaluated possible associations between immunoexpression of HHV-6, -7, and cellular immune response across different brain regions. The study aimed to explore HHV-6, -7 infection within the cortical lobes in cases of unspecified encephalopathy (UEP) and nonpathological conditions. We confirmed the presence of viral DNA by nPCR and viral antigens by immunohistochemistry. Overall, we have shown a significant increase (p < 0.001) of HHV antigen expression, especially HHV-7 in the temporal gray matter. Although HHV-infected neurons were found notably in the case of HHV-7, our observations suggest that higher (p < 0.001) cell tropism is associated with glial and endothelial cells in both UEP group and controls. HHV-6, predominantly detected in oligodendrocytes (p < 0.001), and HHV-7, predominantly detected in both astrocytes and oligodendrocytes (p < 0.001), exhibit varying effects on neural homeostasis.
    [Show full text]
  • Herpes Simplex Virus and Cytomegalovirus Reactivations
    Balc’h et al. Critical Care (2020) 24:530 https://doi.org/10.1186/s13054-020-03252-3 RESEARCH LETTER Open Access Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients Pierre Le Balc’h1,2, Kieran Pinceaux1,2, Charlotte Pronier3, Philippe Seguin4, Jean-Marc Tadié1,2 and Florian Reizine1,2* Dear Editor, cytomegalovirus replication were measured by quantita- The SARS-CoV-2 infection can lead to severe acute tive real-time PCR on tracheal aspirates twice a week for respiratory distress syndrome (ARDS) with prolonged each patient. Herpesviridae reactivation was defined as mechanical ventilation (MV). Patients with coronavirus two consecutive positive HSV or CMV PCR on tracheal disease 2019 (COVID-19) associated ARDS usually met aspirates. The Mann-Whitney rank sum test was used to the diagnosis criteria for sepsis-associated immunosup- compare non-parametric continuous variables, and pression as acquired infections, primarily bacterial and qualitative data were compared using Fisher’s exact test. fungal co-infections [1], are frequently encountered. Statistical significance was defined as P < .05. PRISM ver- Such secondary infections are associated with late mor- sion 8 (GraphPad Software, San Diego, CA, USA) was tality. Herpesviridae reactivation is common in non- used to perform statistical analyses. immunocompromised patients with prolonged MV and could be responsible for increased mortality and longer Results duration of MV in ICU [2, 3]. Although the diagnosis of A total of 38 patients were included. Table 1 shows the Herpesviridae pulmonary infection is challenging and demographic, clinical, and biological characteristics of not consensual in critically ill patients, therapeutic strat- the included patients.
    [Show full text]
  • Latent Kaposi's Sarcoma-Associated Herpesvirus Infection of Monocytes
    Latent Kaposi’s Sarcoma-Associated Herpesvirus Infection of Monocytes Downregulates Expression of Adaptive Immune Response Costimulatory Receptors and Proinflammatory Cytokines Sean M. Gregory,a,b Ling Wang,a John A. West,a Dirk P. Dittmer,a,b and Blossom Damaniaa,b Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,a and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USAb Kaposi’s sarcoma-associated herpesvirus (KSHV) infection is associated with the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. We report the establishment of a monocytic cell line latently infected with KSHV (KSHV-THP-1). We profiled viral and cytokine gene expression in the KSHV-THP-1 cells compared to that in unin- fected THP-1 cells and found that several genes involved in the host immune response were downregulated during latent infec- tion, including genes for CD80, CD86, and the cytokines tumor necrosis factor alpha (TNF-␣) and interleukin-1␤ (IL-1␤). Thus, KSHV minimizes its immunological signature by suppressing key immune response factors, enabling persistent infection and evasion from host detection. aposi’s sarcoma-associated herpesvirus (KSHV), also known cells, monocytes, and other lineages to replenish depleted pools of Kas human herpesvirus 8 (HHV8), is a member of the gamma- infected, differentiated cells (45). herpesvirus subfamily. KSHV is the etiological agent of Kaposi’s Immunological detection of KSHV infection by T cells requires sarcoma (KS) (8), primary effusion lymphoma (PEL), and multi- T cell receptor (TCR) cognate interactions with the antigen- centric variant of Castleman’s disease (MCD) (1, 8, 36).
    [Show full text]
  • The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System
    International Journal of Molecular Sciences Review The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System Raquel Bello-Morales 1,2,* , Sabina Andreu 1,2 and José Antonio López-Guerrero 1,2 1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; [email protected] (S.A.); [email protected] (J.A.L.-G.) 2 Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] Received: 30 June 2020; Accepted: 15 July 2020; Published: 16 July 2020 Abstract: Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes.
    [Show full text]
  • Risk Groups: Viruses (C) 1988, American Biological Safety Association
    Rev.: 1.0 Risk Groups: Viruses (c) 1988, American Biological Safety Association BL RG RG RG RG RG LCDC-96 Belgium-97 ID Name Viral group Comments BMBL-93 CDC NIH rDNA-97 EU-96 Australia-95 HP AP (Canada) Annex VIII Flaviviridae/ Flavivirus (Grp 2 Absettarov, TBE 4 4 4 implied 3 3 4 + B Arbovirus) Acute haemorrhagic taxonomy 2, Enterovirus 3 conjunctivitis virus Picornaviridae 2 + different 70 (AHC) Adenovirus 4 Adenoviridae 2 2 (incl animal) 2 2 + (human,all types) 5 Aino X-Arboviruses 6 Akabane X-Arboviruses 7 Alastrim Poxviridae Restricted 4 4, Foot-and- 8 Aphthovirus Picornaviridae 2 mouth disease + viruses 9 Araguari X-Arboviruses (feces of children 10 Astroviridae Astroviridae 2 2 + + and lambs) Avian leukosis virus 11 Viral vector/Animal retrovirus 1 3 (wild strain) + (ALV) 3, (Rous 12 Avian sarcoma virus Viral vector/Animal retrovirus 1 sarcoma virus, + RSV wild strain) 13 Baculovirus Viral vector/Animal virus 1 + Togaviridae/ Alphavirus (Grp 14 Barmah Forest 2 A Arbovirus) 15 Batama X-Arboviruses 16 Batken X-Arboviruses Togaviridae/ Alphavirus (Grp 17 Bebaru virus 2 2 2 2 + A Arbovirus) 18 Bhanja X-Arboviruses 19 Bimbo X-Arboviruses Blood-borne hepatitis 20 viruses not yet Unclassified viruses 2 implied 2 implied 3 (**)D 3 + identified 21 Bluetongue X-Arboviruses 22 Bobaya X-Arboviruses 23 Bobia X-Arboviruses Bovine 24 immunodeficiency Viral vector/Animal retrovirus 3 (wild strain) + virus (BIV) 3, Bovine Bovine leukemia 25 Viral vector/Animal retrovirus 1 lymphosarcoma + virus (BLV) virus wild strain Bovine papilloma Papovavirus/
    [Show full text]
  • Cytomegalovirus (Cmv)
    CYTOMEGALOVIRUS (CMV) What is CYTOMEGALOVIRUS (CMV)? Cytomegalovirus (CMV) is a common virus that infects people of all ages. Once CMV is in a person’s body, it stays there for life. CMV is a member of the herpesvirus family which includes the herpes simplex viruses and the viruses that cause chickenpox and mononucleosis (mono). The virus is not associated with food, water or animals. CMV is the most common congenital (present at birth) viral infection in the U.S. Each year about 1 in 750 babies are born with, or develop, disabilities that result from congenital CMV. Approximately 10 percent of congenitally infected infants have symptoms at birth, and of the 90 percent who have no symptoms, 10-15 percent will develop symptoms over months or even years. Who is at risk for CMV? Anyone can become infected with CMV. Unborn babies and people with weakened immune systems are at higher risk of getting CMV. How is CMV spread? CMV is spread from person to person by direct contact such as when kissing, through sexual contact and getting saliva or urine on your hands and then touching your eyes, nose or mouth. Transmission can also occur through blood transfusions and organ transplants and from an infected mother to her fetus or newborn through breast milk. What are the symptoms of CMV? Most healthy adults and children who have CMV have no obvious symptoms. Those who develop symptoms may experience fever, sore throat, swollen glands and feel tired. How is CMV diagnosed? Most CMV infections are not diagnosed because the infected person usually has few or no symptoms.
    [Show full text]