Microbial Community Response to Light and Heavy Crude Oil in Freshwater Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstract Tracing Hydrocarbon
ABSTRACT TRACING HYDROCARBON CONTAMINATION THROUGH HYPERALKALINE ENVIRONMENTS IN THE CALUMET REGION OF SOUTHEASTERN CHICAGO Kathryn Quesnell, MS Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Melissa Lenczewski, Director The Calumet region of Southeastern Chicago was once known for industrialization, which left pollution as its legacy. Disposal of slag and other industrial wastes occurred in nearby wetlands in attempt to create areas suitable for future development. The waste creates an unpredictable, heterogeneous geology and a unique hyperalkaline environment. Upgradient to the field site is a former coking facility, where coke, creosote, and coal weather openly on the ground. Hydrocarbons weather into characteristic polycyclic aromatic hydrocarbons (PAHs), which can be used to create a fingerprint and correlate them to their original parent compound. This investigation identified PAHs present in the nearby surface and groundwaters through use of gas chromatography/mass spectrometry (GC/MS), as well as investigated the relationship between the alkaline environment and the organic contamination. PAH ratio analysis suggests that the organic contamination is not mobile in the groundwater, and instead originated from the air. 16S rDNA profiling suggests that some microbial communities are influenced more by pH, and some are influenced more by the hydrocarbon pollution. BIOLOG Ecoplates revealed that most communities have the ability to metabolize ring structures similar to the shape of PAHs. Analysis with bioinformatics using PICRUSt demonstrates that each community has microbes thought to be capable of hydrocarbon utilization. The field site, as well as nearby areas, are targets for habitat remediation and recreational development. In order for these remediation efforts to be successful, it is vital to understand the geochemistry, weathering, microbiology, and distribution of known contaminants. -
Contents Topic 1. Introduction to Microbiology. the Subject and Tasks
Contents Topic 1. Introduction to microbiology. The subject and tasks of microbiology. A short historical essay………………………………………………………………5 Topic 2. Systematics and nomenclature of microorganisms……………………. 10 Topic 3. General characteristics of prokaryotic cells. Gram’s method ………...45 Topic 4. Principles of health protection and safety rules in the microbiological laboratory. Design, equipment, and working regimen of a microbiological laboratory………………………………………………………………………….162 Topic 5. Physiology of bacteria, fungi, viruses, mycoplasmas, rickettsia……...185 TOPIC 1. INTRODUCTION TO MICROBIOLOGY. THE SUBJECT AND TASKS OF MICROBIOLOGY. A SHORT HISTORICAL ESSAY. Contents 1. Subject, tasks and achievements of modern microbiology. 2. The role of microorganisms in human life. 3. Differentiation of microbiology in the industry. 4. Communication of microbiology with other sciences. 5. Periods in the development of microbiology. 6. The contribution of domestic scientists in the development of microbiology. 7. The value of microbiology in the system of training veterinarians. 8. Methods of studying microorganisms. Microbiology is a science, which study most shallow living creatures - microorganisms. Before inventing of microscope humanity was in dark about their existence. But during the centuries people could make use of processes vital activity of microbes for its needs. They could prepare a koumiss, alcohol, wine, vinegar, bread, and other products. During many centuries the nature of fermentations remained incomprehensible. Microbiology learns morphology, physiology, genetics and microorganisms systematization, their ecology and the other life forms. Specific Classes of Microorganisms Algae Protozoa Fungi (yeasts and molds) Bacteria Rickettsiae Viruses Prions The Microorganisms are extraordinarily widely spread in nature. They literally ubiquitous forward us from birth to our death. Daily, hourly we eat up thousands and thousands of microbes together with air, water, food. -
Are Zoo Bred Amphibians Ready to Go Back to the Wild?
Fitness for the Ark: Are zoo bred amphibians ready to go back to the wild? Luiza Figueiredo Passos This thesis is presented to the School of Environment & Life Sciences, University of Salford, in fulfilment of the requirements for the degree of Ph.D. Supervised by Professor Robert John Young September 2017 2 Table of Contents Chapter 1 – General Introduction ........................................................................................ 13 1.1 Do the vocalisations of captive frogs differ from wild ones? ............................... 20 1.2 Does antipredator behaviour of captive frogs differ from wild ones? ............... 23 1.3 How does the colour of captive frogs compare with wild ones? .......................... 24 1.4 Does the skin microbiota of captive frogs differ from wild ones? ...................... 25 1.5 Conclusion ................................................................................................................ 27 1.8 Study Species ........................................................................................................... 28 1.9 Study sites ................................................................................................................ 30 1.10 Ethical Approval ..................................................................................................... 36 Chapter 2 –Neglecting the call of the wild: Captive frogs like the sound of their own voice ........................................................................................................................................ -
Characterisation of Hexane-Degrading Microorganisms from Waste Gas Biofilters
CHARACTERISATION OF HEXANE-DEGRADING MICROORGANISMS FROM WASTE GAS BIOFILTERS DISSERTATION zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) Eingereicht am Fachbereich Biologie/Chemie der Universität Osnabrück 1. Gutachter: Prof. Dr. K. Altendorf 2. Gutachter: Priv.-Doz. Dr. A. Lipski vorgelegt von Michèle Martine Friedrich aus Osnabrück Osnabrück, November 2005 In loving memory of Inge Naismith Acknowledgements I am grateful that Prof. Dr. Karlheinz Altendorf gave me the opportunity to work and start my Ph.D. studies in his department and to work in such an interesting field of microbiological research. I thank Priv.-Doz. Dr. André Lipski for introducing me to bacterial taxonomy, biomarkers and among other things GC/MS. I really miss working with fatty acids. Maybe we will find means of future collaborations! Additionally, I would like to thank all colleagues in Osnabrück for having made my time in Osnabrück scientifically and privately a successful and content time. I would also like to thank my husband for his patience and support; and all my family and friends for their understanding. I am looking forward to share more spare time with all of you in the near future. Contents I. Introduction........................................................................................................................1 Biofiltration: Treatment of waste gas ..................................................................................1 Cultivation-dependent and -independent approaches ........................................................2 -
The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Developmental Stage
www.nature.com/scientificreports OPEN The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Received: 9 February 2017 Accepted: 8 May 2017 Developmental Stage Published: xx xx xxxx Qinghua Qiao1,2, Furong Wang1, Jingxia Zhang1, Yu Chen1, Chuanyun Zhang1, Guodong Liu1, Hui Zhang2, Changle Ma2 & Jun Zhang1,2 Plant roots and soil microorganisms interact with each other mainly in the rhizosphere. Changes in the community structure of the rhizosphere microbiome are influenced by many factors. In this study, we determined the community structure of rhizosphere bacteria in cotton, and studied the variation of rhizosphere bacterial community structure in different soil types and developmental stages using TM-1, an upland cotton cultivar (Gossypium hirsutum L.) and Hai 7124, a sea island cotton cultivar (G. barbadense L.) by high-throughput sequencing technology. Six bacterial phyla were found dominantly in cotton rhizosphere bacterial community including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria, and Verrucomicrobia. The abundance of Acidobacteria, Cyanobacteria, Firmicutes, Planctomycetes and Proteobacteria were largely influenced by cotton root. Bacterial α-diversity in rhizosphere was lower than that of bulk soil in nutrient-rich soil, but higher in cotton continuous cropping field soil. Theβ -diversity in nutrient-rich soil was greater than that in continuous cropping field soil. The community structure of the rhizosphere bacteria varied significantly during different developmental stages. Our results provided insights into the dynamics of cotton rhizosphere bacterial community and would facilitate to improve cotton growth and development through adjusting soil bacterial community structure artificially. The rhizosphere has been defined as a small area surrounding and influenced by the root1–3. -
The Distribution and Diversity of Functional Gene Pathways
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 The Distribution and Diversity of Functional Gene Pathways Controlling Sulfur Speciation in Lower Kane Cave, Wyoming Audrey Tarlton Paterson Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Paterson, Audrey Tarlton, "The Distribution and Diversity of Functional Gene Pathways Controlling Sulfur Speciation in Lower Kane Cave, Wyoming" (2012). LSU Master's Theses. 2877. https://digitalcommons.lsu.edu/gradschool_theses/2877 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. THE DISTRIBUTION AND DIVERSITY OF FUNCTIONAL GENE PATHWAYS CONTROLLING SULFUR SPECIATION IN LOWER KANE CAVE, WYOMING A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geology and Geophysics by Audrey Tarlton Paterson B.S., Louisiana State University, 2009 May 2012 ACKNOWLEDGEMENTS I would like to acknowledge Dr. Annette Summers Engel who was the major advisor for the project. Thank you for bringing me into your lab group as an undergrad, introducing me to an amazing group of people, accepting me as a graduate student, and encouraging me to ‘stick my neck out.’ I cannot imagine where I would be without your guidance. -
Supplementary Material V3
Supplementary material Evaluating the impacts of microbial activity and species interactions on passive bioremediation of a coastal acid sulfate soil (CASS) ecosystem Yu-Chen Ling1, John W. Moreau1,2* 1School of Earth Sciences, The University of Melbourne, Parkville, VIC, Australia 3010 2School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK *Corresponding author: John W Moreau, [email protected] 1. Supplementary Figures Supplementary Figure 1. (A) Acid sulfate soil taxonomic structures dissimilarity at 16S ribosomal cDNA level, as estimated using the Jaccard index. (B) Taxonomic structure analysis (ANOSIM) of soil 16S ribosomal DNA, soil 16S ribosomal cDNA, biofilm 16S ribosomal DNA, and biofilm 16S ribosomal cDNA. Low tide Flood tide High tide Ebb tide 0 0 0 0 5 5 5 5 10 10 10 10 Depth (cm) Depth (cm) Depth (cm) Depth (cm) 15 Site A 15 Site A 15 Site A 15 Site A Site B Site B Site B Site B Site C Site C Site C Site C 0 2000 6000 10000 14000 0 2000 6000 10000 14000 0 2000 6000 10000 14000 0 2000 6000 10000 14000 FeS (ug/g dry soil) FeS (ug/g dry soil) FeS (ug/g dry soil) FeS (ug/g dry soil) 0 0 0 0 5 5 5 5 10 10 10 10 Depth (cm) Depth (cm) Depth (cm) Depth (cm) 15 Site A 15 Site A 15 Site A 15 Site A Site B Site B Site B Site B Site C Site C Site C Site C 0 1000 3000 5000 7000 0 1000 3000 5000 7000 0 1000 3000 5000 7000 0 1000 3000 5000 7000 FeS2 (ug/g dry soil) FeS2 (ug/g dry soil) FeS2 (ug/g dry soil) FeS2 (ug/g dry soil) Supplementary Figure 2. -
View of the Tree of Life
Benavides et al. BMC Genomics 2018, 19(Suppl 8):858 https://doi.org/10.1186/s12864-018-5191-y RESEARCH Open Access CLAME: a new alignment-based binning algorithm allows the genomic description of a novel Xanthomonadaceae from the Colombian Andes Andres Benavides1*, Juan Pablo Isaza2,4, Juan Pablo Niño-García3, Juan Fernando Alzate2,4 and Felipe Cabarcas1,2 From Selected articles from the IV Colombian Congress on Bioinformatics and Computational Biology & VIII International Conference on Bioinformatics SoIBio 2017 Santiago de Cali, Colombia. 13-15 September 2017 Abstract Background: Hot spring bacteria have unique biological adaptations to survive the extreme conditions of these environments; these bacteria produce thermostable enzymes that can be used in biotechnological and industrial applications. However, sequencing these bacteria is complex, since it is not possible to culture them. As an alternative, genome shotgun sequencing of whole microbial communities can be used. The problem is that the classification of sequences within a metagenomic dataset is very challenging particularly when they include unknown microorganisms since they lack genomic reference. We failed to recover a bacterium genome from a hot spring metagenome using the available software tools, so we develop a new tool that allowed us to recover most of this genome. Results: We present a proteobacteria draft genome reconstructed from a Colombian’s Andes hot spring metagenome. The genome seems to be from a new lineage within the family Rhodanobacteraceae of the class Gammaproteobacteria, closely related to the genus Dokdonella.WewereabletogeneratethisgenomethankstoCLAME.CLAME,from Spanish “CLAsificador MEtagenomico”, is a tool to group reads in bins. We show that most reads from each bin belong to a single chromosome.