The Colour–Magnitude Relation of Globular Clusters in Centaurus And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observational Evidence of AGN Feedback
Observational Evidence of AGN Feedback A.C Fabian Institute of Astronomy, Madingley Road Cambridge CB3 0HA, UK Abstract Radiation, winds and jets from the active nucleus of a massive galaxy can interact with its interstellar medium leading to ejection or heating of the gas. This can terminate star formation in the galaxy and stifle accretion onto the black hole. Such Active Galactic Nucleus (AGN) feedback can account for the observed proportionality between central black hole and host galaxy mass. Direct observational evidence for the radiative or quasar mode of feedback, which occurs when the AGN is very luminous, has been difficult to obtain but is accumulating from a few exceptional objects. Feedback from the kinetic or radio mode, which uses the mechanical energy of radio-emitting jets often seen when the AGN is operating at a lower level, is common in massive elliptical galaxies. This mode is well observed directly through X-ray observations of the central galaxies of cool core clusters in the form of bubbles in the hot surrounding medium. The energy flow, which is roughly continuous, heats the hot intracluster gas and reduces radiative cooling and subsequent star formation by an order of magnitude. Feedback appears to maintain a long-lived heating/cooling balance. Powerful, jetted radio outbursts may represent a further mode of energy feedback which affect the cores of groups and subclusters. New telescopes and instruments from the radio to X-ray bands will come into operation over the next few years and lead to a rapid expansion in observational data on all modes of AGN feedback. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster R
University of Kentucky UKnowledge Physics and Astronomy Faculty Publications Physics and Astronomy 2011 A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster R. E. A. Canning University of Cambridge, UK A. C. Fabian University of Cambridge, UK R. M. Johnstone University of Cambridge, UK J. S. Sanders University of Cambridge, UK C. S. Crawford University of Cambridge, UK See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons Repository Citation Canning, R. E. A.; Fabian, A. C.; Johnstone, R. M.; Sanders, J. S.; Crawford, C. S.; Ferland, Gary J.; and Hatch, N. A., "A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster" (2011). Physics and Astronomy Faculty Publications. 36. https://uknowledge.uky.edu/physastron_facpub/36 This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors R. E. A. Canning, A. C. Fabian, R. M. Johnstone, J. S. Sanders, C. S. Crawford, Gary J. Ferland, and N. A. Hatch A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster Notes/Citation Information Published in Monthly Notices of the Royal Astronomical Society, v. -
Detection of Co Emission in Hydra I Cluster Galaxies
DETECTION OF CO EMISSION IN HYDRA I CLUSTER GALAXIES W.K. Huehtmeier Max- Planek-Ins t it ut fur Radioastr onomie Auf dem Huge1 69 5300 Bonn 1 , W. Germany Abstract A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHa was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster , NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies. 0 bservations Observations were performed with the 15m Swedish-ESO submillimeter telescope (SEST) at La Silla in January 1989 under favorable meteorological conditions. At a frequency of 115 GHz the half power beamwidth (HPBW) of this telescope is 43 arcsec. The cooled Schottky heterodyne receiver had a typical receiver temperature of 350 K; the system temperature was typically 650 to 900 K depending on elevation and humidity. An accousto-optic spectrometer (Zensen 1984) with a bandwidth of 500 MHz yielded a channel width of 0.69 MHz or about 1.8 km/s. In order to improve the signal-to-noise ratio of the integrated profiles usually 5 to 10 frequency channels were averaged resulting in a resolution of 9 to 18 km/s. -
Molecular Gas Content of Galaxies in the Hydra-Centaurus Supercluster
MOLECULAR GAS CONTENT OF GALAXIES IN THE HYDRA-CENTAURUS SUPERCLUSTER W.K. Huchtmeier ™ ** <$ '"" & ^ O Max-Planck-Institut fiir Radioastronomie Auf dem Hugel 69 , 5300 Bonn 1 , W. Germany • Abstract A survey of bright spiral galaxies in the Hydra-Centaurus supercluster for the CO(l-O) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). A total of 30 galaxies have been detected in the CO(l-O) transition out of 47 observed, which is a detection rate over 60%. Global physical parameters of these galaxies derived from optical, CO, HI, and IR measurements compare very well with properties of galaxies in the Virgo cluster. The Hydra I cluster (Abell 1060) is one of the nearest clusters and very similar to the Virgo cluster in many global parameters like type, population, size, and shape. Both clusters have comparable velocity dispersions (i.e. total mass) and are spiral rich. Hydra is well isolated in velocity space and appears more circular (Kwast 1966), and might be dynamically more relaxed, although the center may contain significant substructures (Fitchett and Meritt 1988) or projected foreground groups. Both clusters contain low luminosity central X-ray sources. We assume a distance of 68.4 Mpc for Hydra I in order to allow direct comparison with some (nearly) complete galaxy samples. The Centaurus cluster provides a valuable contrast to Virgo and Coma. It is intermediate in distance and in galaxy population type with a relatively well defined SO-dominated core and an extensive S-rich halo. Its richness class in the Abell scale is 1 or 2 which is richer than Virgo and poorer than Coma. -
The Giant That Turned out to Be a Dwarf 7 March 2007
The giant that turned out to be a dwarf 7 March 2007 New data obtained on the apparent celestial have very different redshifts, with NGC 5011C couple, NGC 5011 B and C, taken with the 3.6-m moving away from us five times slower than its ESO telescope, reveal that the two galaxies are companion on the sky. "This indicates they are at not at the same distance, as was believed for the different distances and not at all associated", says past 23 years. The observations show that NGC Jerjen. "Clearly, NGC 5011C belongs to the close 5011C is not a giant but a dwarf galaxy, an group of galaxies centred around Centaurus A, overlooked member of a group of galaxies in the while NGC 5011B is part of the much farther vicinity of the Milky Way. Centaurus cluster." The galaxy NGC 5011C is located towards the The astronomers also established that the two Centaurus constellation, in the direction of the galaxies have very different intrinsic properties. Centaurus A group of galaxies and the Centaurus NGC 5011B contains for example more heavy cluster of galaxies. The former is about 13 million chemical elements than NGC 5011C, and the latter light-years from our Milky Way, while the latter is seems to contain only about 10 million times the about 12 times farther away. mass of the Sun in stars and is therefore a true dwarf galaxy. For comparison, our Milky Way The appearance of NGC 5011C, with its low contains thousands of times more stars. density of stars and absence of distinctive features, would normally lead astronomers to "Our new observations with the 3.6-m ESO classify it as a nearby dwarf elliptical galaxy. -
Large Peculiar Velocities in the Hydra Centaurus Supercluster
LARGE PECULIAR VELOCITIES IN THE HYDRA CENTAURUS SUPERCLUSTER M. Aaronson1*, G.D. Bothun2, K.G. Budge3, JA. Dawe4, R.J. Dickens5, RJ. Hall6, J.R. Lucey7, J.R. Mould3, J.D. Murray6, R.A. Schommer8, A.E. Wright6. 1 Steward Observatory, University of Arizona 2 University of Michigan 3 California Institute of Technology 4 Australian National University 5Rutherford Appleton Laboratory 6 Australian National Radio Astronomy Observatory 7Anglo Australian Observatory 8 Rutgers University ABSTRACT Six clusters forming part of the Hydra-Cen Supercluster and its ex- tension on the opposite side of the galactic plane are under study at 21 cm with the Parkes radiotélescope. The infrared Tully-Fisher relation is used to determine the relative distances of the clusters. These clusters exhibit significant and generally positive peculiar velocities ranging from essentially zero for the Hydra cluster to as much as 1000 km/sec for the Pavo and Centaurus clusters. An upper limit of 500 km/sec was previously found in the study of clusters accessible from Arecibo. Data collection is not yet complete, however, and is further subject to unstud- ied systematic errors due to present reliance on photographic galaxy diameters. Nevertheless, these preliminary results support the notion of a large scale (and pre- sumably gravit at ionally) disturbed velocity field in the second and third quadrants of the supergalactic plane. 1. INTRODUCTION Comparison of the ratios of distances of galaxies with the ratios of their recession velocities allows one to learn something about the "noise" in the Hubble flow on various scales. One is subject to the limitation, however, that distance indicators are imprecise, and the 0.4 mag scatter in the infrared Tully-Fisher (IRTF) relation translates to an uncertainty of 1000 km/sec in an individual galaxy at cz = 5000 km/sec. -
Superclusters and the Local Supercluster Encyclopedia Of
eaa.iop.org DOI: 10.1888/0333750888/2605 Superclusters and the Local Supercluster R Brent Tully From Encyclopedia of Astronomy & Astrophysics P. Murdin © IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics Publishing Bristol and Philadelphia Downloaded on Tue Feb 07 18:29:13 GMT 2006 [131.215.103.76] Terms and Conditions Superclusters and the Local Supercluster E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Superclusters and the Local Our own Milky Way Galaxy is a relatively large spiral galaxy. The solar system is located in the flattened disk Supercluster near a spiral arm spur far out from the center. In the 19th century, William and John Herschel noted the Groups: the next level of the hierarchy uneven distribution of spiral nebulae across the sky (see Galaxies like to be with other galaxies. Gravity pulls HERSCHEL FAMILY). In the early 1920s, J H Reynolds remarked them together. Galaxies formed out of the self-attraction that large non-galactic nebulae cluster along a band and of matter in overdense regions and galaxies, in turn, are 10 yr later HARLOW SHAPLEY, providing confirmation with a embedded in larger-scale overdense regions that collapse more systematic survey, called the flattened concentration to form groups. Seventy per cent of galaxies are identified of brightest galaxies the ‘Local Supergalaxy’. G´erard de to lie in groups that are gravitationally bound and another Vaucouleurs, in the 1950s, showed that locally there is a 20% are found in looser associations that may not be flattened distribution of galaxies with the VIRGO CLUSTER at bound. The vast majority of these groups appear to be its core and our MILKY WAY GALAXY toward the periphery. -
Bruggen's Slide Presentation
PARTICLE ACCELERATION ON COSMOLOGICAL SCALES @HambObs MARCUS BRÜGGEN Abell 2744 Optical 1 Mpc Pearce+ (2017) Abell 2744 X-rays: intracluster mediumOptical (ICM) 1 Mpc Pearce+ (2017) Abell 2744 Radio: cosmicX-rays: rays intracluster (CR) + magnetic mediumOptical fields(ICM) 1 Mpc Pearce+ (2017) Abell 2744 Radio: cosmicX-rays: rays intracluster (CR) + magnetic mediumOptical fields(ICM) ~μGauss 1 Mpc Pearce+ (2017) Abell 2744 Radio: cosmicX-rays: rays intracluster (CR) + magnetic mediumOptical fields(ICM) ~μGauss radio spectra slope: spectral index (α) “flat” “steep” Diffuse cluster radio emission has a steep 1 Mpc spectrum Pearce+ (2017) DIFFUSE CLUSTER EMISSION JVLA 1-4 GHz latest reviews: Feretti+2012; Brunetti & Jones 2014 Pearce et al. (2017) 1.0 Mpc X-rays: 0.5-2.0 keV RELIC HALOS HALO • Mpc sizes, centrally located • Unpolarized Tailed radio galaxy • X-ray luminosity radio power correlation foreground AGN • Found in disturbed clusters DIFFUSE CLUSTER EMISSION JVLA 1-4 GHz latest reviews: Feretti+2012; Brunetti & Jones 2014 Pearce et al. (2017) 1.0 Mpc X-rays: 0.5-2.0 keV RELICS RELIC • Mpc sizes, cluster outskits • Elongated, filamentary morphologies • Polarized • Found in disturbed clusters HALOS HALO • Mpc sizes, centrally located • Unpolarized Tailed radio galaxy • X-ray luminosity radio power correlation foreground AGN • Found in disturbed clusters HOW DO YOU ACCELERATE PARTICLES? FERMI (1949): SCATTER OFF MOVING CLOUDS. VERY SLOW (V2/C2) BECAUSE CLOUDS BOTH APPROACH AND RECEDE IN SHOCKS, ACCELERATION IS 1ST ORDER IN V/C BECAUSE FLOWS -
The Messenger
THE MESSENGER No. 30 - December 1982 TWENTY YEARS ESO On the 5th of October 1962, the ESO Convention was signed obtain the confidence of the European community as an in Paris by representatives of Belgium, France, the Federal effective cooperative organization. Republic of Germany, the Netherlands and Sweden. More than It is important that ESO has shown that it can develop a year later, on the 17th of January 1964, the Convention went telescopes and instrumentation and stimulate scientific into effect, following parliamentary ratification in the required research at a level comparable to the best available elsewhere. majority of countries. In 1967, Denmark also joined. In the early Perhaps, however, its most significant contribution is to Euro days (partly before the formalities were completed), site sur pean integration. Of course, the fact that persons of different veys were made which led to the choice of La Silla as the nationalities work together in relative peace is all to the good. observatory location, and work was started on the La Silla But the task of ESO goes far beyond this: ESO has to make its infrastructure and on the Schmidt telescope and the 3.6 m contribution to creating the confidence that Europe can set its telescope. Some other telescopes were ordered from industry. own aims in science and technology and accomplish these After it was realized that ESO did not have the necessary successfully. Only on the basis of this self-confidence can an (technical) management capabilities to bring all its projects to a advanced and independent Europe be built. -
MACHINE LEARNING in GALAXY GROUPS DETECTION By
MACHINE LEARNING IN GALAXY GROUPS DETECTION by RAFEE TARIQ IBRAHEM A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Computer Science College of Engineering and Physical Sciences The University of Birmingham May 2017 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract The detection of galaxy groups and clusters is of great importance in the field of astrophysics. In particular astrophysicists are interested in the evolution and formation of these systems, as well as the interactions that occur within galaxy groups and clusters. In this thesis, we developed a probabilistic model capa- ble of detecting galaxy groups and clusters based on the Hough transform. We called this approach probabilistic Hough transform based on adaptive local ker- nel (PHTALK). PHTALK was tested on a 3D realistic galaxy and mass assembly (GAMA) mock data catalogue (at close redshift z < 0:1)(mock data: contains information related to galaxies’ position, redshift and other properties). We com- pared the performance of our PHTALK method with the performance of two ver- sions of the standard friends-of-friends (FoF) method. -
Large Peculiar Velocities in the Hydra Centaurus Supercluster
LARGE PECULIAR VELOCITIES IN THE HYDRA CENTAURUS SUPERCLUSTER M. Aaronson1*, G.D. Bothun2, K.G. Budge3, JA. Dawe4, R.J. Dickens5, RJ. Hall6, J.R. Lucey7, J.R. Mould3, J.D. Murray6, R.A. Schommer8, A.E. Wright6. 1 Steward Observatory, University of Arizona 2 University of Michigan 3 California Institute of Technology 4 Australian National University 5Rutherford Appleton Laboratory 6 Australian National Radio Astronomy Observatory 7Anglo Australian Observatory 8 Rutgers University ABSTRACT Six clusters forming part of the Hydra-Cen Supercluster and its ex- tension on the opposite side of the galactic plane are under study at 21 cm with the Parkes radiotélescope. The infrared Tully-Fisher relation is used to determine the relative distances of the clusters. These clusters exhibit significant and generally positive peculiar velocities ranging from essentially zero for the Hydra cluster to as much as 1000 km/sec for the Pavo and Centaurus clusters. An upper limit of 500 km/sec was previously found in the study of clusters accessible from Arecibo. Data collection is not yet complete, however, and is further subject to unstud- ied systematic errors due to present reliance on photographic galaxy diameters. Nevertheless, these preliminary results support the notion of a large scale (and pre- sumably gravit at ionally) disturbed velocity field in the second and third quadrants of the supergalactic plane. 1. INTRODUCTION Comparison of the ratios of distances of galaxies with the ratios of their recession velocities allows one to learn something about the "noise" in the Hubble flow on various scales. One is subject to the limitation, however, that distance indicators are imprecise, and the 0.4 mag scatter in the infrared Tully-Fisher (IRTF) relation translates to an uncertainty of 1000 km/sec in an individual galaxy at cz = 5000 km/sec.