November 12, 2019 London Aquaria Society

Total Page:16

File Type:pdf, Size:1020Kb

November 12, 2019 London Aquaria Society Volume 63, Issue 11 November 12, 2019 London Aquaria Society www.londonaquariasociety.com Our own Guy Moreau, will be giving a talk on plants. Bulldog pleco - Chaetostoma milesi https://en.aqua-fish.net/fish/bulldog-pleco Bulldog pleco: Chaetostoma milesi Recommended temperature: 23 - 25 °C (73.4 - 77°F) Scientific name: Chaetostoma milesi The way how these fish reproduce: Spawning Common name: Bulldog pleco Where the species comes from: South America Family: Loricariidae Temperament to its own species: peaceful Usual size in fish tanks: 10 - 13 cm (3.94 - 5.12 inch) Temperament toward other fish species: peaceful Recommended pH range for the specie s: 6 - 8 Recommended water hardness (dGH) : 5 - 19°N (89.29 - 339.29ppm) Food and feeding: Feed Bulldog pleco’s algae wafers, and include in their diet vegetable matter like cucumber, romaine lettuce and zucchini. They will accept a weekly treat of bloodworms. Origin: South America; Bulldog pleco’s are mainly to be found in the Magdalena Basin, Colombia. Sexing: Males will have a larger head but a slimmer profile than the females. Their pelvic fins will also be slightly larger. Breeding: As of yet there are no reported cases of Chaetostoma milesi breeding in the aquarium. It is believed that this is due to requiring a lot of flowing water. Lifespan: Expected life span for Bulldog pleco is 12 years. Short description: This pleco can be a very timid fish, when the lights are out it will turn into a very effective tank cleaner, eating all the algae that it comes across. It is a very peaceful species, there should be no problem introducing this fish into a community aquarium, but it will require hiding places for the daytime. President Rick Hodgins…………………..519-495-1414 [email protected] May 14, 2019: Mitchell Dender will do a presentation on Vice President "sexual coral reproduction". Jennifer McNaughton…..….....……..519-719-8546 [email protected] June 11, 2019: Potluck dinner and awards Treasurer Sherry Archer..….………..…..….…...519-859-4183 [email protected] Secretary Sharon MacDonald…….........….…..519-453-0094 sharonmacdonald62@gmailcom Jar Show Chairperson Sarah Lee………………....…….........519-686-3473 3….President’s Message [email protected] B.A.P./H.A.P. 3….Interesting Facts About Crayfish Stephen Gregson……...…....……..…519-649-5019 4….Koilady’s Korner [email protected] 5….Benthochromis tricoti Editor Lorraine Gregson……..…….............519-649-5019 6….Japanese Diver Visits Best Friend [email protected] 7….Ornate Bichir Advertising/Promotion Open Education & Cares 8….Bucktooth Tetra Guy Moreau……………….…………226-235-6566 9….Indian Almond Leaves [email protected] Correspondence 10….Monthly Jar Show Results Sharon MacDonald…….........……..519-453-0094 11….C.A.O.A.C. Calendar [email protected] Lorraine Gregson……..……..............519-649-5019 11….Why Asia Is Obsessed With Arrowanas [email protected] 12….German Gold Ram C.A.O.A.C. Representative 13….Marbled Hatchet Fish Rick Hodgins……..……....….519-495-1414 [email protected] 14….Horticultural & Breeders Award Program Ways & Means Open 15….Ice Blue Zebra Cichlid Auction Chairperson Weeping Moss Ed Plesko……………....……….…......519-85-0627 16…. Website 17….C.A.O.A.C. Events Calendar Eric Geissinger…….................................226-973-5897 Goldfish Haven [email protected] 18…. 18….Our Advertisers I hope everyone had a great Halloween! The November meeting is coming fast. This month’s Jar Show will be cares fish, cichlids (substrate spawners and mouth breeders), CARES fish and the open Fish Class. The Executive has decided to increase the prize gift certificate to $20.00. Guy Moreau will be giving a talk on plants and with his enthusiasm and knowledge, it promises to be entertaining and informative. We will also be having our monthly Mini Auction, so please bring in any extra fish, plants or other items you might have. The CAOAC convention will be on the first weekend in May, instead of the long weekend this year. More information will be coming. Don’t forget, we are meeting at a new location this year, Aberdeen Public School on Grey Street. Remember our veterans this month, thank them for their service when you see them and keep the memories alive in your individual ways. Rick Hodgins President London Aquaria Society Interesting Facts About Crayfish Author and Website unknown. Hot Tempered: Crayfish are hot tempered little things. (Crayfish owners probably know this.) They are known for eating other crayfish tank buddies and the moms are known for often eating their smaller offspring. (Wow! They should be arrested and prosecuted.) Yeah, pretty crazy. – But these are just the not so awesome, but interesting facts about crayfish. The other crayfish that get eaten are usually molting. And when they are in the process of molting they become much more susceptible to an attack because they are soft. A very, very aggressive type of crayfish is the Pacifastacus leniusculus. “I’ve seen entire little juveniles – whole – in the gut contents of adults! Molting represents a huge tradeoff for any arthropod because it requires being ‘soft’ in your new exoskeleton until it hardens up again… If you’ve ever had ‘soft shelled’ crab in a sushi restaurant, you know what I mean. For aggressive animals like crayfish, ‘deciding’ when to molt is tricky. Your conspecifics can prey directly on you very easily when you are soft, but in the long run, if you can manage to become a very large individual (lots of molts later), you can become the bully on the block!” says Carin Anne Bondar, Ph.D , a crayfish expert and Vancouver-based biologist. What???: Some other crazy facts about crayfish. Did you know that worms live in crayfish pinchers? – And they actually urinate to solicit mating? You would think that the urination thing would actually deter mating, but I guess this is what the lady crayfish are looking for in a crayfish partner these days. London Aquaria Society 3 Vietnam cafe where fish swim around diners accused of animal cruelty Kayla Wong | https://mothership.sg/2019/05/vietnam-fish-cafe-cruel/ You’ve heard of fish spas in Singapore, where you could soak your feet in a tank while live fish nip at your heels. A restaurant in Ho Chi Minh City, Vietnam, took it a step further and allowed fish to swim around the feet of customers as they dine. However, it was forced to change the concept after it received complaints of animal cruelty. The cafe went viral back in late 2018 for its unique concept of allowing fish to swim around the diners in shallow waters on the floor. Pictures of the dining establishment recently surfaced on the internet again on the travel Facebook page, Travel Hit List. The pictures were mostly taken from a cafe called Amix Coffee. According to Oddity Central, the cafe had two floors that were flooded up to around 25 centimetres, and fishes swam freely in the waters. The floors were insulated with two layers of plastic tarp and furniture legs were wrapped in cotton to prevent damage to the tarp. The waters were kept clean using a triple filtration system. Before entering the cafe, customers have to take off their shoes and clean their feet. The owner, 23-year-old Nguyen Duoc Hoa, told Spanish news agency Agencia EFE that he wanted to create a unique concept that did not exist in any other place and since he is from a coastal city and loves fishes, he thought it was a good way to create a business that combines innovation and his hobby. Changed concept after complaints of animal cruelty However, barely a few months after the cafe introduced the concept to the public, it was accused of animal abuse. Critics said the fishes were in a stressful environment, as children chased after them at times, despite the rules forbidding them to do so. In a previous interview with Agencia EFE, Hoa said that while most families “don’t cause any problems”, there have been some “naughty children who try to catch the fish, and their parents don’t say anything”. When that happened, he had to ask them to leave. Malaysian Chinese-language news agency Sin Chew Daily even claimed some fish had been trampled to death by customers. The cafe has since changed its concept, removing the fishes from the floors and placing them in clear tanks that are placed around the cafe instead. This resulted in some disappointment for tourists who visited the cafe in hopes of dipping their feet in the fish filled waters. You can watch some videos of the cafe when customers could still have close contact with Thanks Annette the fish here and here: London Aquaria Society 4 Benthochromis tricoti https://www.cichlid-forum.com/profiles/species.php?id=1482 Scientific Name: Benthochromis tricoti Temperament: Mildly Aggressive Pronunciation: b n-th -kr -m s tr -k -t Conspecific Temperament: Mildly Aggressive Geo. Origin: Lake Tanganyika Maximum Size: 10" Habitat: Open Water Temperature: 77 - 79°F Diet: Carnivore pH: 8.6 Gender Differences: Dimorphic Water Hardness: Very Hard Breeding: Maternal Mouthbrooder Difficulty: 4 Comments: A large, beautiful and graceful cichlid, this fish is best in aquariums of 125 gallons or larger. It is also best with other calm cichlids, as females have a tendency to not carry to term when the tank is too hectic for their liking. The perfect tankmates are Paracyprichromis, Lestradea and Ectodus. In the wild, they feed on free swimming copepods and plankton. A diet including mysis, cyclops, krill, plankton and flake is recommended. As a shoaling fish, it is suggested to keep at least six, and preferrably more of this fish to see it at its best behaviour. Pronunciation: Refer to our Pronunciation Key for an explanation of the phonetic symbols.
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Freshwater Crabs in the Aquarium by Orin Mcmonigle
    Monthly Meeting Starts at 8 PM This month’s Speaker is: Freshwater Crabs in the Aquarium by Orin McMonigle www.neo-fish.com ©Aug-16 Northeast Ohio Fish Club. All rights reserved. President’s Message Happy August to Everyone You might ask why I would say that. Well the kids are back in school and all of us will be thinking about fish again and the upcoming auction season. I don't know about all of you but that works for me. As we approach the fall we have a lot of things coming up. This month we have a very interesting talk on fresh water crabs. In the months to come we have a talk about what goes on at a National Guppy Convention and we are still looking at bringing in a speaker from a national fish food company along with working on the logistics for another Market Night. As with most of our events we do need members participation and help. At the meeting this Friday we will be asking for support for the auction. Our last auction was tremendous with all the help. Lets keep it going so everyone can enjoy the event. See you Friday, Dan www.neo-fish.com NEOfish Board Secretary Minutes Board meeting July 15th Present Dan Ritter, Bill and Jan Bilski, Brain Shrimpton, Rich Grassing, George Holloster Debbie King, Tami Ryan. First item Need help for things to do for club. Second Discussion on market day or fish buy needs to organize better. Have to decide what to do. Third item OCA registration to draw in September giving out tickets in August and September draw at meeting .
    [Show full text]
  • Comparative Cytogenetics of Carnegiella Marthae and Carnegiella Strigata (Characiformes, Gasteropelecidae) and Description of a ZZ/ZW Sex Chromosome System
    Genetics and Molecular Biology, 31, 1 (suppl), 231-234 (2008) Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Short Communication Comparative cytogenetics of Carnegiella marthae and Carnegiella strigata (Characiformes, Gasteropelecidae) and description of a ZZ/ZW sex chromosome system Maria Leandra Terencio1, Carlos Henrique Schneider1, Maria Claudia Gross1, Adailton Moreira da Silva2, Eliana Feldberg1 and Jorge Ivan Rebelo Porto1 1Coordenação de Pesquisa em Biologia Aquática, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil. 2Centro de Estudos Superiores de Parintins, Universidade Estadual do Amazonas, Parintins, AM, Brazil. Abstract Comparative cytogenetic analyses of hatchetfishes Carnegiella marthae and Carnegiella strigata (Gasteropelecidae) from the Rio Negro basin were performed using conventional Giemsa staining, silver (Ag) -stain- ing and C-banding. The diploid chromosome numbers of both species equaled 2n = 50 but their karyotypes were dis- tinct. We found evidence for sex chromosomes in C. marthae since karyotype of males presented 20M+12SM+4 ST + 14 A and ZZ ST chromosomes while the females presented 20M+12SM+4ST+14AandZWSTchromo- somes of distinct size. Conversely, C. strigata presented 4M+4SM+2ST+40Achromosomes without sex chro- mosome heteromorphism. Karyotypes of both species had two NOR-bearing SM chromosomes of distinct size indicating the presence of multiple NOR phenotypes. The sex chromosome pair had specific C-banding pattern al- lowing identification of both Z and W. This heteromorphic system has previously been described for the gaste- ropelecids. Key words: fish cytogenetics, karyotype differentiation, NOR phenotypes, heteromorphic sex chromosome system, cytotaxonomy. Received: August 22, 2006; Accepted: April 18, 2007. The family Gasteropelecidae (Characiformes) is a strigata) has been the subject of cytogenetic studies.
    [Show full text]
  • Redalyc.Parasitic Fauna of Eight Species of Ornamental Freshwater
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Tavares-Dias, Marcos; Gonzaga Lemos, Jefferson Raphael; Laterça Martins, Maurício Parasitic fauna of eight species of ornamental freshwater fish species from the middle Negro River in the Brazilian Amazon Region Revista Brasileira de Parasitologia Veterinária, vol. 19, núm. 2, abril-junio, 2010, pp. 103- 107 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841476007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi:10.4322/rbpv.01902007 Full Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 19, n. 2, p. 103-107, abr.-jun. 2010 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Parasitic fauna of eight species of ornamental freshwater fish species from the middle Negro River in the Brazilian Amazon Region Fauna parasitária de oito espécies de peixes ornamentais de água doce do médio Rio Negro na Amazônia brasileira Marcos Tavares-Dias1*; Jefferson Raphael Gonzaga Lemos2; Maurício Laterça Martins3 1Laboratório de Aquicultura e Pesca, Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA-Amapá 2Programa de Pós-graduação em Diversidade Biológica, Instituto de Ciências Biológicas, Universidade
    [Show full text]
  • Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
    Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study ..........................................
    [Show full text]
  • Dynamics of Sex Chromosome Evolution in a Rapid Radiation Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.335596; this version posted October 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Dynamics of sex chromosome evolution in a rapid radiation of 2 cichlid fishes 3 Athimed El Taher1, Fabrizia Ronco1, Michael Matschiner1,2,3, Walter Salzburger1, Astrid 4 Böhne1,4* 5 1Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland 6 2Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland. 7 3Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 8 Oslo, Norway. 9 4Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany 10 *e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.335596; this version posted October 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 11 Dynamics of sex chromosome evolution in a rapid radiation of 12 cichlid fishes 13 Abstract 14 Sex is a fundamental trait that is determined, depending on the species, by different 15 environmental and/or genetic factors, including various types of sex chromosomes. However, 16 while the functioning and evolution of sex chromosomes have been explored in species 17 scattered across the eukaryotic tree of life, little is known about tempo and mode of sex 18 chromosome evolution in closely related species.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 30 April 2021 Order CICHLIFORMES (part 2 of 8) Family CICHLIDAE Cichlids (part 2 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Abactochromis through Greenwoodochromis) Abactochromis Oliver & Arnegard 2010 abactus, driven away, banished or expelled, referring to both the solitary, wandering and apparently non-territorial habits of living individuals, and to the authors’ removal of its one species from Melanochromis, the genus in which it was originally described, where it mistakenly remained for 75 years; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Abactochromis labrosus (Trewavas 1935) thick-lipped, referring to lips produced into pointed lobes Allochromis Greenwood 1980 allos, different or strange, referring to unusual tooth shape and dental pattern, and to its lepidophagous habits; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Allochromis welcommei (Greenwood 1966) in honor of Robin Welcomme, fisheries biologist, East African Freshwater Fisheries Research Organization (Jinja, Uganda), who collected type and supplied ecological and other data Alticorpus Stauffer & McKaye 1988 altus, deep; corpus, body, referring to relatively deep body of all species Alticorpus geoffreyi Snoeks & Walapa 2004 in honor of British carcinologist, ecologist and ichthyologist Geoffrey Fryer (b.
    [Show full text]
  • Testing the Potential of Environmental DNA Methods for Surveying Lake Tanganyika's Highly Diverse Fish Communities Christopher J
    Testing the potential of environmental DNA methods for surveying Lake Tanganyika's highly diverse fish communities Christopher James Doble A thesis submitted for the degree of Doctor of Philosophy Department of Genetics, Evolution and Environment University College London April 2020 1 Declaration I, Christopher James Doble, confirm the work presented in this thesis is my own. Where information has been derived from other sources, I confirm this has been indicated in the thesis. Christopher James Doble Date: 27/04/2020 2 Statement of authorship I planned and undertook fieldwork to the Kigoma region of Lake Tanganyika, Tanzania in 2016 and 2017. This included obtaining research permits, collecting environmental DNA samples and undertaking fish community visual survey data used in Chapters three and four. For Chapter two, cichlid reference database sequences were sequenced by Walter Salzburger’s research group at the University of Basel. I extracted required regions from mitochondrial genome alignments during a visit to Walter’s research group. Other reference sequences were obtained by Sanger sequencing. I undertook the DNA extractions and PCR amplifications for all samples, with the clean-up and sequencing undertaken by the UCL Sequencing facility. I undertook the method development, DNA extractions, PCR amplifications and library preparations for each of the next generation sequencing runs in Chapters three and four at the NERC Biomolecular Analysis Facility Sheffield. Following training by Helen Hipperson at the NERC Biomolecular Analysis Facility in Sheffield, I undertook the bioinformatic analysis of sequence data in Chapters three and four. I also carried out all the data analysis within each chapter. Chapters two, three and parts of four have formed a manuscript recently published in Environmental DNA (Doble et al.
    [Show full text]
  • Evolutionary Relationships of the Limnochromini, a Tribe of Benthic Deepwater Cichlid Fish Endemic to Lake Tanganyika, East Africa
    J Mol Evol (2005) 60:277-289 DOI: 10.1007/s00239-004-0017-8 JOURNAL OF MOLECULAR 'EVOLUTION 5 Springer Science+Business Media, Inc. 2005 Evolutionary Relationships of the Limnochromini, a Tribe of Benthic Deepwater Cichlid Fish Endemic to Lake Tanganyika, East Africa Nina Duftner, Stephan Koblmuller, Christian Sturmbauer Department of Zoology, Karl-Franzens-University of Graz, Universitatsplatz 2, A-8010 Graz, Austria Received: 15 January 2004 / Accepted: 9 September 2004 [Reviewing Editor: Dr. Axel Meyer] Abstract. Lake Tanganyika harbors an enormous acid distances of the NADH2 gene, the diversification diversity of cichlid fish that stem from eight distinct of the Limnochromini could tentatively be dated to ancestral lineages, which colonized the lake after its 2.9-3.5 MYA, coinciding with a period of aridifica- formation 9 to 12 million years ago. Six of twelve tion in East Africa between 2.5 and 3 MYA. The lack currently described tribes are assigned to the ‘‘H- of geographic color morphs and the structural uni­ lineage,’’ an assemblage of exclusively mouthbrood- formity and resource scarcity of deepwater habitats ing cichlids, all of which evolved during a short per­ suggest that competition and resource partitioning iod of time during the course of the primary radiation leading to differential trophic specialization pro­ of lacustrine species. Our study focuses on the deep- moted speciation within the Limnochromini, rather water tribe Limnochromini, comprising bi-parental than an allopatric model. mouthbrooders, and is based on phylogenetic analy­ sis of two mitochondrial gene segments. We confirm Key words: Adaptive radiation — Control region the polyphyletic origin of the Limnochromini as they — NADH dehydrogenase subunit 2 — Explosive are defined to date, in that Gnathochromis pfefferi is speciation — Niche partitioning — Molecular clock placed among the Tropheini, whereas the genus Benthochromis is presented as an independent lineage.
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 7(12), 410-424
    ISSN: 2320-5407 Int. J. Adv. Res. 7(12), 410-424 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/10168 DOI URL: http://dx.doi.org/10.21474/IJAR01/10168 RESEARCH ARTICLE EFFECT OF PHYSICO-CHEMICAL ATTRIBUTES ON THE ABUNDANCE AND SPATIAL DISTRIBUTION OF FISH SPECIES IN LAKE TANGANYIKA, BURUNDIAN COAST. Lambert Niyoyitungiye1,2, Anirudha Giri1 and Bhanu Prakash Mishra3. 1. Department of Life Science and Bioinformatics, Assam University, Silchar-788011, Assam State, India. 2. Department of Environmental Science and Technology, Faculty of Agronomy and Bio-Engineering, University of Burundi, Bujumbura, Po Box.2940, Burundi. 3. Department of Environmental Science, Mizoram University, Aizawl-796004, Mizoram State, India. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History The water of Lake Tanganyika is subject to changes in physical and Received: 03 October 2019 chemical characteristics and resulting in the deterioration of water Final Accepted: 05 November 2019 quality to a great pace. The current study was carried out to assess the Published: December 2019 physical and chemical characteristics of water at 4sampling stations of Lake Tanganyika and intended, firstly to make an inventory and a Key words:- Fish Abundance, Physico-Chemical taxonomic characterization of all fish species found in the study sites, Attributes, Spatial Distribution, Lake secondly to determine the pollution status of the selected sites and the Tanganyika. impact of physico-chemical parameters on the abundance and spatial distribution of fish species in the Lake. The results obtained regarding the taxonomy and abundance of fish species showed that a total of 75 fish species belonging to 12 families and 7orders existed in the 4 selected sampling stations.
    [Show full text]
  • Parasitic Fauna of Eight Species of Ornamental
    Full Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 19, n. 2, p. 103-107, abr.-jun. 2010 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Parasitic fauna of eight species of ornamental freshwater fish species from the middle Negro River in the Brazilian Amazon Region Fauna parasitária de oito espécies de peixes ornamentais de água doce do médio Rio Negro na Amazônia brasileira Marcos Tavares-Dias1*; Jefferson Raphael Gonzaga Lemos2; Maurício Laterça Martins3 1Laboratório de Aquicultura e Pesca, Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA-Amapá 2Programa de Pós-graduação em Diversidade Biológica, Instituto de Ciências Biológicas, Universidade Federal do Amazonas – UFAM 3Laboratório de Sanidade de Organismos Aquáticos, Departamento de Aquicultura, Universidade Federal de Santa Catarina – UFSC Received December 15, 2009 Accepted May 5, 2010 Abstract Twenty-seven specimens of cardinal tetra Paracheirodon axelrodi, 33 rosy tetra Hyphessobrycon copelandi (Characidae), 28 marbled hatchetfish Carnegiella strigata, 26 blackwing hatchetfish Carnegiella martae (Gasteropelecidae), 27 bodó Ancistrus hoplogenys (Loricariidae), 31 brown pencilfish Nannostomus eques, 38 oneline pencilfish Nannostomus unifasciatus (Lebiasinidae) and 13 angelfish Pterophyllum scalare (Cichlidae) were collected from the middle Negro River, State of Amazonas, Brazil, for parasitological studies. Out of the total of 223 fish examined, 143 (64.1%) were parasitized by at least one parasite species. The highest prevalence rate was for Monogenea (36.7%), followed by Ichthyophthirius multifiliis (Ciliophora) (20.6%), Trichodina spp. (Ciliophora) (4.0%), Piscinoodinium pillulare (Dinoflagellida) (1.3%), Tetrahymena sp. (Ciliophora) (0.89%), and Procamallanus sp. (Nematoda) (0.4%). All eight fish species had Monogenea (Gyrodactylidae and Dactylogyridae) in the gills, but the highest prevalence occurred in P.
    [Show full text]
  • Molecular Evolution and Functional Characterization of the Visual Pigment Proteins of the Great Bowerbird (Chlamydera Nuchalis) and Other Vertebrates
    Molecular Evolution and Functional Characterization of the Visual Pigment Proteins of the Great Bowerbird (Chlamydera nuchalis) and Other Vertebrates by Ilke van Hazel A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Ilke van Hazel 2012 Molecular Evolution and Functional Characterization of the Visual Pigment Proteins of the Great Bowerbird (Chlamydera nuchalis) and Other Vertebrates Ilke van Hazel Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto 2012 Abstract Visual pigments are light sensitive receptors in the eye that form the basis of sensory visual transduction. This thesis presents three studies that explore visual pigment proteins in vertebrates using a number of computational and experimental methods in an evolutionary framework. The objective is not only to identify, but also to experimentally investigate the functional consequences of genetic variation in vertebrate visual pigments. The focus is on great bowerbirds (Chlamydera nuchalis), which are a model system in visual ecology due to their spectacular behaviour of building and decorating courtship bowers. There are 4 chapters: Chapter 1 introduces background information on visual pigments and vision in birds. Among visual pigment types, the short-wavelength-sensitive (SWS1) pigments have garnered particular interest due to the broad spectral range among vertebrates and the importance of UV signals in communication. Chapter 2 investigates the evolutionary history of SWS1 in vertebrates with a view toward its utility as a phylogenetic marker. Chapter 3 investigates SWS1 evolution and short-wavelength vision in birds, with particular focus on C.
    [Show full text]