An Introduction to QED And

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to QED And An Intro duction to QED and QCD Je Forshaw Department of Physics and Astronomy University of Manchester Manchester M PL Lectures presented at the Scho ol for Young High Energy Physicists Rutherford Appleton Lab oratory September Contents Intro duction Units and Conventions Relativistic Wave Equations Wavefunctions and Fields The KleinGordon Equation The Dirac Equation Free Particle Solutions I Interpretation Free Particle Solutions I I Spin Normalisation and Gamma Matrices Lorentz Covariance Parity Bilinear Covariants Charge Conjugation Neutrinos Cross Sections and Decay Rates The Number of Final States Lorentz Invariant Phase Space LIPS Cross Sections Twobody Scattering Decay Rates Quantum Electro dynamics Quantising the Dirac Field Quantising the Electromagnetic Field Feynman Rules of QED ElectronMuon Scattering ElectronElectron Scattering ElectronPositron Annihilation e e e e e e and e e hadrons Compton Scattering Intro duction to Renormalisation Renormalisation of QED Renormalisation of Quantum Chromo dynamics A Pre Scho ol Problems B Answers to the Exercises Intro duction The traditional aim of this course is to teach you how to calculate amplitudes cross sections and decay rates particularly for quantum electro dynamics qed but in principle also for quantum chromo dynamics qcd By the end of the course you should be able to go from a Feynman diagram such as the one for e e in Figure a to a number for the cross section We will restrict ourselves to calculations at tree level but at the end of the course h amongst other things we will also lo ok qualitatively at higher order loop eects whic are resp onsible for the running of the qcd coupling This running means that the qcd coupling app ears weaker when measured at higher energy scales and is the reason why we can sometimes do p erturbative qcd calculations As you might guess the sort of diagrams which are imp ortant here have closed lo ops of particle lines in them in Fig ure b is one example contributing to the running of the qcd coupling the curly lines denote gluons In order to do our calculations we will need a certain amount of technology In particular we will need to describ e particles with spin esp ecially the spin leptons and quarks We will therefore sp end some time lo oking at the Dirac equation After this well work out how to go from quantum mechanical probability amplitudes to cross sections and decay rates Then with these to ols in hand we will lo ok at some examples of tree level qed pro cesses Here you will get handson exp erience of calculating transition amplitudes and getting from them to cross sections We then moveontoqcd This will entail a brief intro duction to renormalisation in both qed and qcd We will intro duce the idea of the running coupling and lo ok at asymptotic freedom in qcd In reference you will nd a list of textb o oks which may b e useful Units and Conventions I will use natural units c h so mass energy inverse length and inverse time all have the same dimensions vector a a a a scalar pro duct ab a b ab g a b From the scalar pro duct you see that the metric is if g diag g g if For c g and g are numerically the same e e a b Figure Examples of Feynman diagrams contributing to a e e and b the running of the strong coupling constant From the ab ove you would think it natural to write the space comp onents of a vector as i a for i However for vectors I usually write the comp onents as a This ought i not to cause confusion since for vectors the metric is just the unit matrix Generally sp eaking a little care must b e taken in getting the sign right for the comp onents of a vector Note that isacovector x x i i so r and r My convention for the totally antisymmetric LeviCivita tensor is if f g an even p ermutation of f g if an odd p ermutation otherwise Note that and p q r s changes sign under a parity transformation which is obvious b ecause it contains an odd number of spatial comp onents Relativistic Wave Equations The starting p oint for this course is the Schrodinger equation which can b e written quite generally as H i t where H is the Hamiltonian ie the energy op erator In this equation is the wave function describing the single particle probability amplitude I shall usually reserve the Greek symbol for spin fermions and for spin b osons So for pions and the like I shall write H i t In this course wewant to extend the nonrelativistic quantum mechanics familiar to undergraduates into the relativistic domain For example in nonrelativistic quantum mechanics you are used to writing H T V where T is the kinetic energy and V is the potential energy A particle of mass m and momentum p has nonrelativistic kinetic energy P T m where capital P is the op erator corresp onding to momentum p For a slow moving particle v c eg an electron in a Hydrogen atom this is adequate but for relativistic systems v c the Hamiltonian ab ove breaks down For a free relativistic particle the total energy E is given by the Einstein equation E p m Thus the square of the relativistic Hamiltonian H is simply given by promoting the momentum to op erator status H P m So far so go o d but now the question arises of how to implement the Schrodinger equation which is expressed in terms of H rather than H Naively the relativistic Schrodinger equation lo oks like p t P m ti t but this is dicult to interpret b ecause of the square ro ot There are two ways forward Work with H By iterating the Schrodinger equation we have t H t t This is known as the KleinGordon KG equation In this case the wavefunction describ es spinless b osons Invent a new Hamiltonian H which is linear in momentum and whose square is D equal to H given ab ove H P m In this case we have D t H t i D t which is known as the Dirac equation with H being the Dirac Hamiltonian In D this case the wavefunction describ es spin fermions as we shall see Wavefunctions and Fields You may be wondering why I am talking ab out wavefunctions while in your eld theory course Dave Dunbar is telling you ab out elds Some of you may even be wondering what is the dierence between awavefunction and a eld The bottom line is that single particle wavefunctions work just ne if you want to describ e systems where the particle number is conserved Problems come when you wanttoallow for relativistic eects In particular antiparticles and hence the p ossibility that particles can annihilate or be pair pro duced In fact these new concepts can be accommo dated within the wavefunction approach but inaway which is not really very satisfactory Well take a lo ok at the problems encountered in trying to cling to the wavefunction way of thinking shortly Rather than patch things up its much more app ealing simply to ditch the usual interpretation of as a wavefunction and to identify it as a eld This eld is then sub jected to the usual laws of quantum mechanics This means elevating the eld and its canonical momentum to the status of op erators which are then deemed to satisfy the usual commutation relations This is what Dave has b een doing in his course In the limit that particle number is conserved the theory is equivalent to the single particle w avefunction approach It is imp ortant to emphasise that a eld is very dierentfromawavefunction Think rst of a classical eld I nd it easier to picture a eld by rst dividing space into innitesimally small b oxes In each box is a ctitious particle and the amplitude of the particles displacement from equilibrium is the value of the eld as the point where the small b ox is If the eld satises some wave equation then you can think of the motions of the individual particles as being inuenced by whats going on in the neighb ourho o d eg consider a vibrating membrane the particles can b e thought of as little harmonic oscillators all coupled together The eld is dened in the limit of vanishingly small boxes and so describ es a system with an innite number of degrees of freedom The Maxwell eld of electromagnetism is a famous classical eld We can go ahead an demand that it also be consisten t with the laws of quantum mechanics This means we must quantise the motion of the innite number of little harmonic oscillators To do this we simply imp ose the commutation relation x p i where x is the displacement i i i th of the i oscillator and p is its momentum Note that x is simply the value of the eld i i th at the point where the i box is lo cated After doing this we have a theory which is consistent with b oth relativity and quantum mechanics Photons emerge as the quanta of the electromagnetic eld and so the theory naturally describ es systems with anynumber of particles Maxwells wave equations are not the only equations we can write down which are consistent with relativity We can also write down the KleinGordon and Dirac equations to o there are others but these are the most relevant ones for particle physics Quantis ing the corresp onding elds leads to quanta whichhave spin and spin resp ectively the Maxwell eld leads to spin quanta Letting the spin quanta carry electric charge means that they can interact with the spin quanta and the formalism has no problem dealing with varying numb ers of quanta Of course Im skipping the details so as to giveyou an overview DaveDunbars course aims to provide a fairly comprehensive intro duction to this whole area A nal word of caution Notation
Recommended publications
  • Measurements of Elastic Electron-Proton Scattering at Large Momentum Transfer*
    SLAC-PUB-4395 Rev. January 1993 m Measurements of Elastic Electron-Proton Scattering at Large Momentum Transfer* A. F. SILL,(~) R. G. ARNOLD,P. E. BOSTED,~. C. CHANG,@) J. GoMEz,(~)A. T. KATRAMATOU,C. J. MARTOFF, G. G. PETRATOS,(~)A. A. RAHBAR,S. E. ROCK,AND Z. M. SZALATA Department of Physics The American University, Washington DC 20016 D.J. SHERDEN Stanford Linear Accelerator Center , Stanford University, Stanford, California 94309 J. M. LAMBERT Department of Physics Georgetown University, Washington DC 20057 and R. M. LOMBARD-NELSEN De’partemente de Physique Nucle’aire CEN Saclay, Gif-sur- Yvette, 91191 Cedex, France Submitted to Physical Review D *Work supported by US Department of Energy contract DE-AC03-76SF00515 (SLAC), and National Science Foundation Grants PHY83-40337 and PHY85-10549 (American University). R. M. Lombard-Nelsen was supported by C. N. R. S. (French National Center for Scientific Research). Javier Gomez was partially supported by CONICIT, Venezuela. (‘)Present address: Department of Physics and Astronomy, University of Rochester, NY 14627. (*)Permanent address: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742. (C)Present address: Continuous Electron Beam Accelerator Facility, Newport News, VA 23606. (d)Present address: Temple University, Philadelphia, PA 19122. (c)Present address: Stanford Linear Accelerator Center, Stanford CA 94309. ABSTRACT Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2 = 2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accel- erator Center. The data span six orders of magnitude in cross section.
    [Show full text]
  • Neutron Scattering
    Neutron Scattering Basic properties of neutron and electron neutron electron −27 −31 mass mkn =×1.675 10 g mke =×9.109 10 g charge 0 e spin s = ½ s = ½ −e= −e= magnetic dipole moment µnn= gs with gn = 3.826 µee= gs with ge = 2.0 2mn 2me =22k 2π =22k Ek== E = 2m λ 2m energy n e 81.81 150.26 Em[]eV = 2 Ee[]V = 2 λ ⎣⎡Å⎦⎤ λ ⎣⎦⎡⎤Å interaction with matter: Coulomb interaction — 9 strong-force interaction 9 — magnetic dipole-dipole 9 9 interaction Several salient features are apparent from this table: – electrons are charged and experience strong, long-range Coulomb interactions in a solid. They therefore typically only penetrate a few atomic layers into the solid. Electron scattering is therefore a surface-sensitive probe. Neutrons are uncharged and do not experience Coulomb interaction. The strong-force interaction is naturally strong but very short-range, and the magnetic interaction is long-range but weak. Neutrons therefore penetrate deeply into most materials, so that neutron scattering is a bulk probe. – Electrons with wavelengths comparable to interatomic distances (λ ~2Å ) have energies of several tens of electron volts, comparable to energies of plasmons and interband transitions in solids. Electron scattering is therefore well suited as a probe of these high-energy excitations. Neutrons with λ ~2Å have energies of several tens of meV , comparable to the thermal energies kTB at room temperature. These so-called “thermal neutrons” are excellent probes of low-energy excitations such as lattice vibrations and spin waves with energies in the meV range.
    [Show full text]
  • Compton Sources of Electromagnetic Radiation∗
    August 25, 2010 13:33 WSPC/INSTRUCTION FILE RAST˙Compton Reviews of Accelerator Science and Technology Vol. 1 (2008) 1–16 c World Scientific Publishing Company COMPTON SOURCES OF ELECTROMAGNETIC RADIATION∗ GEOFFREY KRAFFT Center for Advanced Studies of Accelerators, Jefferson Laboratory, 12050 Jefferson Ave. Newport News, Virginia 23606, United States of America kraff[email protected] GERD PRIEBE Division Leader High Field Laboratory, Max-Born-Institute, Max-Born-Straße 2 A Berlin, 12489, Germany [email protected] When a relativistic electron beam interacts with a high-field laser beam, the beam electrons can radiate intense and highly collimated electromagnetic radiation through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens of MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review paper, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to present, and the future prospects of radiation sources of this general type. Due to the possibilities to produce hard electromagnetic radiation in a device small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future. Keywords: Compton backscattering, Inverse Compton source, Thomson scattering, X-rays, Spectral brilliance 1.
    [Show full text]
  • RCED-85-96 DOE's Physics Accelerators
    DOE’s Physics Accelerators: Their Costs And Benefits This report provides an inventory of the Department of Energy’s existing and planned high-energy physics and nuclear physics accelerator facilities, identifies their as- sociated costs, and presents information on the benefits being derived from their construction and operation. These facilities are the primary tools used by high-energy and nuclear physicists to learn more about what energy and matter consist of and how their component parts or particles are influenced by the most basic natural forces. Of DOE’s $728 million budget for high-energy physics and nuclear physics during fiscal year 1985, about $372.1 million is earmarked for operating 14 DOE-supported accelerator facilities coast-to-coast. DOE’s investment in these facilities amounts to about $1.2 billion. If DOE’s current plans for adding new facilities are carried out, this investment could grow by about $4.3 billion through fiscal year 1994. Annual facility operating costs wilt also grow by about $230 million, or an increase of about 60 percent over current costs. The primary benefits gained from DOE’s investment in these facilities are new scientific knowledge and the education and training of future physicists. Accor- ding to DOE and accelerator facility officials, accelerator particle beams are also used in other scientific applications and have some medical and industrial applications. GAOIRCED-85-96 B APRIL 1,198s 031763 UNITED STATES GENERAL ACCOUNTING OFFICE WASHINGTON, D.C. 20548 RESOURCES, COMMUNlfY, \ND ECONOMIC DEVELOPMENT DIV ISlON B-217863 The Honorable J. Bennett Johnston Ranking Minority Member Subcommittee on Energy and Water Development Committee on Appropriations United States Senate Dear Senator Johnston: This report responds to your request dated November 25, 1984.
    [Show full text]
  • Femtosecond Laser-Assisted Electron Scattering for Ultrafast Dynamics of Atoms and Molecules
    atoms Review Femtosecond Laser-Assisted Electron Scattering for Ultrafast Dynamics of Atoms and Molecules Reika Kanya and Kaoru Yamanouchi * Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan * Correspondence: [email protected]; Tel.: +81-3-5841-4334 Received: 7 July 2019; Accepted: 23 August 2019; Published: 2 September 2019 Abstract: The recent progress in experimental studies of laser-assisted electron scattering (LAES) induced by ultrashort intense laser fields is reviewed. After a brief survey of the theoretical backgrounds of the LAES process and earlier LAES experiments started in the 1970s, new concepts of optical gating and optical streaking for the LAES processes, which can be realized by LAES experiments using ultrashort intense laser pulses, are discussed. A new experimental setup designed for measurements of LAES induced by ultrashort intense laser fields is described. The experimental results of the energy spectra, angular distributions, and laser polarization dependence of the LAES signals are presented with the results of the numerical simulations. A light-dressing effect that appeared in the recorded LAES signals is also shown with the results of the numerical calculations. In addition, as applications of the LAES process, laser-assisted electron diffraction and THz-wave-assisted electron diffraction, both of which have been developed for the determination of instantaneous geometrical structure of molecules, are introduced. Keywords: electron scattering; electron diffraction;
    [Show full text]
  • Lecture 5 — Wave and Particle Beams
    Lecture 5 — Wave and particle beams. 1 What can we learn from scattering experiments • The crystal structure, i.e., the position of the atoms in the crystal averaged over a large number of unit cells and over time. This information is extracted from Bragg diffraction. • The deviation from perfect periodicity. All real crystals have a finite size and all atoms are subject to thermal motion (at zero temperature, to zero-point motion). The general con- sequence of these deviations from perfect periodicity is that the scattering will no longer occur exactly at the RL points (δ functions), but will be “spread out”. Finite-size effects and fluctuations of the lattice parameters produce peak broadening without altering the integrated cross section (amount of “scattering power”) of the Bragg peaks. Fluctuation in the atomic positions (e.g., due to thermal motion) or in the scattering amplitude of the individual atomic sites (e.g., due to substitutions of one atomic species with another), give rise to a selective reduction of the intensity of certain Bragg peaks by the so-called Debye- Waller factor, and to the appearance of intensity elsewhere in reciprocal space (diffuse scattering). • The case of liquids and glasses. Here, crystalline order is absent, and so are Bragg diffraction peaks, so that all the scattering is “diffuse”. Nonetheless, scattering of X-rays and neutrons from liquids and glasses is exploited to extract radial distribution functions — in essence, the probability of finding a certain atomic species at a given distance from another species. • The magnetic structure. Neutron possess a dipole moment and are strongly affected by the presence of internal magnetic fields in the crystals, generated by the magnetic moments of unpaired electrons.
    [Show full text]
  • Electron Scattering Processes in Non-Monochromatic and Relativistically Intense Laser Fields
    atoms Review Electron Scattering Processes in Non-Monochromatic and Relativistically Intense Laser Fields Felipe Cajiao Vélez * , Jerzy Z. Kami ´nskiand Katarzyna Krajewska Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; [email protected] (J.Z.K.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +48-22-5532920 Received: 31 January 2019; Accepted: 1 March 2019; Published: 6 March 2019 Abstract: The theoretical analysis of four fundamental laser-assisted non-linear scattering processes are summarized in this review. Our attention is focused on Thomson, Compton, Møller and Mott scattering in the presence of intense electromagnetic radiation. Depending on the phenomena under considerations, we model the laser field as a single laser pulse of ultrashort duration (for Thomson and Compton scattering) or non-monochromatic trains of pulses (for Møller and Mott scattering). Keywords: laser-assisted quantum processes; non-linear scattering; ultrashort laser pulses 1. Introduction Scattering theory is the part of theoretical physics in which interactions of particles and waves are investigated at remote times and large distances, as compared with typical time and size scales of probed systems. For this reason, scattering theory is the most effective and, in many cases, the only method of analyzing such diverse systems as the micro-world or the whole universe. Not surprisingly, the investigation of scattering phenomena has been playing a central role in physics since the end of the nineteenth century, starting from the Rayleigh’s explanation of why the sky is blue, up to modern medical applications of computerized tomography, the very recent discovery of the Higgs particle and the detection of gravitational waves.
    [Show full text]
  • An Introduction to Qed &
    AN INTRODUCTION TO QED & QCD By Dr G Zanderighi University of Oxford Lecture notes by Prof N Evans University of Southampton Lecture delivered at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 51 - - 52 - Contents 1 Introduction .............................................................................................. 55 1.1 Relativity Review...................................................................................... 56 2 Relativistic Wave Equations .................................................................. 58 2.1 The Klein-Gordon Equation .................................................................... 59 2.2 The Dirac Equation................................................................................... 62 2.3 Solutions to the Dirac Equation .............................................................. 63 2.4 Orthogonality and Completeness........................................................... 65 2.5 Spin ............................................................................................................. 66 2.6 Lorentz Covariance................................................................................... 68 2.7 Parity, charge conjugation and time reversal ....................................... 71 2.8 Bilinear Covariants................................................................................... 74 2.9 Massless (Ultra-relativistic) Fermions ................................................... 75 3 Quantum Electrodynamics....................................................................
    [Show full text]
  • Nuclear Physics Exploring the Heart of Matter
    Nuclear Physics Exploring the Heart of Matter Latifa Elouadrhiri Jefferson Lab Newport News VA, USA Scientist and Project Manager Spokesperson of major science program to study the nucleon “tomography” at Jefferson Lab. Ensure the construction of state of the art detector to conduct next generation of high precision experiments in electron scattering as part Jefferson Lab Upgrade. Grow world-class research and education program The 12 GeV Upgrade is a unique opportunity for the nuclear physics community to expand its reaches into unknown scientific areas. For the first time, researchers will be able to probe the quark and gluon structure of strongly interacting systems. Jefferson Lab at 12 GeV will make profound contributions to the study of hadronic matter-the matter that makes up everything in the world. Outline – General Introduction to the structure of matter – Electron scattering and Formalism – Jefferson Lab-3D imaging of the nucleon – The future of nuclear physics – Jefferson Lab upgrade Part I Introduction to the structure of matter • Ancient Atomic theory • The Modern Atomic Theory • Rutherford's Experiment • Bohr’s Model • Quantum Theory of the Atom The Greek Revolution Atomic theory first originated with Greek philosophers about 2500 years ago. This basic theory remained unchanged until the 19th century when it first became possible to test the theory with more sophisticated experiments. The atomic theory of matter was first proposed by Leucippus, a Greek philosopher who lived at around 400BC. He called the indivisible particles, that matter is made of, atoms (from the Greek word atomos, meaning “indivisible”). Leucippus's atomic theory was further developed by his disciple, Democritus.
    [Show full text]
  • Leptonic Weak Interactions and Neutrino Deep Inelastic Scattering Prof
    Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 10 : Leptonic Weak Interactions and Neutrino Deep Inelastic Scattering Prof. M.A. Thomson Michaelmas 2011 314 Aside : Neutrino Flavours !! Recent experiments (see Handout 11) neutrinos have mass (albeit very small) !! The textbook neutrino states, , are not the fundamental particles; these are !! Concepts like electron number conservation are now known not to hold. !! So what are ? !! Never directly observe neutrinos – can only detect them by their weak interactions. Hence by definition is the neutrino state produced along with an electron. Similarly, charged current weak interactions of the state produce an electron = weak eigenstates ! ? !e e e- W e+ W u d d u p u u n n u u p d d d d !! Unless dealing with very large distances: the neutrino produced with a positron will interact to produce an electron. For the discussion of the weak interaction continue to use as if they were the fundamental particle states. Prof. M.A. Thomson Michaelmas 2011 315 Muon Decay and Lepton Universality !!The leptonic charged current (W±) interaction vertices are: !!Consider muon decay: •!It is straight-forward to write down the matrix element Note: for lepton decay so propagator is a constant i.e. in limit of Fermi theory •!Its evaluation and subsequent treatment of a three-body decay is rather tricky (and not particularly interesting). Here will simply quote the result Prof. M.A. Thomson Michaelmas 2011 316 •!The muon to electron rate with •!Similarly for tau to electron •!However, the tau can decay to a number of final states: •!Recall total width (total transition rate) is the sum of the partial widths •!Can relate partial decay width to total decay width and therefore lifetime: •!Therefore predict Prof.
    [Show full text]
  • Main Attributes of Nuclides Presented in This Book
    Appendix A Main Attributes of Nuclides Presented in This Book Data given in TableA.1 can be used to determine the various decay energies for the specific radioactive decay examples as well as for the nuclear activation examples presented in this book. M stands for the nuclear rest mass; M stands for the atomic rest mass. The data were obtained from the NIST and are based on CODATA 2010 as follows: 1. Data for atomic masses M are given in atomic mass constants u and were obtained from the NIST at: (http://www.physics.nist.gov/pml/data/comp.cfm). 2. Rest mass of proton mp, neutron mn, electron me, and of the atomic mass constant u are from the NIST (http://www.physics.nist.gov/cuu/constants/index. html) as follows: −27 2 mp = 1.672 621 777×10 kg = 1.007 276 467 u = 938.272 046 MeV/c (A.1) −27 2 mn = 1.674 927 351×10 kg = 1.008 664 916 u = 939.565 379 MeV/c (A.2) −31 −4 2 me = 9.109 382 91×10 kg = 5.485 799 095×10 u = 0.510 998 928 MeV/c (A.3) − 1u= 1.660 538 922×10 27 kg = 931.494 060 MeV/c2 (A.4) 3. For a given nuclide, its nuclear rest energy was determined by subtracting the 2 rest energy of all atomic orbital electrons (Zmec ) from the atomic rest energy M(u)c2 as follows 2 2 2 Mc = M(u)c − Zmec = M(u) × 931.494 060 MeV/u − Z × 0.510 999 MeV.
    [Show full text]
  • The Development of the Quantum-Mechanical Electron Theory of Metals: 1928---1933
    The development of the quantum-mechanical electron theory of metals: 1S28—1933 Lillian Hoddeson and Gordon Bayrn Department of Physics, University of Illinois at Urbana-Champaign, Urbana, illinois 6180f Michael Eckert Deutsches Museum, Postfach 260102, 0-8000 Munich 26, Federal Republic of Germany We trace the fundamental developments and events, in their intellectual as well as institutional settings, of the emergence of the quantum-mechanical electron theory of metals from 1928 to 1933. This paper contin- ues an earlier study of the first phase of the development —from 1926 to 1928—devoted to finding the gen- eral quantum-mechanical framework. Solid state, by providing a large and ready number of concrete prob- lems, functioned during the period treated here as a target of application for the recently developed quan- tum mechanics; a rush of interrelated successes by numerous theoretical physicists, including Bethe, Bloch, Heisenberg, Peierls, Landau, Slater, and Wilson, established in these years the network of concepts that structure the modern quantum theory of solids. We focus on three examples: band theory, magnetism, and superconductivity, the former two immediate successes of the quantum theory, the latter a persistent failure in this period. The history revolves in large part around the theoretical physics institutes of the Universi- ties of Munich, under Sommerfeld, Leipzig under Heisenberg, and the Eidgenossische Technische Hochschule (ETH) in Zurich under Pauli. The year 1933 marked both a climax and a transition; as the lay- ing of foundations reached a temporary conclusion, attention began to shift from general formulations to computation of the properties of particular solids. CONTENTS mechanics of electrons in a crystal lattice (Bloch, 1928); these were followed by the further development in Introduction 287 1928—1933 of the quantum-mechanical basis of the I.
    [Show full text]