MACHINE LEARNING in GALAXY GROUPS DETECTION By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Galaxy Clusters: Waking Perseus
PUBLISHED: 2 JUNE 2017 | VOLUME: 1 | ARTICLE NUMBER: 164 news & views GALAXY CLUSTERS Waking Perseus The Perseus cluster contains over 1,000 a Kelvin–Helmholtz instability, which galaxies packed into a region ~3,500 kpc propagates in the wave direction and in extent. It is inevitable that such close- causes the dark area indicated in the packed galaxies will interact, and the image. This dark ‘bay-like’ feature is Chandra X-ray Observatory has observed approximately the size of the Milky Way, the beautiful result of that interaction and may be the result of a cold front in (pictured). This is no snapshot — the cluster gas: an interface where the Chandra observed the galaxy cluster temperature drops dramatically on scales for over 16 days in order to capture this much smaller than the mean free path. image. Stephen Walker and colleagues An advantage of this comparison of have retrieved the archival data and observations and simulations is that processed it to enhance the edges of (unmeasurable) physical quantities the surface brightness distribution. This can be estimated. In this case, the bay analysis, reported last year (Sanders et al., 50 kpc feature only appears in this form when Mon. Not. R. Astron. Soc. 460, 1898–1911; the ratio of the thermal pressure to the ROYAL ASTRONOMICAL SOCIETY ASTRONOMICAL ROYAL 2016), highlighted two features in the magnetic pressure is ~200, and this X-ray emission that are discussed by determination in turn allows the authors Walker et al. (Mon. Not. R. Astron. Soc. pattern seen in the image could have been to obtain an order-of-magnitude estimate 468, 2506–2516; 2017): the swirling wave generated by a passing galaxy cluster about of the magnetic field. -
The Dynamical State of the Coma Cluster with XMM-Newton?
A&A 400, 811–821 (2003) Astronomy DOI: 10.1051/0004-6361:20021911 & c ESO 2003 Astrophysics The dynamical state of the Coma cluster with XMM-Newton? D. M. Neumann1,D.H.Lumb2,G.W.Pratt1, and U. G. Briel3 1 CEA/DSM/DAPNIA Saclay, Service d’Astrophysique, L’Orme des Merisiers, Bˆat. 709, 91191 Gif-sur-Yvette, France 2 Science Payloads Technology Division, Research and Science Support Dept., ESTEC, Postbus 299 Keplerlaan 1, 2200AG Noordwijk, The Netherlands 3 Max-Planck Institut f¨ur extraterrestrische Physik, Giessenbachstr., 85740 Garching, Germany Received 19 June 2002 / Accepted 13 December 2002 Abstract. We present in this paper a substructure and spectroimaging study of the Coma cluster of galaxies based on XMM- Newton data. XMM-Newton performed a mosaic of observations of Coma to ensure a large coverage of the cluster. We add the different pointings together and fit elliptical beta-models to the data. We subtract the cluster models from the data and look for residuals, which can be interpreted as substructure. We find several significant structures: the well-known subgroup connected to NGC 4839 in the South-West of the cluster, and another substructure located between NGC 4839 and the centre of the Coma cluster. Constructing a hardness ratio image, which can be used as a temperature map, we see that in front of this new structure the temperature is significantly increased (higher or equal 10 keV). We interpret this temperature enhancement as the result of heating as this structure falls onto the Coma cluster. We furthermore reconfirm the filament-like structure South-East of the cluster centre. -
Detection of Co Emission in Hydra I Cluster Galaxies
DETECTION OF CO EMISSION IN HYDRA I CLUSTER GALAXIES W.K. Huehtmeier Max- Planek-Ins t it ut fur Radioastr onomie Auf dem Huge1 69 5300 Bonn 1 , W. Germany Abstract A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHa was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster , NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies. 0 bservations Observations were performed with the 15m Swedish-ESO submillimeter telescope (SEST) at La Silla in January 1989 under favorable meteorological conditions. At a frequency of 115 GHz the half power beamwidth (HPBW) of this telescope is 43 arcsec. The cooled Schottky heterodyne receiver had a typical receiver temperature of 350 K; the system temperature was typically 650 to 900 K depending on elevation and humidity. An accousto-optic spectrometer (Zensen 1984) with a bandwidth of 500 MHz yielded a channel width of 0.69 MHz or about 1.8 km/s. In order to improve the signal-to-noise ratio of the integrated profiles usually 5 to 10 frequency channels were averaged resulting in a resolution of 9 to 18 km/s. -
Molecular Gas Content of Galaxies in the Hydra-Centaurus Supercluster
MOLECULAR GAS CONTENT OF GALAXIES IN THE HYDRA-CENTAURUS SUPERCLUSTER W.K. Huchtmeier ™ ** <$ '"" & ^ O Max-Planck-Institut fiir Radioastronomie Auf dem Hugel 69 , 5300 Bonn 1 , W. Germany • Abstract A survey of bright spiral galaxies in the Hydra-Centaurus supercluster for the CO(l-O) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). A total of 30 galaxies have been detected in the CO(l-O) transition out of 47 observed, which is a detection rate over 60%. Global physical parameters of these galaxies derived from optical, CO, HI, and IR measurements compare very well with properties of galaxies in the Virgo cluster. The Hydra I cluster (Abell 1060) is one of the nearest clusters and very similar to the Virgo cluster in many global parameters like type, population, size, and shape. Both clusters have comparable velocity dispersions (i.e. total mass) and are spiral rich. Hydra is well isolated in velocity space and appears more circular (Kwast 1966), and might be dynamically more relaxed, although the center may contain significant substructures (Fitchett and Meritt 1988) or projected foreground groups. Both clusters contain low luminosity central X-ray sources. We assume a distance of 68.4 Mpc for Hydra I in order to allow direct comparison with some (nearly) complete galaxy samples. The Centaurus cluster provides a valuable contrast to Virgo and Coma. It is intermediate in distance and in galaxy population type with a relatively well defined SO-dominated core and an extensive S-rich halo. Its richness class in the Abell scale is 1 or 2 which is richer than Virgo and poorer than Coma. -
Size and Scale Attendance Quiz II
Size and Scale Attendance Quiz II Are you here today? Here! (a) yes (b) no (c) are we still here? Today’s Topics • “How do we know?” exercise • Size and Scale • What is the Universe made of? • How big are these things? • How do they compare to each other? • How can we organize objects to make sense of them? What is the Universe made of? Stars • Stars make up the vast majority of the visible mass of the Universe • A star is a large, glowing ball of gas that generates heat and light through nuclear fusion • Our Sun is a star Planets • According to the IAU, a planet is an object that 1. orbits a star 2. has sufficient self-gravity to make it round 3. has a mass below the minimum mass to trigger nuclear fusion 4. has cleared the neighborhood around its orbit • A dwarf planet (such as Pluto) fulfills all these definitions except 4 • Planets shine by reflected light • Planets may be rocky, icy, or gaseous in composition. Moons, Asteroids, and Comets • Moons (or satellites) are objects that orbit a planet • An asteroid is a relatively small and rocky object that orbits a star • A comet is a relatively small and icy object that orbits a star Solar (Star) System • A solar (star) system consists of a star and all the material that orbits it, including its planets and their moons Star Clusters • Most stars are found in clusters; there are two main types • Open clusters consist of a few thousand stars and are young (1-10 million years old) • Globular clusters are denser collections of 10s-100s of thousand stars, and are older (10-14 billion years -
Identification and Study of Systems of Galaxies in The
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/41708749 Identification and study of systems of galaxies in the Shapley supercluster Article in Astronomy and Astrophysics · January 2006 DOI: 10.1051/0004-6361:20053623 CITATIONS READS 11 41 5 authors, including: Andreas Reisenegger Hernan Quintana Pontifical Catholic University of Chile Pontifical Catholic University of Chile 111 PUBLICATIONS 1,691 CITATIONS 226 PUBLICATIONS 5,059 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Abell and Group Galaxy Studies View project PUC Astronomy Group - Cluster of galaxies View project All content following this page was uploaded by Hernan Quintana on 20 July 2014. The user has requested enhancement of the downloaded file. A&A 445, 819–825 (2006) Astronomy DOI: 10.1051/0004-6361:20053623 & c ESO 2006 Astrophysics Identification and study of systems of galaxies in the Shapley supercluster C. J. Ragone1,2, H. Muriel1,2, D. Proust3, A. Reisenegger4, and H. Quintana4 1 Grupo de Investigaciones en Astronomía Teórica y Experimental, IATE, Observatorio Astronómico, Laprida 854, Córdoba, Argentina 2 Consejo de Investigaciones Científicas y Técnicas de la República Argentina e-mail: [cin;hernan]@oac.uncor.edu 3 GEPI, Observatoire de Paris-Meudon, 92195 Meudon Cedex, France e-mail: [email protected] 4 Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile e-mail: [areisene;hquintana]@astro.puc.cl Received 13 June 2005 / Accepted 7 September 2005 ABSTRACT Based on the largest compilation of galaxies with redshift in the region of the Shapley Supercluster (Proust et al. -
Milkomeda's Birthday
. o gahma-ray bursts hold secrets of the infant . ~~How,,astrono.mers? -.$ . .. : are finding out. g:& , g:& a&'" - . ' Bob Berman Master the How to create your on finding art of wide- own astronomy another Earth field imaging '..weather forecast p. 13 p. 66 - ,p. 64 > : I Ii. BILLIONS OF YEARS FROM bJW, ttp night sky will glow with stars, dust,.md psfrom two galaxies: the Milky Way, in ~Mchwe' live, and the *roaching Anqromeda Galaxy (M31). LYNE~TECOOKFOR ASTRONOMY / THE ANDROMEDA GALAXY (M31) is a typical spiral of stars, dust, and gas. Spiral galaxies the Sun's mass. It also suggests the Milky I dominate the night sky in the local universe. Fourteen satellite galaxies accompany / Andromeda, including the two visible in this image: M32 (above Andromeda) and NGC 205 Way and Andromeda \c.ill nialie a close pass : (below). Andromeda is the largest in the Local Group of galaxies. TONYANUDAPHNEHALLAS in about 4 billion years. Kahn and Woltjer inspired a generation and is visible in the northern sky with the effect. In contrast, most galaxies in the uni- of studies that further constrained the mass naked eye. The remaining members of the verse are flying away from the Milky Way. of the Local Group and revealed important Local Group - several dozen - are a bevy characteristics of Andromeda's orbit, such of much smaller satellite galaxies. Timing is everything as its total energy of motion. A galaxy group con~prisestwo or more Nearly 50 years ago, Franz Kahn and But the timing argument does not have relatively close, massive galaxies. -
Galaxies Through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars
Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz arXiv:1910.09849v1 [astro-ph.GA] 22 Oct 2019 Faculty of Physical Sciences University of Iceland 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics PhD Committee Prof. Páll Jakobsson (supervisor) Assoc. Prof. Jesús Zavala Prof. Emeritus Einar H. Guðmundsson Opponents Prof. J. Xavier Prochaska Dr. Valentina D’Odorico Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, July 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics Copyright © Kasper Elm Heintz 2019 All rights reserved Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Dunhagi 107, Reykjavik Iceland Telephone: 525-4000 Bibliographic information: Kasper Elm Heintz, 2019, Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars, PhD disserta- tion, Faculty of Physical Sciences, University of Iceland, 71 pp. ISBN 978-9935-9473-3-8 Printing: Háskólaprent Reykjavik, Iceland, July 2019 Contents Abstract v Útdráttur vii Acknowledgments ix 1 Introduction 1 1.1 The nature of GRBs and quasars 1 1.1.1 GRB optical afterglows...................................2 1.1.2 Late-stage emission components associated with GRBs..............3 1.1.3 Quasar classification and selection............................4 1.1.4 GRBs and quasars as cosmic probes..........................5 1.2 Damped Lyman-α absorbers 7 1.2.1 Gas-phase abundances and kinematics........................ 10 1.2.2 The effect of dust..................................... -
Constraining Cosmic Rays and Magnetic Fields in the Perseus
A&A 541, A99 (2012) Astronomy DOI: 10.1051/0004-6361/201118502 & c ESO 2012 Astrophysics Constraining cosmic rays and magnetic fields in the Perseus galaxy cluster with TeV observations by the MAGIC telescopes J. Aleksic´1,E.A.Alvarez2, L. A. Antonelli3, P. Antoranz4, M. Asensio2, M. Backes5, U. Barres de Almeida6, J. A. Barrio2, D. Bastieri7, J. Becerra González8,9, W. Bednarek10, A. Berdyugin11,K.Berger8,9,E.Bernardini12, A. Biland13,O.Blanch1,R.K.Bock6, A. Boller13, G. Bonnoli3, D. Borla Tridon6,I.Braun13, T. Bretz14,26, A. Cañellas15,E.Carmona6,28,A.Carosi3,P.Colin6,, E. Colombo8, J. L. Contreras2, J. Cortina1, L. Cossio16, S. Covino3, F. Dazzi16,27,A.DeAngelis16,G.DeCaneva12, E. De Cea del Pozo17,B.DeLotto16, C. Delgado Mendez8,28, A. Diago Ortega8,9,M.Doert5, A. Domínguez18, D. Dominis Prester19,D.Dorner13, M. Doro20, D. Eisenacher14, D. Elsaesser14,D.Ferenc19, M. V. Fonseca2, L. Font20,C.Fruck6,R.J.GarcíaLópez8,9, M. Garczarczyk8, D. Garrido20, G. Giavitto1, N. Godinovic´19,S.R.Gozzini12, D. Hadasch17,D.Häfner6, A. Herrero8,9, D. Hildebrand13, D. Höhne-Mönch14,J.Hose6, D. Hrupec19,T.Jogler6, H. Kellermann6,S.Klepser1, T. Krähenbühl13,J.Krause6, J. Kushida6,A.LaBarbera3,D.Lelas19,E.Leonardo4, N. Lewandowska14, E. Lindfors11, S. Lombardi7,, M. López2, R. López1, A. López-Oramas1,E.Lorenz13,6, M. Makariev21,G.Maneva21, N. Mankuzhiyil16, K. Mannheim14, L. Maraschi3, M. Mariotti7, M. Martínez1,D.Mazin1,6, M. Meucci4, J. M. Miranda4,R.Mirzoyan6, J. Moldón15,A.Moralejo1,P.Munar-Adrover15,A.Niedzwiecki10, D. Nieto2, K. Nilsson11,29,N.Nowak6, R. -
Clusters of Galaxy Hierarchical Structure the Universe Shows Range of Patterns of Structures on Decidedly Different Scales
Astronomy 218 Clusters of Galaxy Hierarchical Structure The Universe shows range of patterns of structures on decidedly different scales. Stars (typical diameter of d ~ 106 km) are found in gravitationally bound systems called star clusters (≲ 106 stars) and galaxies (106 ‒ 1012 stars). Galaxies (d ~ 10 kpc), composed of stars, star clusters, gas, dust and dark matter, are found in gravitationally bound systems called groups (< 50 galaxies) and clusters (50 ‒ 104 galaxies). Clusters (d ~ 1 Mpc), composed of galaxies, gas, and dark matter, are found in currently collapsing systems called superclusters. Superclusters (d ≲ 100 Mpc) are the largest known structures. The Local Group Three large spirals, the Milky Way Galaxy, Andromeda Galaxy(M31), and Triangulum Galaxy (M33) and their satellites make up the Local Group of galaxies. At least 45 galaxies are members of the Local Group, all within about 1 Mpc of the Milky Way. The mass of the Local Group is dominated by 11 11 10 M31 (7 × 10 M☉), MW (6 × 10 M☉), M33 (5 × 10 M☉) Virgo Cluster The nearest large cluster to the Local Group is the Virgo Cluster at a distance of 16 Mpc, has a width of ~2 Mpc though it is far from spherical. It covers 7° of the sky in the Constellations Virgo and Coma Berenices. Even these The 4 brightest very bright galaxies are giant galaxies are elliptical galaxies invisible to (M49, M60, M86 & the unaided M87). eye, mV ~ 9. Virgo Census The Virgo Cluster is loosely concentrated and irregularly shaped, making it fairly M88 M99 representative of the most M100 common class of clusters. -
Groups of Galaxies in the Nearby Universe Held in Santiago De Chile, 5–9 December 2006
Report on the Conference on Groups of Galaxies in the Nearby Universe held in Santiago de Chile, 5–9 December 2006 Ivo Saviane, Valentin D. Ivanov, Jura Borissova (ESO) n Bi r 10 For every galaxy in the field or in clusters, pe p there are about three galaxies in groups. ou Therefore, the evolution of most galax- Gr r ies actually happens in groups. The Milky pe Way resides in a group, and groups can be found at high redshift. The current xies 1 generation of 10-m-class telescopes and Gala space facilities allows us to study mem- of bers of nearby groups with exquisite de- tail, and their properties can be corre- –1 Number L < 41.7 Log (erg s ) lated with the global properties of their x L > 41.7 Log (erg s–1) host group. Finally, groups are relevant x for cosmology, since they trace large- scale structures better than clusters, and –22 –20 –18 –16 –14 Absolute Magnitude (M ) the evolution of groups and clusters may B be related. Figure 1: Cumulative B-band luminosity function of Strangely, there are three times fewer pa- 25 GEMS groups of galaxies grouped into X-ray- bright and X-ray-faint categories, fitted with one or pers on groups of galaxies than on clus- two Schechter functions, respectively (Miles et ters of galaxies, as revealed by an ADS al. 2004, MNRAS 355, 785; presented by Raychaud- search. Organising this conference was a hury). Mergers could explain the bimodality of the way to focus the attention of the com- luminosity function of X-ray-faint groups. -
Astronomy Magazine 2011 Index Subject Index
Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63