Are Zoo Bred Amphibians Ready to Go Back to the Wild?

Total Page:16

File Type:pdf, Size:1020Kb

Are Zoo Bred Amphibians Ready to Go Back to the Wild? Fitness for the Ark: Are zoo bred amphibians ready to go back to the wild? Luiza Figueiredo Passos This thesis is presented to the School of Environment & Life Sciences, University of Salford, in fulfilment of the requirements for the degree of Ph.D. Supervised by Professor Robert John Young September 2017 2 Table of Contents Chapter 1 – General Introduction ........................................................................................ 13 1.1 Do the vocalisations of captive frogs differ from wild ones? ............................... 20 1.2 Does antipredator behaviour of captive frogs differ from wild ones? ............... 23 1.3 How does the colour of captive frogs compare with wild ones? .......................... 24 1.4 Does the skin microbiota of captive frogs differ from wild ones? ...................... 25 1.5 Conclusion ................................................................................................................ 27 1.8 Study Species ........................................................................................................... 28 1.9 Study sites ................................................................................................................ 30 1.10 Ethical Approval ..................................................................................................... 36 Chapter 2 –Neglecting the call of the wild: Captive frogs like the sound of their own voice ......................................................................................................................................... 37 2.1 Abstract .................................................................................................................... 37 2.2 Introduction ............................................................................................................. 38 2.3 Methodology ............................................................................................................ 39 2.3.1 Study subject .................................................................................................... 39 2.3.2 Study sites ......................................................................................................... 39 2.3.3 Recording Calls ................................................................................................ 39 2.3.4 Phonotaxis experiments ................................................................................... 41 2.3.5 Movement Analyses ......................................................................................... 44 2.4 Results ...................................................................................................................... 46 2.5 Discussion ................................................................................................................. 52 Chapter 3 – Do captive golden mantella frogs recognise wild conspecifics calls? Responses to the playback of captive and wild calls ........................................................... 55 3.1 Abstract .................................................................................................................... 55 3.2 Introduction ............................................................................................................. 56 3.2 Methodology ............................................................................................................ 57 3.2.1 Study subject .................................................................................................... 57 3.2.2 Recording Calls ................................................................................................ 57 3.2.3 Study sites ......................................................................................................... 58 3.2.4 Playback experiments ...................................................................................... 58 3.2.5 Ethogram .......................................................................................................... 60 3.2.6 Behavioural analysis ........................................................................................... 61 3.2.7 Statistical analysis ............................................................................................ 61 3.4 Results ...................................................................................................................... 62 3.5 Discussion ................................................................................................................. 65 Chapter 4 –The tonic immobility test: Do wild and captive Golden Mantella frogs (Mantella aurantiaca) have the same response? .................................................................. 67 4.1 Abstract .................................................................................................................... 67 4.2 Introduction ............................................................................................................. 68 4.3 Methodology ............................................................................................................ 70 3 4.3.1 Study subjects ................................................................................................... 70 4.3.2 Study sites ......................................................................................................... 70 4.3.3 TI Test ............................................................................................................... 71 4.3.4 Body Condition Index ...................................................................................... 73 4.3.5 Data Analysis .................................................................................................... 74 4.4 Results ...................................................................................................................... 74 4.5 Discussion ................................................................................................................. 78 Chapter 5– How does captivity affect skin colour reflectance of golden mantella frogs? .................................................................................................................................................. 82 5.1 Abstract .................................................................................................................... 82 5.2 Introduction ............................................................................................................. 83 5.3 Methodology ............................................................................................................ 85 5.3.1 Study subject .................................................................................................... 85 5.3.2 Study sites ......................................................................................................... 85 5.3.3 Spectrophotometric measurements ................................................................ 85 5.3.4 Colour analyses ................................................................................................ 87 5.4 Results ...................................................................................................................... 90 5.5 Discussion ................................................................................................................. 95 6.1 Abstract .................................................................................................................. 100 6.2 Introduction ........................................................................................................... 101 6.3 Methods .................................................................................................................. 103 6.3.1 Study subjects ................................................................................................. 103 6.3.2 Study sites ....................................................................................................... 103 6.3.3 Skin Bacteria Sampling and DNA Extraction ............................................. 104 6.3.4 16S Metagenomic Sequencing ....................................................................... 105 6.3.5 Statistical Analysis ......................................................................................... 106 6. 4 Results .................................................................................................................... 107 6.5 Discussion ............................................................................................................... 114 Chapter 7 - General Discussion .......................................................................................... 118 7.1 Research limitation ............................................................................................... 124 7.2 Conclusion .............................................................................................................. 129 References: ............................................................................................................................ 130 Appendices ............................................................................................................................ 154 4 List of Figures Figure 1. A wild specimen of Golden Mantella frog (Mantella aurantiaca) observed in Madagascar (Photo by Luiza Passos). .............................................................................. 28 Figure 2. Distribution map of the Golden Mantella frog in the wild (Source:
Recommended publications
  • Recommendations for Conservation Translocations of Australian Frogs
    Recommendations for conservation translocations of Australian frogs Dr Ben Scheele, Emily Hoffmann, Dr Matt West June 2021 Cite this publication as: Scheele, B., Hoffmann, E., West, M., 2021. Recommendations for conservation translocations of Australian frogs. NESP Threatened Sprecies Recovery Hub Project 3.3.6 report, Brisbane. Cover image: Spotted tree frog on burnt log. Image: Matt West 2 Contents Background ........................................................................................................................................................................................................ 4 Australian frog declines ......................................................................................................................................................................... 4 Role and types of conservation translocations ............................................................................................................................... 4 Translocations of Australian frogs ....................................................................................................................................................... 5 Recommendations .......................................................................................................................................................................................... 6 Step 1. Set clear, measurable translocation objectives Chytrid-specific considerations ...................................................................................................................................................
    [Show full text]
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • Comparing the Bacterial Communities of Wild and Captive Golden Mantella
    Comparing the bacterial communities of wild and captive golden mantella frogs : implications for amphibian conservation Passos, LF, Garcia, G and Young, RJ http://dx.doi.org/10.1371/journal.pone.0205652 Title Comparing the bacterial communities of wild and captive golden mantella frogs : implications for amphibian conservation Authors Passos, LF, Garcia, G and Young, RJ Type Article URL This version is available at: http://usir.salford.ac.uk/id/eprint/48640/ Published Date 2018 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. RESEARCH ARTICLE Comparing the bacterial communities of wild and captive golden mantella frogs: Implications for amphibian conservation 1,2 2 1 Luiza F. Passos , Gerardo Garcia , Robert J. YoungID * 1 School of Environment and Life Sciences, University of Salford Manchester, Salford, United Kingdom, 2 Chester Zoo, Cedar House, Upton by Chester, Chester, United Kingdom * [email protected] a1111111111 Abstract a1111111111 Bacterial communities are frequently found in symbiotic associations with most animal a1111111111 a1111111111 species. The characteristically moist amphibian skin provides a good environment for the a1111111111 growth of some species of bacteria; among these a few can act as a first line defense mech- anism against infections. Amphibians in the wild have relatively high exposure to bacteria through environmental transmission and through interactions with different conspecifics, whilst in captivity animals interact with fewer individuals, as well as experiencing a less com- OPEN ACCESS plex environment through which to obtain their bacterial community.
    [Show full text]
  • Animalia Animals Invertebrata Invertebrates Gromphadorhina
    Santa Barbara Zoo’s list of animals 1/11/15 1 Animalia Animals Invertebrata Invertebrates Gromphadorhina portentosa Cockroach, Madagascar Hissing Blaberus giganteus Cockroach, Caribbean Giant Eurycantha calcarata Insect, Stick Archispirostreptus gigas Millipede, Giant African Heterometrus longimanus Scorpian, Asian Forest Hadrurus arizonensis Scorpian, Desert Hairy Pandinus imperator Scorpian, Common Emperor Damon variegatus Scorpion, Tailless Whip Latrodectus mactans Spider, Black Widow Grammostola rosea Tarantula, Chilean Rose (hair) Brachypelma smithi Tarantula, Mexican Red-Kneed Eupalaestrus campestratus Tarantula, Pink Zebra Beauty Mastigoproctus giganteus Vinegaroon Chordata Chordates Vertebrata Vertebrates Pisces Fish Pygocentrus nattereri Piranha, Red Hypostomus Plecostomus Amphibia Amphibians Trachycephalus Frog, Amazon Milky Phyllobates bicolor Frog, Bicolored Poison Dart Dendrobates azureus Frog, Blue and Black Poison Dart Pseudacris cadaverina Frog, California Tree Mantella aurantiaca Frog, Golden Mantella Dendrobates auratus Frog, Green-and-black Poison Dart tinnctorius and auratus hybrid Frog, Dart Frog Hybrid Agalychnis lemur Frog, Lemur Leaf (tree) Trachycephalus resinifictrix Frog, Mission Golden-Eyed Pseudacris regilla Frog, Pacific Tree Leptodactylus pentadactylus Frog, Smokey Jungle Dendrobates tinctorius Frog, Yellow-and-blue Poison Dart Taricha torosa torosa Newt, Coast Range Incilius alvarius Toad, Colorado River Bufo marinas Toad, Giant Marine 2 Santa Barbara Zoo’s list of animals 1/11/15 Bufo boreas Toad, Western
    [Show full text]
  • Ginini Flats Wetlands Ramsar Site
    PLAN OF MANAGEMENT 2001 Ginini Flats Wetlands Ramsar Site Department of Urban Services Conservation Series No. 18 Government GININI FLATS WETLANDS RAMSAR SITE Plan of Management May 2001 ACKNOWLEDGEMENTS A preliminary draft of this Plan of Management was prepared for Environment ACT byDr Bob Banens, Mr Allen Fox and Dr Laslo Nagy of the Atech Group with advice from Mr Roger Good and Ms Jane Gough. Comments and contributions on the drafts were provided by staff from Environment ACT, the Nature Conservation and Namadgi Sub-committee of the Environment Advisory Committee, the Flora and Fauna Committee and various ACT community groups and individuals. The development of this management plan was funded through the National Wetlands Program of Environment Australia. NOTES This plan of management has been prepared to fulfill the principle obligation of Contracting Parties to the Ramsar Convention. This obligation is to develop management plans for all Ramsar sites in their territory. Also, this Plan constitutes a component of the management plan for Namadgi National Park. The implementation of the management actions stated in this Plan of Management will be undertaken as part of the management of the Namadgi National Park. ISSN 1036-0441 Australian Capital Territory, Canberra 2001 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission from the Manager, Library and Information Management, Department of Urban Services, ACT Government, GPO Box 158, Canberra City, ACT 2601. Published by Publishing Services for Environment ACT (BDM 0778) 120 A4, 05/01 (01/0882) Environment ACT Home Page: http:www.act.gov.au/environ Environment ACT Helpline: 02 6207 9777 Pi d R ldP CONTENTS ACKNOWLEDGEMENTS………………………………………………………………………… II NOTES………..……………………………………………………………………………………… II CONTENTS………………………………………………………………………………………… III ABSTRACT……………………………………………………………………………………….… V VISION……………………………………………………………………………………………… VI 1.
    [Show full text]
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Set Departure
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Set Departure November 3—28, 2013 Guide: Ken Behrens All photos taken during this trip. All photos by Ken Behrens unless noted otherwise. TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with last year’s opening of a satellite office in the country, we have further solidified our expertise in the “Eighth Continent.” This was another highly successful set-departure tour to this special island. It included both the Northwestern Endemics Pre-Trip at the start and the Helmet Vanga extension to the Masoala Peninsula at the end. Although Madagascar poses some logistical challenges, especially in the form of the national airline Air Madagascar, we had no problems on this tour, not even a single delayed flight! The birding was great, with 196 species recorded, including almost all of the island’s endemic birds. As usual, the highlight was seeing all five of the incredible ground-rollers, from the roadrunner-like Long-tailed of the spiny forest to the wonderful rainforest-dwelling Scaly. There was a strong cast of vangas, including Helmet, Bernier’s, and Sickle-billed. In fact, we saw every member of the family save the mysterious Red-tailed Newtonia which is only regularly seen in the far south. As normal, the couas were also a favorite. From the shy and beautiful Red-breasted of Madagascar Set Departure Tour Nov. 3-28, 2013 the eastern rainforest to the huge Giant Coua of the dry western forest, we were looking for and at couas virtually every day! The bizarre mesites form a Malagasy endemic family, and we had superb extended views of all three members of the family.
    [Show full text]
  • Northern Corroboree Frog Pseudophryne Pengilleyi Review of Current Information in NSW May 2010
    NSW SCIENTIFIC COMMITTEE Northern Corroboree Frog Pseudophryne pengilleyi Review of Current Information in NSW May 2010 Current status: The Northern Corroboree Frog Pseudophryne pengilleyi (Wells & Wellington 1985) is currently listed as Vulnerable under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) and as Endangered in the Australian Capital Territory (ACT) under the Nature Conservation Act 1980 (NC Act). The NSW Scientific Committee recently determined that the Northern Corroboree Frog meets criteria for listing as Critically Endangered under the NSW Threatened Species Conservation Act 1995 (TSC Act), based on information contained in this report and other information available for the species. Species description: The Northern Corroboree Frog is a small frog, adults reaching a length of between 2.5 to 3 cm. The species has a distinctive dorsal colouring of greenish-yellow with shiny black stripes that are frequently broken and interconnected (Pengilley 1966; Cogger 1992). This pattern extends over the limbs and flanks. The underside is marbled with black and white, or black and yellow. A large flat femoral gland is present on each hind limb and the inner metatarsal tubercle is low, round and not shovel-shaped. The inner toe has a single phalanx. The lime-yellow, narrow broken pattern of stripes of the Northern Corroboree Frog distinguishes it from the Southern Corroboree Frog P. corroboree which is brighter yellow and has a broader unbroken striped dorsal pattern (Osborne 1991). In addition, P. pengilleyi has a smaller body and tibia length than P. corroboree (Osborne et al. 1996). Taxonomy: Until recently, only one species of Corroboree Frog was recognised (Cogger 1992).
    [Show full text]
  • A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance
    Chapter 21 A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance Juan C. Santos , Rebecca D. Tarvin , and Lauren A. O’Connell 21.1 Introduction Chemical defense has evolved multiple times in nearly every major group of life, from snakes and insects to bacteria and plants (Mebs 2002 ). However, among land vertebrates, chemical defenses are restricted to a few monophyletic groups (i.e., clades). Most of these are amphibians and snakes, but a few rare origins (e.g., Pitohui birds) have stimulated research on acquired chemical defenses (Dumbacher et al. 1992 ). Selective pressures that lead to defense are usually associated with an organ- ism’s limited ability to escape predation or conspicuous behaviors and phenotypes that increase detectability by predators (e.g., diurnality or mating calls) (Speed and Ruxton 2005 ). Defended organisms frequently evolve warning signals to advertise their defense, a phenomenon known as aposematism (Mappes et al. 2005 ). Warning signals such as conspicuous coloration unambiguously inform predators that there will be a substantial cost if they proceed with attack or consumption of the defended prey (Mappes et al. 2005 ). However, aposematism is likely more complex than the simple pairing of signal and defense, encompassing a series of traits (i.e., the apose- matic syndrome) that alter morphology, physiology, and behavior (Mappes and J. C. Santos (*) Department of Zoology, Biodiversity Research Centre , University of British Columbia , #4200-6270 University Blvd , Vancouver , BC , Canada , V6T 1Z4 e-mail: [email protected] R. D. Tarvin University of Texas at Austin , 2415 Speedway Stop C0990 , Austin , TX 78712 , USA e-mail: [email protected] L.
    [Show full text]
  • B11 Corroboree Frog Aug 11.Pub
    biodiversity fact sheet MURRAY CATCHMENT MANAGEMENT AUTHORITY CORROBOREE FROGS Factsheet B11-Aug-2011 Northern Corroboree Frog © Dave Hunter Southern Corroboree Frog © Dave Hunter Northern and Southern Corroboree Frogs are two of Conservation Status Australia’s most iconic frog species, but they are also Both Corroboree Frog species have been in a rapid state two of Australia’s most endangered. of decline since the mid 1980s. The Southern Corroboree Frog has now declined in more than 98% of its former What are they? range, and is likely to become extinct in the wild without There are two closely related species of Corroboree Frog: human intervention. The Southern Corroboree Frog is the Southern Corroboree Frog ( Pseudophryne corroboree ), listed as critically endangered at both a state and and the Northern Corroboree Frog ( Pseudophryne national level. Latest surveys indicated that less than 50 pengilleyi ). Both species are between 2.5 and 3 centimetres Southern Corroboree Frogs are left in the wild. in length. The Northern Corroboree Frog has also undergone Where are they found? substantial declines across its range. The decline of this Corroboree Frogs are only found in a small area of south- species has been particularly severe in the Brindabella eastern New South Wales. The Southern Corroboree Frog Ranges, where it has become almost entirely extinct from only occurs in Kosciuszko National Park at altitudes the Australian Capital Territory. The species is listed as between 1300 and 1700 metres. The Northern Corroboree critically endangered at both the state and national level. Frog occurs in Northern Kosciuszko National Park, Namadgi National Park, Brindabella National Park and some adjacent Why are populations in decline? state forests above 750 metres altitude.
    [Show full text]
  • WILDLIFE CONSERVATION in the Field
    WILDLIFE CONSERVATION IN THE FIELD Saving Nature Together MISSION Woodland Park Zoo saves animals and their habitats through conservation leadership and engaging experiences, inspiring people to learn, care and act. VISION Woodland Park Zoo envisions a world where people protect animals and conserve their habitats in order to create a sustainable future. As a leading conservation zoo, we empower people, in our region and around the world, to create this future, in ways big and small. CONTENTS Why Wildlife Conservation? .............4 Partners for Wildlife ............................8 Africa ................................................... 10 Central Asia ...................................... 12 Asia Pacific ......................................... 14 Living Northwest ............................... 22 Wildlife Survival Fund ...................... 36 Call to Action ..................................... 38 FIELD CONSERVatION at • We recognize that wildlife conservation ultimately WHY WILDLIFE CONSERVatION? WOODLAND PARK ZOO is about people, and long-term solutions will for example depend upon education, global health, • We carry out animal-focused projects that engage At Woodland Park Zoo, we believe that animals and habitats have intrinsic value, and that their poverty alleviation, and sustainable living practices. the public’s interest, contribute toward species existence enriches our lives. We also realize that animals and plants are essential for human Therefore, whenever advantageous, we include conservation, and leverage landscape-level
    [Show full text]
  • High Mitochondrial Diversity Within and Among Populations of Malagasy Poison Frogs
    ARTICLE IN PRESS MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution xxx (2003) xxx–xxx www.elsevier.com/locate/ympev High mitochondrial diversity within and among populations of Malagasy poison frogs Miguel Vences,a,* Ylenia Chiari,b Liliane Raharivololoniaina,c and Axel Meyerb a Institute for Biodiversity and Ecosystem Dynamics, Zoological Museum, University of Amsterdam, P.O. Box 94766, Amsterdam 1090 GT, The Netherlands b Department of Biology (Evolutionary Biology), University of Konstanz, Constance 78457, Germany c Departement de Biologie Animale, Universite d’Antananarivo, Antananarivo 101, Madagascar Received 17 January 2003; revised 12 May 2003 Abstract The diurnal, brightly colored, and toxic frogs of the genus Mantella are among the most prominent representatives of the en- demic anuran fauna of Madagascar. Especially three closely related species, M. aurantiaca, M. crocea, and M. milotympanum, are intensively collected for the pet trade, although basic data on their natural history and genetic diversity are still lacking. Our phylogenetic analyses based on 2.8 kbp of partial 16S rRNA, 12S rRNA, cytochrome b, and rhodopsin DNA sequences confirmed that these species belong to one of the five major clades in Mantella, the M. madagascariensis group. A haplotype network con- structed using 830 bp of cytochrome b in 49 individuals from seven populations revealed that M. milotympanum and M. crocea have largely similar haplotypes sharing, confirming doubts about the species validity of M. milotympanum and indicating independent evolution of bright orange pattern in M. milotympanum and M. aurantiaca. Further, clustering of four individuals of M. aurantiaca from Andranomena with M. crocea suggests incomplete lineage sorting or introgression resulting from secondary contact of refugial populations.
    [Show full text]
  • Reptiles & Amphibians of Kirindy
    REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch.
    [Show full text]