Pathway Analysis of Commonly Expressed Genes Found in Humans and in Non-Human Primates During Naïve State O Keggid Kegg Namesig

Total Page:16

File Type:pdf, Size:1020Kb

Pathway Analysis of Commonly Expressed Genes Found in Humans and in Non-Human Primates During Naïve State O Keggid Kegg Namesig Pathway analysis of commonly expressed genes found in humans and in non-human primates during naïve state of pluripotency. keggid kegg_namesig_pw n_pw n_all n_sig p_hyper q_hyper genes hsa04110 Cell cycle 107 128 5869 2739 2.42E-18 5.55E-16 CDK2,CDK4,CDK6,CDK7,CDKN1A,CDKN1B,STAG1,CDKN2B,ANAPC10,MAD2L2,STAG2,GADD45G,DBF4,YWHAQ,CHEK1,CHEK2,CREBBP,GADD45A,E2F1,E2F2,E2F3,E2F4,E2F5,EP300,ORC3,CDC26,ABL1,ANAPC13,SFN,GSK3B,ANAPC2,ANAPC4,HDAC1,HDAC2,MAD2L1,SMAD2,SMAD3,SMAD4,MCM2,MCM3,MCM4,MCM5,MCM6,MCM7,MDM2,MYC,GADD45B,ATM,ORC1,ORC2,ORC4,ORC5,FZR1,ANAPC7,ANAPC11,PLK1,ATR,PRKDC,RAD21,RB1,RBL1,CCND1,ANAPC1,SKP2,BUB1,BUB1B,TFDP1,TFDP2,TGFB1,TGFB2,TP53,TTK,WEE1,YWHAB,YWHAE,YWHAG,YWHAH,YWHAZ,ZBTB17,SMC1A,CDC7,CDC45,MAD1L1,CDC14A,CDC23,CDC16,CCNA2,CCNB1,CCND2,CCND3,CCNE1,CCNH,PKMYT1,SMC3,CCNB2,CCNE2,BUB3,PTTG1,ESPL1,CDK1,CDC6,CDC20,CDC25A,CDC25B,CDC25C,CDC27,RBX1 hsa03013 RNA transport121 152 5869 2739 3.24E-17 3.71E-15 SNUPN,EIF1,POP7,SRRM1,SAP18,EIF1B,PRMT5,TACC3,NXF1,RPP30,RPP38,PAIP1,POP4,RPP40,RNPS1,POP1,STRAP,DDX20,XPOT,CLNS1A,NUP35,RPP25L,EEF1A1,EEF1A2,EIF2S1,EIF2B1,EIF2S3,EIF4A1,EIF4B,EIF4E,EIF4EBP1,EIF4G1,EIF4G2,EIF5,CASC3,NCBP2,ACIN1,NUP205,NUP210,NUP62,GEMIN5,UPF2,PABPC1,NXT1,NUP43,EIF3E,KPNB1,MAGOH,NCBP1,NUP88,NUP98,PABPC3,GEMIN4,NMD3,POP5,PHAX,NUP54,PNN,RPP25,GEMIN8,MAGOHB,ELAC1,NDC1,NUP133,NXT2,NUP107,THOC2,XPO5,RAN,RANBP2,RANGAP1,SENP2,UPF1,ELAC2,SEC13,UPF3B,SMN1,SUMO3,SUMO2,TPR,SUMO1,XPO1,NUP37,DDX39B,THOC6,GEMIN7,GEMIN6,RPP21,NUP85,THOC7,NUP214,AAAS,SEH1L,WIBG,THOC3,RAE1,THOC5,EIF3A,EIF3B,EIF3C,EIF3D,EIF3F,EIF3G,EIF3H,EIF3I,EIF3J,EIF4G3,PABPC4,EIF2B4,EIF2B2,EIF2B5,EIF2S2,EIF1AY,EIF4E2,NUP155,EIF5B,TGS1,NUP93,EIF4A3,NUP153,THOC1 hsa04141 Protein processing125 in endoplasmic168 5869reticulum 2739 1.14E-13 8.67E-12 PREB,PDIA6,BCAP31,STUB1,UBE4B,DNAJA2,MARCH6,SEC24B,UBE2E3,SEC23B,SEC23A,HYOU1,SEC24A,HSPH1,MAN1A2,SEC61B,OS9,LMAN2,ERP29,CKAP4,SEC63,MAN1B1,ATF6B,DAD1,DDIT3,DDOST,EIF2S1,STT3B,HSPA4L,ATF6,GANAB,TRAM1,SEC61G,HSPBP1,PPP1R15A,SVIP,AMFR,EIF2AK1,ERLEC1,PDIA3,SEC61A1,UBQLN2,UBQLN1,DNAJB2,DNAJA1,HSPA1B,HSPA5,HSPA8,HSP90AB1,DNAJB1,STT3A,LMAN1,ATXN3,EIF2AK4,ATF4,NFE2L2,P4HB,DERL2,SAR1B,UBE2J1,UBE2D4,DNAJC10,DNAJB12,SEC61A2,YOD1,NPLOC4,EDEM2,NGLY1,PRKCSH,NSFL1C,MAPK8,MAPK9,MAP2K7,DNAJC3,UGGT1,UBQLN4,MAN1C1,BAG1,BAK1,BAX,RAD23A,RAD23B,RNF5,RPN1,RPN2,RRBP1,SEC13,SEL1L,DNAJC1,SIL1,SSR1,SSR2,SSR3,SSR4,SEC62,HSP90B1,TRAF2,UBE2D1,UBE2D2,UBE2E1,UBE2E2,UBE2G1,UBE2G2,UFD1L,VCP,WFS1,XBP1,MOGS,DERL1,TUSC3,EDEM3,UBXN6,CALR,CANX,CAPN1,CAPN2,SYVN1,MBTPS1,PLAA,EIF2AK3,BAG2,SEC24C,EDEM1,HERPUD1,RBX1 hsa03040 Spliceosome99 128 5869 2739 7.55E-13 4.32E-11 PQBP1,SMNDC1,BCAS2,SF3A1,PPIE,PPIH,CHERP,SLU7,PRPF8,USP39,TXNL4A,TCERG1,SRSF8,SF3A3,SF3B2,SNRNP27,LSM6,DDX42,CCDC12,ZMAT2,DDX5,DHX15,HNRNPA3,PUF60,NCBP2,ACIN1,SNRNP200,U2SURP,SF3B3,SF3B1,LSM5,PRPF6,LSM4,SYF2,PRPF31,LSM3,PRPF19,TRA2A,HNRNPA1,HNRNPC,HNRNPK,HNRNPU,HSPA1B,HSPA8,MAGOH,HNRNPM,NCBP1,PCBP1,CRNKL1,CWC15,LSM7,WBP11,PLRG1,MAGOHB,PRPF38B,PRPF40A,RBM22,XAB2,THOC2,LSM2,SRSF1,SRSF2,SRSF3,SRSF4,SRSF6,SRSF7,TRA2B,SNRNP70,SNRPA,SNRPB,SNRPB2,SNRPC,SNRPD1,SNRPD2,SNRPD3,SNRPE,SNRPF,U2AF1,DDX39B,SF3A2,SF3B5,THOC3,DHX16,PHF5A,PRPF38A,PRPF18,SRSF9,BUD31,SART1,PRPF4,PRPF3,EFTUD2,SNRNP40,DDX23,AQR,EIF4A3,DDX46,CDC5L,THOC1 hsa03018 RNA degradation59 71 5869 2739 1.93E-10 8.85E-09 TOB1,MPHOSPH6,C1D,TOB2,BTG3,PAPD7,LSM6,EXOSC8,DDX6,DCP2,DHX36,DCP1B,ENO2,PATL1,XRN2,DIS3,EXOSC7,CNOT1,EXOSC2,SKIV2L2,EDC4,LSM5,PAN3,LSM4,CNOT10,PABPC1,LSM1,LSM3,DCPS,CNOT7,HSPA9,HSPD1,CNOT2,CNOT3,CNOT4,PABPC3,PARN,EXOSC3,EXOSC1,LSM7,EXOSC9,EXOSC10,XRN1,EXOSC4,DCP1A,EXOSC5,CNOT6,LSM2,SKIV2L,BTG1,BTG2,EDC3,WDR61,PNPT1,PABPC4,RQCD1,CNOT8,TTC37,PAN2 hsa05220 Chronic myeloid60 leukemia73 5869 2739 3.28E-10 1.25E-08 AKT3,CDK4,CDK6,CDKN1A,CDKN1B,CHUK,CRK,CRKL,CTBP1,E2F1,E2F2,E2F3,AKT1,AKT2,ABL1,SHC2,GRB2,HDAC1,HDAC2,HRAS,IKBKB,ARAF,KRAS,SMAD3,SMAD4,MDM2,MYC,NFKB1,NFKBIA,NRAS,PIK3CA,PIK3CB,PIK3R1,PIK3R2,SHC3,MAPK1,MAPK3,MAP2K1,MAP2K2,BAD,PTPN11,RAF1,RB1,CCND1,RELA,BCL2L1,BCR,SHC1,SOS1,SOS2,STAT5B,TGFB1,TGFB2,TGFBR1,TGFBR2,TP53,PIK3R3,CBL,CBLB,GAB2 hsa03008 Ribosome biogenesis65 in81 eukaryotes5869 2739 4.32E-10 1.41E-08 RCL1,MPHOSPH10,POP7,EMG1,NXF1,NOP56,RPP30,RPP38,POP4,RPP40,UTP14A,WDR3,POP1,WDR36,RPP25L,CSNK2A1,CSNK2A2,CSNK2B,SPATA5,DKC1,FBL,XRN2,WDR43,GTPBP4,REXO2,GNL3,RRP7A,NOB1,DROSHA,NXT1,GNL2,EIF6,NVL,NMD3,FCF1,UTP18,POP5,NOP58,GAR1,XRN1,GNL3L,RPP25,HEATR1,RBM28,NAT10,IMP3,LSG1,NHP2,RIOK2,UTP6,NXT2,REXO1,PWP2,RAN,NOL6,TAF9,TCOF1,XPO1,EFTUD1,RIOK1,WDR75,UTP15,CIRH1A,IMP4,BMS1 hsa04120 Ubiquitin mediated100 proteolysis139 5869 2739 8.83E-10 2.53E-08 UBA2,SAE1,HUWE1,STUB1,UBE4B,ANAPC10,PIAS3,UBE2E3,WWP1,WWP2,UBE2F,DDB1,DDB2,TRIM32,RHOBTB2,FBXW11,MGRN1,PPIL2,CDC26,ANAPC13,RCHY1,HERC4,FBXW8,UBE2S,PRPF19,ANAPC2,ANAPC4,UBE2K,BIRC2,XIAP,MDM2,MAP3K1,MID1,TRIM37,NEDD4,FZR1,UBR5,ANAPC7,UBE2J1,ANAPC11,PIAS4,UBE2D4,UBE2R2,DET1,FANCL,UBA6,UBE2W,UBE2Q1,KLHL9,SMURF1,BIRC6,UBE2O,RFWD2,ANAPC1,SMURF2,SKP2,UBE2Z,BRCA1,TCEB1,TCEB2,TRAF6,UBE2B,UBE2D1,UBE2D2,UBE2E1,UBE2E2,UBE2G1,UBE2G2,UBE2H,UBE2L3,VHL,CUL5,ITCH,SYVN1,CUL4B,CUL4A,CUL3,CUL2,PIAS1,SOCS1,CBL,CBLB,CDC23,CDC16,HERC2,HERC1,BTRC,SOCS3,UBA3,UBE2M,UBE2Q2,TRIP12,UBE4A,RNF7,KEAP1,CUL7,CDC20,CDC27,CDC34,RBX1 hsa04722 Neurotrophin88 signaling 127pathway 5869 2739 1.61E-07 4.09E-06 AKT3,SH2B3,SH2B2,ZNF274,FRS2,YWHAQ,PRDM4,CRK,CRKL,CSK,AKT1,AKT2,FOXO3,ABL1,GAB1,SHC2,RPS6KA6,GRB2,RAPGEF1,GSK3B,HRAS,IKBKB,IRS1,JUN,KRAS,RHOA,ARHGDIA,ARHGDIB,MAP3K1,MAP3K3,ATF4,NFKB1,NFKBIA,NGFR,NRAS,PDK1,PIK3CA,PIK3CB,PIK3R1,PIK3R2,PLCG1,SHC3,PRKCD,MAPK1,MAPK3,MAPK7,MAPK8,MAPK9,MAP2K1,MAP2K2,MAP2K5,MAP2K7,PSEN1,PSEN2,BAD,KIDINS220,PTPN11,BAX,RAC1,RAF1,RAP1B,RELA,RPS6KA2,RPS6KA3,SORT1,MAPK12,SHC1,SOS1,SOS2,TP53,TRAF6,YWHAB,YWHAE,YWHAG,YWHAH,YWHAZ,CALM1,CALM3,CAMK2D,CAMK2G,IRS4,PIK3R3,IRS2,RIPK2,RPS6KA4,MAPKAPK2,MAGED1,CDC42 hsa03015 mRNA surveillance61 pathway83 5869 2739 5.33E-07 1.22E-05 SRRM1,SAP18,NXF1,HBS1L,CPSF4,PAPOLA,RNPS1,CLP1,NUDT21,CPSF6,CSTF1,CSTF2,CSTF3,ETF1,CASC3,NCBP2,ACIN1,CSTF2T,SMG6,SMG5,GSPT2,UPF2,DAZAP1,PABPC1,PPP2R3B,NXT1,GSPT1,CPSF1,MAGOH,MSI1,NCBP1,PABPC3,PCF11,CPSF3,CPSF2,PNN,MAGOHB,PPP2CA,PPP2CB,PPP2R1A,PPP2R1B,PPP2R3A,PPP2R5A,PPP2R5B,PPP2R5D,PPP2R5E,PPP2R2D,NXT2,UPF1,PAPOLG,UPF3B,DDX39B,CPSF7,PABPN1,SYMPK,WIBG,RNMT,RNGTT,PABPC4,EIF4A3,SMG7 hsa05210 Colorectal cancer48 62 5869 2739 6.63E-07 1.38E-05 AKT3,CTNNB1,AKT1,AKT2,GSK3B,APC,BIRC5,ARAF,JUN,KRAS,RHOA,SMAD2,SMAD3,SMAD4,MLH1,MSH2,MSH3,MYC,LEF1,PIK3CA,PIK3CB,PIK3R1,PIK3R2,CYCS,MAPK1,MAPK3,MAPK8,MAPK9,MAP2K1,BAD,BAX,RAC1,RAC2,RAC3,RAF1,CCND1,TCF7L2,TGFB1,TGFB2,TGFBR1,TGFBR2,TP53,AXIN1,AXIN2,TCF7L1,CASP3,CASP9,PIK3R3 hsa04142 Lysosome 82 121 5869 2739 1.81E-06 3.45E-05 AP1M2,AP3S2,NPC2,AP4B1,CTSC,AP3M2,AP4S1,AP1S1,TPP1,CLN5,CLTA,CLTB,CLTC,AP1S3,CTNS,CTSB,CTSD,CTSH,CTSK,CTSO,CTSZ,AP1B1,AP1G1,AGA,DNASE2,GGA2,GGA3,AP4E1,ABCB9,PLA2G15,GAA,MFSD8,GALNS,GGA1,GBA,SLC17A5,AP3M1,GLA,GLB1,GM2A,GNS,GUSB,HEXB,IGF2R,LAMP1,LAMP2,M6PR,ARSA,MANBA,ASAH1,NAGA,NAGLU,NEU1,NPC1,SLC11A2,NAGPA,ATP6V0C,ACP2,ATP6V0B,ATP6V0A1,ATP6AP1,CTSA,LAPTM4B,PPT1,LGMN,PSAP,MCOLN1,SORT1,SGSH,SMPD1,GNPTG,AP3B1,CD164,AP1S2,AP1M1,AP3D1,ATP6V0D1,AP4M1,SCARB2,ENTPD4,CD63,LAPTM4A hsa05212 Pancreatic cancer52 70 5869 2739 2.15E-06 3.79E-05 AKT3,CDK4,CDK6,RALBP1,CHUK,E2F1,E2F2,E2F3,AKT1,AKT2,IKBKB,ARAF,JAK1,KRAS,SMAD2,SMAD3,SMAD4,NFKB1,PIK3CA,PIK3CB,PIK3R1,PIK3R2,MAPK1,MAPK3,MAPK8,MAPK9,MAP2K1,BAD,RAC1,RAC2,RAC3,RAD51,RAF1,RALA,RALB,RB1,CCND1,RELA,BCL2L1,BRCA2,STAT1,STAT3,TGFB1,TGFB2,TGFBR1,TGFBR2,TP53,VEGFA,VEGFB,CASP9,PIK3R3,CDC42 hsa05016 Huntington's116 disease 183 5869 2739 2.84E-06 4.61E-05 DNAL4,ATP5H,CREB3,DCTN2,PPARGC1A,AP2M1,AP2S1,CLTA,CLTB,CLTC,NDUFA11,COX4I1,COX5B,COX6B1,COX6C,COX7B,COX8A,CREB1,CREBBP,CYC1,AP2A1,AP2A2,AP2B1,DCTN1,EP300,RCOR1,GNAQ,GPX1,SLC25A4,SLC25A5,SLC25A6,UQCR10,HTT,HDAC1,HDAC2,HIP1,APAF1,NDUFS7,NDUFA1,NDUFA2,NDUFA4,NDUFA6,NDUFA7,NDUFA8,NDUFAB1,NDUFB1,NDUFB4,NDUFB5,NDUFB6,NDUFB7,NDUFB9,NDUFC1,NDUFC2,NDUFS1,NDUFS2,NDUFV1,NDUFS4,NDUFS6,NDUFS8,NDUFV2,NDUFV3,ATP5A1,ATP5C1,NDUFA13,DCTN4,ATP5D,ATP5E,ATP5F1,ATP5G1,ATP5G3,ATP5J,PLCB3,CYCS,POLR2B,POLR2C,POLR2D,POLR2E,POLR2F,POLR2G,POLR2H,POLR2I,POLR2J,POLR2K,POLR2L,NDUFB11,PPID,IFT57,NDUFA12,BAX,REST,SDHA,SDHB,SDHC,CREB3L2,SOD1,SP1,TAF4,TAF4B,TBP,TFAM,TGM2,TP53,UQCRC1,UQCRC2,UQCRH,VDAC1,VDAC2,VDAC3,DNALI1,DNAL1,CASP3,CASP9,CREB3L1,COX7A2L,COX5A,TBPL1 hsa05215 Prostate cancer63 89 5869 2739 3.02E-06 4.61E-05 AKT3,CDK2,CDKN1A,CDKN1B,CREB3,CHUK,CREB1,CREBBP,CTNNB1,E2F1,E2F2,E2F3,EP300,AKT1,AKT2,FOXO1,MTOR,GRB2,GSK3B,GSTP1,HRAS,HSP90AB1,IGF1R,IKBKB,AR,ARAF,KRAS,MDM2,ATF4,NFKB1,NFKBIA,NRAS,LEF1,PDGFA,PDGFRB,PDPK1,PIK3CA,PIK3CB,PIK3R1,PIK3R2,MAPK1,MAPK3,PDGFC,MAP2K1,MAP2K2,BAD,PTEN,RAF1,RB1,CCND1,RELA,CREB3L2,SOS1,SOS2,TCF7L2,TP53,HSP90B1,TCF7L1,CASP9,PIK3R3,CCNE1,CREB3L1,CCNE2 hsa04115 p53 signaling51 pathway 69 5869 2739 3.47E-06 4.97E-05 CDK2,CDK4,CDK6,CDKN1A,GADD45G,CHEK1,CHEK2,SESN3,DDB2,GADD45A,RCHY1,SESN1,SFN,APAF1,IGFBP3,FAS,MDM2,MDM4,GADD45B,ATM,RRM2B,SERPINE1,SHISA5,GTSE1,CYCS,ATR,PTEN,BAX,CCND1,RRM2,PERP,RFWD2,ZMAT3,THBS1,TP53,TSC2,CASP3,SESN2,CASP9,PPM1D,TNFRSF10B,CCNB1,CCND2,CCND3,CCNE1,CCNG1,CCNB2,CCNE2,EI24,TP53I3,CDK1 hsa04310 Wnt signaling98 pathway151 5869 2739 3.75E-06 5.05E-05 NFAT5,FZD10,CHP1,CREBBP,PRICKLE1,CSNK1E,CSNK2A1,CSNK2A2,CSNK2B,CTBP1,CTNNB1,PRICKLE2,DVL2,DVL3,EP300,DKK1,DAAM1,FBXW11,FRAT2,FZD2,CACYBP,GSK3B,APC,JUN,RHOA,LRP6,SMAD2,SMAD3,SMAD4,MYC,NFATC3,NFATC4,LEF1,NLK,PLCB3,PPARD,PPP2CA,PPP2CB,PPP2R1A,PPP2R1B,PPP2R5A,PPP2R5B,PPP2R5D,PPP2R5E,PPP3CA,PPP3CB,PPP3CC,PPP3R1,PRKACA,PRKCA,MAPK8,MAPK9,PRKX,PSEN1,CTNNBIP1,VANGL2,CHD8,RAC1,RAC2,RAC3,SENP2,CCND1,ROCK1,SFRP1,SFRP2,SOX17,PORCN,MAP3K7,TCF7L2,TP53,WNT5A,WNT8A,WNT10B,FZD5,TBL1XR1,FZD3,FOSL1,CAMK2D,CAMK2G,VANGL1,AXIN1,AXIN2,FZD1,FZD6,FZD7,FZD8,TCF7L1,NKD1,NKD2,RUVBL1,CCND2,BTRC,CCND3,WNT3A,TBL1Y,CER1,ROCK2,RBX1
Recommended publications
  • The Role of LIM Kinase 1 and Its Substrates in Cell Cycle Progression
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 The Role of LIM Kinase 1 and its Substrates in Cell Cycle Progression Lisa Ritchey University of Central Florida Part of the Medical Sciences Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Ritchey, Lisa, "The Role of LIM Kinase 1 and its Substrates in Cell Cycle Progression" (2014). Electronic Theses and Dissertations, 2004-2019. 1300. https://stars.library.ucf.edu/etd/1300 THE ROLE OF LIM KINASE 1 AND ITS SUBSTRATES IN CELL CYCLE PROGRESSION by LISA RITCHEY B.S. Florida State University 2007 M.S. University of Central Florida 2010 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Graduate Studies at the University of Central Florida Orlando, Florida Summer Term 2014 Major Professor: Ratna Chakrabarti © 2014 Lisa Ritchey ii ABSTRACT LIM Kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, has been shown to be involved in cell cycle progression. In this study we examine the role of LIMK1 in G1 phase and mitosis. We found ectopic expression of LIMK1 resulted in altered expression of p27Kip1, the G1 phase Cyclin D1/Cdk4 inhibitor.
    [Show full text]
  • Genome-Wide Analysis of 5-Hmc in the Peripheral Blood of Systemic Lupus Erythematosus Patients Using an Hmedip-Chip
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1467-1479, 2015 Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip WEIGUO SUI1*, QIUPEI TAN1*, MING YANG1, QIANG YAN1, HUA LIN1, MINGLIN OU1, WEN XUE1, JIEJING CHEN1, TONGXIANG ZOU1, HUANYUN JING1, LI GUO1, CUIHUI CAO1, YUFENG SUN1, ZHENZHEN CUI1 and YONG DAI2 1Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002; 2Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China Received July 9, 2014; Accepted February 27, 2015 DOI: 10.3892/ijmm.2015.2149 Abstract. Systemic lupus erythematosus (SLE) is a chronic, Introduction potentially fatal systemic autoimmune disease characterized by the production of autoantibodies against a wide range Systemic lupus erythematosus (SLE) is a typical systemic auto- of self-antigens. To investigate the role of the 5-hmC DNA immune disease, involving diffuse connective tissues (1) and modification with regard to the onset of SLE, we compared is characterized by immune inflammation. SLE has a complex the levels 5-hmC between SLE patients and normal controls. pathogenesis (2), involving genetic, immunologic and envi- Whole blood was obtained from patients, and genomic DNA ronmental factors. Thus, it may result in damage to multiple was extracted. Using the hMeDIP-chip analysis and valida- tissues and organs, especially the kidneys (3). SLE arises from tion by quantitative RT-PCR (RT-qPCR), we identified the a combination of heritable and environmental influences. differentially hydroxymethylated regions that are associated Epigenetics, the study of changes in gene expression with SLE.
    [Show full text]
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • The Rac Gtpase in Cancer: from Old Concepts to New Paradigms Marcelo G
    Published OnlineFirst August 14, 2017; DOI: 10.1158/0008-5472.CAN-17-1456 Cancer Review Research The Rac GTPase in Cancer: From Old Concepts to New Paradigms Marcelo G. Kazanietz1 and Maria J. Caloca2 Abstract Rho family GTPases are critical regulators of cellular func- mislocalization of Rac signaling components. The unexpected tions that play important roles in cancer progression. Aberrant pro-oncogenic functions of Rac GTPase-activating proteins also activity of Rho small G-proteins, particularly Rac1 and their challenged the dogma that these negative Rac regulators solely regulators, is a hallmark of cancer and contributes to the act as tumor suppressors. The potential contribution of Rac tumorigenic and metastatic phenotypes of cancer cells. This hyperactivation to resistance to anticancer agents, including review examines the multiple mechanisms leading to Rac1 targeted therapies, as well as to the suppression of antitumor hyperactivation, particularly focusing on emerging paradigms immune response, highlights the critical need to develop ther- that involve gain-of-function mutations in Rac and guanine apeutic strategies to target the Rac pathway in a clinical setting. nucleotide exchange factors, defects in Rac1 degradation, and Cancer Res; 77(20); 5445–51. Ó2017 AACR. Introduction directed toward targeting Rho-regulated pathways for battling cancer. Exactly 25 years ago, two seminal papers by Alan Hall and Nearly all Rho GTPases act as molecular switches that cycle colleagues illuminated us with one of the most influential dis- between GDP-bound (inactive) and GTP-bound (active) forms. coveries in cancer signaling: the association of Ras-related small Activation is promoted by guanine nucleotide exchange factors GTPases of the Rho family with actin cytoskeleton reorganization (GEF) responsible for GDP dissociation, a process that normally (1, 2).
    [Show full text]
  • Genetic Studies of Bipolar Disorder in Patients Selectedby Their Treatment
    medigraphic Artemisaen línea Salud Mental 2008;31:431-440 Genetic studies of bipolar disorder Genetic studies of bipolar disorder in patients selected by their treatment response* Abigail Ortiz-Domínguez,1 Martin Alda1 Conferencia magistral SUMMARY rapid cycling and non-episodic course in the lamotrigine group) and co-morbidity, with the lamotrigine-responder group showing a higher Bipolar disorder (BD) is a major mood disorder with several genes frequency of panic attacks and substance abuse. of moderate or small effect contributing to the genetic susceptibility. In conclusion, pharmacogenetic studies may provide important It is also likely heterogeneous, which stimulated efforts to refine its clues to the nature of bipolar disorder and the response to long term clinical phenotype, studies investigating the link between BD treatment. susceptibility and response to a specific mood stabilizer appear to be one of the promising directions. Key words: Lithium response, pharmacogenetic, probands. In particular, excellent response to lithium prophylaxis has been described as a clinical marker of a more homogeneous subgroup of BD, characterized by an episodic course, low rates of co-morbid RESUMEN conditions, absence of rapid cycling, and a strong genetic loading. These results also suggest that lithium response clusters in families El trastorno bipolar (TB) es un trastorno afectivo con varios genes, de (independent of the increased familial loading for affective disorders), efecto leve o moderado, que contribuyen a su susceptibilidad. Es likely on a genetic basis. asimismo un trastorno heterogéneo, lo que ha estimulado diversas For almost 40 years, clinical studies have pointed to differences iniciativas para refinar el fenotipo de los pacientes con este trastor- between lithium responders (LR) and non-responders (LNR).
    [Show full text]
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A GTP-State Specific Cyclic Peptide Inhibitor of the Gtpase Gαs
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.054080; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A GTP-state specific cyclic peptide inhibitor of the GTPase Gαs Shizhong A. Dai1,2†, Qi Hu1,2†, Rong Gao3†, Andre Lazar1,4†, Ziyang Zhang1,2, Mark von Zastrow1,4, Hiroaki Suga3*, Kevan M. Shokat1,2* 5 1Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA 2Howard Hughes Medical Institute 3Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 10 4Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94158, USA *Correspondence to: [email protected], [email protected] †These authors contributed equally. 15 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.054080; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The G protein-coupled receptor (GPCR) cascade leading to production of the second messenger cAMP is replete with pharmacologically targetable receptors and enzymes with the exception of the stimulatory G protein α subunit, Gαs.
    [Show full text]
  • Hras Intracellular Trafficking and Signal Transduction Jodi Ho-Jung Mckay Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 HRas intracellular trafficking and signal transduction Jodi Ho-Jung McKay Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cancer Biology Commons, Cell Biology Commons, Genetics and Genomics Commons, and the Medical Cell Biology Commons Recommended Citation McKay, Jodi Ho-Jung, "HRas intracellular trafficking and signal transduction" (2007). Retrospective Theses and Dissertations. 13946. https://lib.dr.iastate.edu/rtd/13946 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. HRas intracellular trafficking and signal transduction by Jodi Ho-Jung McKay A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics Program of Study Committee: Janice E. Buss, Co-major Professor Linda Ambrosio, Co-major Professor Diane Bassham Drena Dobbs Ted Huiatt Iowa State University Ames, Iowa 2007 Copyright © Jodi Ho-Jung McKay, 2007. All rights reserved. UMI Number: 3274881 Copyright 2007 by McKay, Jodi Ho-Jung All rights reserved. UMI Microform 3274881 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O.
    [Show full text]
  • Predicting Coupling Probabilities of G-Protein Coupled Receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J
    Published online 30 May 2019 Nucleic Acids Research, 2019, Vol. 47, Web Server issue W395–W401 doi: 10.1093/nar/gkz392 PRECOG: PREdicting COupling probabilities of G-protein coupled receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J. Silvio Gutkind4, Robert B. Russell1,2,* and Francesco Raimondi1,2,* 1CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany, 2Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany, 3Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan and 4Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA Received February 10, 2019; Revised April 13, 2019; Editorial Decision April 24, 2019; Accepted May 01, 2019 ABSTRACT great use in tinkering with signalling pathways in living sys- tems (5). G-protein coupled receptors (GPCRs) control multi- Ligand binding to GPCRs induces conformational ple physiological states by transducing a multitude changes that lead to binding and activation of G-proteins of extracellular stimuli into the cell via coupling to situated on the inner cell membrane. Most of mammalian intra-cellular heterotrimeric G-proteins. Deciphering GPCRs couple with more than one G-protein giving each which G-proteins couple to each of the hundreds receptor a distinct coupling profile (6) and thus specific of GPCRs present in a typical eukaryotic organism downstream cellular responses. Determining these coupling is therefore critical to understand signalling. Here, profiles is critical to understand GPCR biology and phar- we present PRECOG (precog.russelllab.org): a web- macology. Despite decades of research and hundreds of ob- server for predicting GPCR coupling, which allows served interactions, coupling information is still missing for users to: (i) predict coupling probabilities for GPCRs many receptors and sequence determinants of coupling- specificity are still largely unknown.
    [Show full text]
  • Screening Differentially Expressed Genes of Pancreatic Cancer Between Mongolian and Han People Using Bioinformatics Technology
    Screening differentially expressed genes of pancreatic cancer between Mongolian and Han people using bioinformatics technology Jiasheng Xu First Aliated Hospital of Nanchang University Kaili Liao Second Aliated Hospital of Nanchang University ZHONGHUA FU First Aliated Hospital of Nanchang University ZHENFANG XIONG ( [email protected] ) The First Aliated Hospital of Nanchang University https://orcid.org/0000-0003-2062-9204 Research article Keywords: Pancreatic ductal cell carcinoma; Affymetrix gene expression prole; Gene differential expression; GO analysis; Pathway analysis; Mongolian Posted Date: October 14th, 2019 DOI: https://doi.org/10.21203/rs.2.11118/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at BMC Cancer on April 9th, 2020. See the published version at https://doi.org/10.1186/s12885-020-06722-7. Page 1/19 Abstract Objective: To screen and analyze differentially expressed genes in pancreatic carcinoma tissues taken from Mongolian and Han patients by Affymetrix Genechip. Methods: Pancreatic ductal cell carcinoma tissues were collected from the Mongolian and Han patients undergoing resection in the Second Aliated Hospital of Nanchang University from March 2015 to May 2018 and the total RNA was extracted. Differentially expressed genes were selected from the total RNA qualied by Nanodrop 2000 and Agilent 2100 using Affymetrix and a cartogram was drawn; The gene ontology (GO) analysis and Pathway analysis were used for the collection and analysis of biological information of these differentially expressed genes. Finally, some differentially expressed genes were veried by real-time PCR. Results: Through the microarray analysis of gene expression, 970 differentially expressed genes were detected by comparing pancreatic cancer tissue samples between Mongolian and Han patients.
    [Show full text]