Recent Advances in Reliable Transport Protocols∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uila Supported Apps
Uila Supported Applications and Protocols updated Oct 2020 Application/Protocol Name Full Description 01net.com 01net website, a French high-tech news site. 050 plus is a Japanese embedded smartphone application dedicated to 050 plus audio-conferencing. 0zz0.com 0zz0 is an online solution to store, send and share files 10050.net China Railcom group web portal. This protocol plug-in classifies the http traffic to the host 10086.cn. It also 10086.cn classifies the ssl traffic to the Common Name 10086.cn. 104.com Web site dedicated to job research. 1111.com.tw Website dedicated to job research in Taiwan. 114la.com Chinese web portal operated by YLMF Computer Technology Co. Chinese cloud storing system of the 115 website. It is operated by YLMF 115.com Computer Technology Co. 118114.cn Chinese booking and reservation portal. 11st.co.kr Korean shopping website 11st. It is operated by SK Planet Co. 1337x.org Bittorrent tracker search engine 139mail 139mail is a chinese webmail powered by China Mobile. 15min.lt Lithuanian news portal Chinese web portal 163. It is operated by NetEase, a company which 163.com pioneered the development of Internet in China. 17173.com Website distributing Chinese games. 17u.com Chinese online travel booking website. 20 minutes is a free, daily newspaper available in France, Spain and 20minutes Switzerland. This plugin classifies websites. 24h.com.vn Vietnamese news portal 24ora.com Aruban news portal 24sata.hr Croatian news portal 24SevenOffice 24SevenOffice is a web-based Enterprise resource planning (ERP) systems. 24ur.com Slovenian news portal 2ch.net Japanese adult videos web site 2Shared 2shared is an online space for sharing and storage. -
A Reliable Real-Time Transport Protocol for Networked Control
AReliableReal-TimeTransportProtocolforNetworked Control Systems over Wireless Networks (Research Master) ATHESISSUBMITTEDTO THE SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE OF QUEENSLAND UNIVERSITY OF TECHNOLOGY IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF INFORMATION TECHNOLOGY (RESEARCH) Xiaohan Shi School of Electrical Engineering and Computer Science Queensland University of Technology December 11, 2012 Copyright in Relation to This Thesis !c Copyright 2012 by Xiaohan Shi. All rights reserved. Statement of Original Authorship The work contained in this thesis has not been previously submitted to meet requirements for an award at this or any other higher education institution. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made. Signature: QUT Verified Signature Date: i ii To my family iii iv Abstract Deploying wireless networks in networked control systems (NCSs) has become more and more popular during the last few years. As a typical type of real-time control systems, an NCS is sensitive to long and nondeterministic time delay and packetlosses.However,thenatureof the wireless channel has the potential to degrade the performance of NCS networks in many aspects, particularly in time delay and packet losses. Transport layer protocols could play an important role in providing both reliable and fast transmission service to fulfill NCS’s real-time transmission requirements. Unfortunately, none of the existing transport protocols, including the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP), was designed for real-time control applications. Moreover, periodic data and sporadic data are two types of real-time data traffic with different priorities in an NCS.Duetothelackofsupportfor prioritized transmission service, the real-time performance for periodic and sporadic data in an NCS network is often degraded significantly, particularly under congested network conditions. -
Email Transport Encryption STARTTLS Vs. DANE Vs. MTA-STS
Email Transport Encryption STARTTLS vs. DANE vs. MTA-STS Delimitation This document deals with the encrypted transport of messages between two email servers. Encryption during transport is crucial for a basic level of security for the exchange of messages. The exchange of messages between an email client and a server or the end-to-end encryption of messages are not covered in this article. If the aim is to create a secure overall system, these aspects should be considered in addition to the recommendations in this article. Initial situation When the first standard for the Simple Mail Transfer Protocol (in short: SMTP) was adopted, encryption of the transport was not included. All messages were exchanged as plain text between the servers. They were thus basically readable for anyone who could tap into the data exchange between the two servers. This only changed with the introduction of the SMTP Service Extensions for Extend SMTP (ESMTP for short), which made it possible to choose encrypted transport as an opportunistic feature of data exchange. Opportunistic, because it had to be assumed that not all servers would be able to handle transport encryption. They should only encrypt when it is opportune; encryption is not mandatory. To indicate the basic ability to encrypt to a sending server, it was agreed that the receiving server should send the keyword STARTTLS at the beginning of an ESMTP transport session. STARTTLS STARTTLS can encrypt the transport between two email servers. The receiving server signals the sending server that it is capable of encrypting after a connection is established and in the ESMTP session. -
MTA STS Improving Email Security.Pdf
Improving Email Security with the MTA-STS Standard By Brian Godiksen An Email Best Practices Whitepaper CONTENTS Executive Overview 03 Why Does Email Need Encryption in Transit? 04 The Problem with “Opportunistic Encryption” 07 The Anatomy of a Man-in-the-Middle Attack 08 The Next Major Step with Email Encryption: MTA-STS 10 What Steps Should Senders Take to Adopt MTA-STS? 11 About SocketLabs 12 Brian Godiksen Brian has been helping organizations optimize email deliverability since joining SocketLabs in 2011. He currently manages a team of deliverability analysts that consult with customers on best infrastructure practices, including email authentication implementation, bounce processing, IP address warm-up, and email marketing list management. Brian leads the fight against spam and email abuse at SocketLabs by managing compliance across the platform. He is an active participant in key industry groups such as M3AAWG and the Email Experience Council. You can read more of Brian’s content here on the SocketLabs website. ©2019 SocketLabs 2 Executive The Edward Snowden leaks of 2013 opened many peoples’ eyes to the fact that mass surveillance was possible by Overview intercepting and spying on email transmissions. Today, compromised systems, database thefts, and technology breaches remain common fixtures in news feeds around the world. As a natural response, the technology industry is rabidly focused on improving the security and encryption of communications across all platforms. Since those early days of enlightenment, industry experts have discussed and attempted a variety of new strategies to combat “pervasive monitoring” of email channels. While pervasive monitoring assaults can take many forms, the most prominent forms of interference were man-in-the-middle (MitM) attacks. -
HTTP2 Explained
HTTP2 Explained Daniel Stenberg Mozilla Corporation [email protected] ABSTRACT credits to everyone who helps out! I hope to make this document A detailed description explaining the background and problems better over time. with current HTTP that has lead to the development of the next This document is available at http://daniel.haxx.se/http2. generation HTTP protocol: HTTP 2. It also describes and elaborates around the new protocol design and functionality, 1.3 License including some implementation specifics and a few words about This document is licensed under the the future. Creative Commons Attribution 4.0 This article is an editorial note submitted to CCR. It has NOT license: been peer reviewed. The author takes full responsibility for this http://creativecommons.org/licenses/by/4.0/ article’s technical content. Comments can be posted through CCR Online. 2. HTTP Today Keywords HTTP 1.1 has turned into a protocol used for virtually everything HTTP 2.0, security, protocol on the Internet. Huge investments have been done on protocols and infrastructure that takes advantage of this. This is taken to the 1. Background extent that it is often easier today to make things run on top of HTTP rather than building something new on its own. This is a document describing http2 from a technical and protocol level. It started out as a presentation I did in Stockholm in April 2014. I've since gotten a lot of questions about the contents of 2.1 HTTP 1.1 is Huge that presentation from people who couldn't attend, so I decided to When HTTP was created and thrown out into the world it was convert it into a full-blown document with all details and proper probably perceived as a rather simple and straight-forward explanations. -
Introduction to RAW-Sockets Jens Heuschkel, Tobias Hofmann, Thorsten Hollstein, Joel Kuepper
Introduction to RAW-sockets Jens Heuschkel, Tobias Hofmann, Thorsten Hollstein, Joel Kuepper 16.05.2017 Technical Report No. TUD-CS-2017-0111 Technische Universität Darmstadt Telecooperation Report No. TR-19, The Technical Reports Series of the TK Research Division, TU Darmstadt ISSN 1864-0516 http://www.tk.informatik.tu-darmstadt.de/de/publications/ Introduction to RAW-sockets by Heuschkel, Jens Hofmann, Tobias Hollstein, Thorsten Kuepper, Joel May 17, 2017 Abstract This document is intended to give an introduction into the programming with RAW-sockets and the related PACKET-sockets. RAW-sockets are an additional type of Internet socket available in addition to the well known DATAGRAM- and STREAM-sockets. They do allow the user to see and manipulate the information used for transmitting the data instead of hiding these details, like it is the case with the usually used STREAM- or DATAGRAM sockets. To give the reader an introduction into the subject we will first give an overview about the different APIs provided by Windows, Linux and Unix (FreeBSD, Mac OS X) and additional libraries that can be used OS-independent. In the next section we show general problems that have to be addressed by the programmer when working with RAW-sockets. We will then provide an introduction into the steps necessary to use the APIs or libraries, which functionality the different concepts provide to the programmer and what they provide to simplify using RAW and PACKET-sockets. This section includes examples of how to use the different functions provided by the APIs. Finally in the additional material we will give some complete examples that show the concepts and can be used as a basis to write own programs. -
High Speed WAN Data Transfers for Science
1 Breaking the 1 GByte/sec Barrier? High speed WAN data transfers for science S. Ravot, J. Bunn, H. Newman, Y. Xia, D. Nae, X. Su, California Institute of Technology 1200 E California Blvd, Pasadena CA 91125 O. Martin CERN 1211 Geneva 23, Switzerland In this paper we describe the current state of the art in when the bandwidth and the latency increase. In particular, equipment, software and methods for transferring large TCP’s additive increase policy limits its ability to use spare scientific datasets at high speed around the globe. We bandwidth. first present a short introductory history of the use of In this paper we describe experiments that illustrate TCP’s networking in HEP, some details on the evolution, limitations. We report on our measurements using the current status and plans for the LHCnet, one of the largest network testbeds available Caltech/CERN/DataTAG transAtlantic link, and a today, having 10 Gb/s links connecting CERN in Geneva, description of the topology and capabilities of the Starlight in Chicago and the Caltech campus in Pasadena. research networks between CERN and HEP institutes In light of TCP’s limitations, we then explain how we have in the USA. We follow this with some detailed material tuned the end-systems and TCP Reno parameters to achieve on the hardware and software environments we have record breaking data transfers. Finally, we present an used in collaboration with international partners experiment currently underway in our group to transfer (including CERN and DataTAG) to break several High Energy Physics data files from a disk server at CERN Internet2 land speed records over the last couple of via a 10Gb/s network path to a disk server at Caltech (a years. -
The Impact of Transport Protocol, Packet Size, and Connection Type on the Round Trip Time
Bachelor of Science in Computer Science with specialization in Game Programming June 2017 The impact of transport protocol, packet size, and connection type on the round trip time Tobias Kling Faculty of Computing Blekinge Institute of Technology SE–371 79 Karlskrona, Sweden i This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Degree of Bachelor of Science in Computer Science with specialization in Game Programming. The thesis is equivalent to 10 weeks of full-time studies. Contact Information: Author(s): Tobias Kling E-mail: [email protected] University Advisor: Francisco Lopez Luro Department of Creative Technologies Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 Abstract While developing networking for games and applications, developers have a list of network specific requirements to be met as well as decide how to meet them. It is not always easy to decide what protocol is best suited for a given network configuration, or what is the best size of a data packet. By performing a comparative analysis, it becomes possible to identify how proto- cols, packet size, and network configuration impact the one-way travel time and throughput of a given implementation. The result shows how the different implementations compared against each other and the analysis tries to determine why they perform as they do. This gives a good overview of the pros and cons of how TCP, TCP(N), UDP, and RakNet, behave and perform over LANs and WLANs with varying packet size. -
Detecting Packet Injection a Guide to Observing Packet Spoofing by Isps
Detecting Packet Injection A GUidE TO OBSERVING PACKET SPOOFING BY ISPs By Seth Schoen [email protected] ELECTRONIC FRONTIER FOUNDATION eff.org Version .0 November 28, 2007 Detecting Packet Injection: A Guide To Observing Packet Spoofing by ISPs Introduction Certain Internet service providers have begun to interfere with their users’ communications by injecting forged or spoofed packets – data that appears to come from the other end but was actually generated by an Internet service provider (ISP) in the middle. This spoofing is one means (although not the only means) of blocking, jamming, or degrading users’ ability to use particular applications, services, or protocols. One important means of holding ISPs account- able for this interference is the ability of some subscribers to detect and document it reliably. We have to learn what ISPs are doing before we can try to do something about it. Internet users can often detect interference by comparing data sent at one end with data received at the other end of a connection. Techniques like these were used by EFF and the Associated Press to produce clear evidence that Comcast was deliberately interfering with file sharing applications; they have also been used to document censorship by the Great Firewall of China.1 In each of these cases, an in- termediary was caught injecting TCP reset packets that caused a communication to hang up – even though the communicating parties actually wanted to continue talking to one another. In this document, we describe how to use a network analyzer like Wireshark to run an experi- ment with a friend and detect behavior like this. -
Security Monitoring for Network Protocols and Applications Vinh Hoa La
Security monitoring for network protocols and applications Vinh Hoa La To cite this version: Vinh Hoa La. Security monitoring for network protocols and applications. Networking and Internet Architecture [cs.NI]. Université Paris-Saclay, 2016. English. NNT : 2016SACLL006. tel-01782396 HAL Id: tel-01782396 https://tel.archives-ouvertes.fr/tel-01782396 Submitted on 2 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1176$&// 7+(6('('2&725$7 '( /¶81,9(56,7(3$5,66$&/$< 35(3$5(($ 7(/(&2068'3$5,6 e&2/('2&725$/(1 6FLHQFHVHW7HFKQRORJLHVGHO ,QIRUPDWLRQHWGHOD&RPPXQLFDWLRQ 67,& 6SpFLDOLWpGHGRFWRUDW,QIRUPDWLTXH 3DU 09LQK+RD/D 6HFXULW\0RQLWRULQJIRU1HWZRUN3URWRFROVDQG $SSOLFDWLRQV 7KqVHSUpVHQWpHHWVRXWHQXHj(YU\OHRFWREUH &RPSRVLWLRQGX-XU\ 0)DULG1$,7$%'(66(/$03URIHVVHXU8QLYHUVLWp3DULV'HVFDUWHV 3DULV9 5DSSRUWHXU 00DUFHOR',$6'($025,0'LUHFWHXUGHUHFKHUFKH&156/,3830&5DSSRUWHXU 03DWULFN6(1$&3URIHVVHXU(1$&±7RXORXVH([DPLQDWHXU 0PH)DWLKD=$,',0DvWUHGH&RQIpUHQFHV+'58QLYHUVLWp3DULV6XG([DPLQDWULFH 0$GULHQ%(&8+HDGRI5HVHDUFK 7HFKQRORJ\$LUEXV'6&\EHUVHFXULW\([DPLQDWHXU 0:LVVDP0$//28/,'U,QJpQLHXUGHUHFKHUFKH0RQWLPDJH([DPLQDWHXU 0PH$QD5RVD&$9$//,3URIHVVHXU7HOHFRP6XG3DULV'LUHFWHXUGHWKqVH Titre : Monitorage des Aspects Sécuritaires pour les Protocoles de Réseaux et Applications. Mots clés : sécurité, détection d'intrusion, surveillance de sécurité, supervision de réseaux Résumé : La sécurité informatique, aussi applications. -
Communication & Network Security
6/13/19 Communication & Network Security MIS-5903 http://community.mis.temple.edu/mis5903sec011s17/ OSI vs. TCP/IP Model • Transport also called Host-to-Host in TCP/IP model. Encapsulation • System 1 is a “subject” (client) • System 2 has the “object” (server) 1 6/13/19 OSI Reference Notice: • Segments • Packets (Datagrams) • Frames • Bits Well known ports Protocol TCP/UDP Port Number File Transfer Protocol (FTP) (RFC 959) TCP 20/21 Secure Shell (SSH) (RFC 4250-4256) TCP 22 Telnet (RFC TCP 23 854) Simple Mail Transfer Protocol (SMTP) (RFC 5321) TCP 25 Domain Name System (DNS) (RFC 1034-1035) TCP/UDP 53 Dynamic Host Configuration Protocol (DHCP) (RFC 2131) UDP 67/68 Trivial File Transfer Protocol (TFTP) (RFC 1350) UDP 69 Hypertext Transfer Protocol (HTTP) (RFC 2616) TCP 80 Post Office Protocol (POP) version 3 (RFC 1939) TCP 110 Network Time Protocol (NTP) (RFC 5905) UDP 123 NetBIOS (RFC TCP/UDP 1001-1002) 137/138/139 Internet Message Access Protocol (IMAP) (RFC 3501) TCP 143 Well known ports (continued) Protocol TCP/UDP Port Number Simple Network Management Protocol (SNMP) UDP (RFC 1901-1908, 3411-3418) 161/162 Border Gateway Protocol (BGP) (RFC 4271) TCP 179 Lightweight Directory Access Protocol (LDAP) (RFC 4510) TCP/UDP 389 Hypertext Transfer Protocol over SSL/TLS (HTTPS) (RFC 2818) TCP 443 Line Print Daemon (LPD) TCP 515 Lightweight Directory Access Protocol over TLS/SSL (LDAPS) (RFC 4513) TCP/UDP 636 FTP over TLS/SSL (RFC 4217) TCP 989/990 Microsoft SQL Server TCP 1433 Oracle Server TCP 1521 Microsoft Remote Desktop Protocol (RDP) TCP 3389 • http://www.iana.org/assignments/service-names-port- numbers/service-names-port-numbers.xml. -
Empfehlungen Für Den Einsatz Von Transportverschlüsselung Zwischen Mailservern
Empfehlungen für den Einsatz von Transportverschlüsselung zwischen Mailservern 11.08.2017 Empfehlungen für Transportverschlüsselung zwischen Mailservern Seite 2 von 19 Dokument-Informationen Autoren Antje Bendrich, Jürgen Brauckmann, Lars Weber, Marc Thomas, Stefan Kelm Dateiname smtp-transportverschluesslung.pdf letzte Bearbeitung 15. August 2017 Seitenzahl 19 Version Datum Autor(en) Änderungen 0.1 1.1.1970 Marc Thomas Formatvorlage 0.2 28.11.2016 Marc Thomas Struktur, Inhalt 0.3 07.12.2016 Lars Weber Kapitel 2.4, 3 0.4 24.02.2017 Marc Thomas Kapitel 4 0.5 27.03.2017 Stefan Kelm QA 0.6 28.03.2017 Antje Bendrich QA 0.7 01.06.2017 Jürgen Brauckmann QA 0.8 13.06.2017 Lars Weber Kapitel 2.4.3 0.9 11.08.2017 Lars Weber Kapitel 2.4 überarbeitet ©2017 by DFN-CERT Services GmbH / All Rights reserved. Stand: 11.08.2017 Empfehlungen für Transportverschlüsselung zwischen Mailservern Seite 3 von 19 Inhaltsverzeichnis 1. Einleitung 4 2. TLS-Konfiguration 4 2.1. SSL/TLS-Protokolle . .5 2.2. SSL/TLS-Algorithmen . .6 2.3. SSL/TLS-Parameter . .7 2.4. MTA-Konfiguration . .8 2.4.1. Grenzen der Konfiguration . .8 2.4.2. Postfix . .9 2.4.3. Exim . 11 3. DNS-based Authentication of Named Entities (DANE) 14 3.1. Postfix . 15 3.2. Exim . 15 4. Best-Practices-Konfiguration 16 4.1. Postfix . 16 4.2. Exim . 17 A. Quellen 19 ©2017 by DFN-CERT Services GmbH / All Rights reserved. Stand: 11.08.2017 Empfehlungen für Transportverschlüsselung zwischen Mailservern Seite 4 von 19 1. Einleitung Moderne Bürokommunikation läuft zum großen Teil über E-Mail.