Extragalactic Large-Scale Structures Behind the Southern Milky Way?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Instruction Manual
1 Contents 1. Constellation Watch Cosmo Sign.................................................. 4 2. Constellation Display of Entire Sky at 35° North Latitude ........ 5 3. Features ........................................................................................... 6 4. Setting the Time and Constellation Dial....................................... 8 5. Concerning the Constellation Dial Display ................................ 11 6. Abbreviations of Constellations and their Full Spellings.......... 12 7. Nebulae and Star Clusters on the Constellation Dial in Light Green.... 15 8. Diagram of the Constellation Dial............................................... 16 9. Precautions .................................................................................... 18 10. Specifications................................................................................. 24 3 1. Constellation Watch Cosmo Sign 2. Constellation Display of Entire Sky at 35° The Constellation Watch Cosmo Sign is a precisely designed analog quartz watch that North Latitude displays not only the current time but also the correct positions of the constellations as Right ascension scale Ecliptic Celestial equator they move across the celestial sphere. The Cosmo Sign Constellation Watch gives the Date scale -18° horizontal D azimuth and altitude of the major fixed stars, nebulae and star clusters, displays local i c r e o Constellation dial setting c n t s ( sidereal time, stellar spectral type, pole star hour angle, the hours for astronomical i o N t e n o l l r f -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Tidal Origin of NGC 1427A in the Fornax Cluster
MNRAS 000,1{9 (2017) Preprint 30 October 2017 Compiled using MNRAS LATEX style file v3.0 Tidal origin of NGC 1427A in the Fornax cluster K. Lee-Waddell1?, P. Serra2;1, B. Koribalski1, A. Venhola3;4, E. Iodice5, B. Catinella6, L. Cortese6, R. Peletier3, A. Popping6;7, O. Keenan8, M. Capaccioli9 1CSIRO Astronomy and Space Sciences, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia 2INAF { Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy 3Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands 4Astronomy Research Unit, University of Oulu, FI-90014, Finland 5INAF { Astronomical Observatory of Capodimonte, via Moiariello 16, Naples, I-80131, Italy 6International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia 7CAASTRO: ARC Centre of Excellence for All-sky Astrophysics, Australia 8School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, United Kingsdom 9Dip.di Fisica Ettore Pancini, University of Naples \Federico II," C.U. Monte SantAngelo, Via Cinthia, I-80126, Naples, Italy Accepted 2017 October 26. Received 2017 October 15; in original form 2017 March 31 ABSTRACT We present new Hi observations from the Australia Telescope Compact Array and deep optical imaging from OmegaCam on the VLT Survey Telescope of NGC 1427A, an arrow-shaped dwarf irregular galaxy located in the Fornax cluster. The data reveal a star-less Hi tail that contains ∼10% of the atomic gas of NGC 1427A as well as extended stellar emission that shed new light on the recent history of this galaxy. -
The Constellation Microscopium, the Microscope Microscopium Is A
The Constellation Microscopium, the Microscope Microscopium is a small constellation in the southern sky, defined in the 18th century by Nicolas Louis de Lacaille in 1751–52 . Its name is Latin for microscope; it was invented by Lacaille to commemorate the compound microscope, i.e. one that uses more than one lens. The first microscope was invented by the two brothers, Hans and Zacharius Jensen, Dutch spectacle makers of Holland in 1590, who were also involved in the invention of the telescope (see below). Lacaille first showed it on his map of 1756 under the name le Microscope but Latinized this to Microscopium on the second edition published in 1763. He described it as consisting of "a tube above a square box". It contains sixty-nine stars, varying in magnitude from 4.8 to 7, the lucida being Gamma Microscopii of apparent magnitude 4.68. Two star systems have been found to have planets, while another has a debris disk. The stars that now comprise Microscopium may formerly have belonged to the hind feet of Sagittarius. However, this is uncertain as, while its stars seem to be referred to by Al-Sufi as having been seen by Ptolemy, Al-Sufi does not specify their exact positions. Microscopium is bordered Capricornus to the north, Piscis Austrinus and Grus to the west, Sagittarius to the east, Indus to the south, and touching on Telescopium to the southeast. The recommended three-letter abbreviation for the constellation, as adopted Seen in the 1824 star chart set Urania's Mirror (lower left) by the International Astronomical Union in 1922, is 'Mic'. -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Observational Evidence of AGN Feedback
Observational Evidence of AGN Feedback A.C Fabian Institute of Astronomy, Madingley Road Cambridge CB3 0HA, UK Abstract Radiation, winds and jets from the active nucleus of a massive galaxy can interact with its interstellar medium leading to ejection or heating of the gas. This can terminate star formation in the galaxy and stifle accretion onto the black hole. Such Active Galactic Nucleus (AGN) feedback can account for the observed proportionality between central black hole and host galaxy mass. Direct observational evidence for the radiative or quasar mode of feedback, which occurs when the AGN is very luminous, has been difficult to obtain but is accumulating from a few exceptional objects. Feedback from the kinetic or radio mode, which uses the mechanical energy of radio-emitting jets often seen when the AGN is operating at a lower level, is common in massive elliptical galaxies. This mode is well observed directly through X-ray observations of the central galaxies of cool core clusters in the form of bubbles in the hot surrounding medium. The energy flow, which is roughly continuous, heats the hot intracluster gas and reduces radiative cooling and subsequent star formation by an order of magnitude. Feedback appears to maintain a long-lived heating/cooling balance. Powerful, jetted radio outbursts may represent a further mode of energy feedback which affect the cores of groups and subclusters. New telescopes and instruments from the radio to X-ray bands will come into operation over the next few years and lead to a rapid expansion in observational data on all modes of AGN feedback. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster R
University of Kentucky UKnowledge Physics and Astronomy Faculty Publications Physics and Astronomy 2011 A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster R. E. A. Canning University of Cambridge, UK A. C. Fabian University of Cambridge, UK R. M. Johnstone University of Cambridge, UK J. S. Sanders University of Cambridge, UK C. S. Crawford University of Cambridge, UK See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons Repository Citation Canning, R. E. A.; Fabian, A. C.; Johnstone, R. M.; Sanders, J. S.; Crawford, C. S.; Ferland, Gary J.; and Hatch, N. A., "A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster" (2011). Physics and Astronomy Faculty Publications. 36. https://uknowledge.uky.edu/physastron_facpub/36 This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors R. E. A. Canning, A. C. Fabian, R. M. Johnstone, J. S. Sanders, C. S. Crawford, Gary J. Ferland, and N. A. Hatch A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster Notes/Citation Information Published in Monthly Notices of the Royal Astronomical Society, v. -
Detection of Co Emission in Hydra I Cluster Galaxies
DETECTION OF CO EMISSION IN HYDRA I CLUSTER GALAXIES W.K. Huehtmeier Max- Planek-Ins t it ut fur Radioastr onomie Auf dem Huge1 69 5300 Bonn 1 , W. Germany Abstract A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHa was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster , NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies. 0 bservations Observations were performed with the 15m Swedish-ESO submillimeter telescope (SEST) at La Silla in January 1989 under favorable meteorological conditions. At a frequency of 115 GHz the half power beamwidth (HPBW) of this telescope is 43 arcsec. The cooled Schottky heterodyne receiver had a typical receiver temperature of 350 K; the system temperature was typically 650 to 900 K depending on elevation and humidity. An accousto-optic spectrometer (Zensen 1984) with a bandwidth of 500 MHz yielded a channel width of 0.69 MHz or about 1.8 km/s. In order to improve the signal-to-noise ratio of the integrated profiles usually 5 to 10 frequency channels were averaged resulting in a resolution of 9 to 18 km/s. -
Molecular Gas Content of Galaxies in the Hydra-Centaurus Supercluster
MOLECULAR GAS CONTENT OF GALAXIES IN THE HYDRA-CENTAURUS SUPERCLUSTER W.K. Huchtmeier ™ ** <$ '"" & ^ O Max-Planck-Institut fiir Radioastronomie Auf dem Hugel 69 , 5300 Bonn 1 , W. Germany • Abstract A survey of bright spiral galaxies in the Hydra-Centaurus supercluster for the CO(l-O) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). A total of 30 galaxies have been detected in the CO(l-O) transition out of 47 observed, which is a detection rate over 60%. Global physical parameters of these galaxies derived from optical, CO, HI, and IR measurements compare very well with properties of galaxies in the Virgo cluster. The Hydra I cluster (Abell 1060) is one of the nearest clusters and very similar to the Virgo cluster in many global parameters like type, population, size, and shape. Both clusters have comparable velocity dispersions (i.e. total mass) and are spiral rich. Hydra is well isolated in velocity space and appears more circular (Kwast 1966), and might be dynamically more relaxed, although the center may contain significant substructures (Fitchett and Meritt 1988) or projected foreground groups. Both clusters contain low luminosity central X-ray sources. We assume a distance of 68.4 Mpc for Hydra I in order to allow direct comparison with some (nearly) complete galaxy samples. The Centaurus cluster provides a valuable contrast to Virgo and Coma. It is intermediate in distance and in galaxy population type with a relatively well defined SO-dominated core and an extensive S-rich halo. Its richness class in the Abell scale is 1 or 2 which is richer than Virgo and poorer than Coma. -
Ast 101 Prin of Astronomy Dopirak
Principles of Astronomy AST K101 (MO1), Three sem. hrs. credits Instructor: Bill Dopirak CRN: 10862 (860)892-5758 Spring 2007 e-mail: [email protected] Three Rivers Community College Mohegan Campus Office Hrs. Norwich, CT 06360 M - 9:30-10:00am, T – 5:00-6:00pm R 5:00-6:00pm, F 12:00-1:00pm (Or by appointment) Required Text: Schneider, S.E. and T.T. Arny. 2007. Pathways to Astronomy. McGraw-Hill: Higher Education Publishing. p.699. Optional Materials: Starry Night© Pro. Star charts, Planisphere, Binoculars Catalog Description: This course covers the ideas that account for the earth and heavenly bodies and their characteristics. This course is designed to develop an appreciation of the beauty and order of the universe. Observational exercises, including star identifications and use of the telescope, are included. Primary Objectives: In addition to understanding the mechanisms involved in ascertaining distance, temperature, and movements of celestial bodies, students will be able to orientate themselves with the night sky by using constellations as guides. Attendance Policy: Students are expected to attend class sessions regularly. If a class is missed due to circumstances beyond your control, please, be sure to notify your instructor and make the necessary arrangements for obtaining the lecture notes. You will be responsible for the material. If 3 classes are missed, a deduction of 5-POINTS will be taking from your final grade. TEN-POINTS will be deducted from your final grade if 5 or more classes are missed. A 5-point bonus will be added to your final grade if 100% attendance is noted. -
The Giant That Turned out to Be a Dwarf 7 March 2007
The giant that turned out to be a dwarf 7 March 2007 New data obtained on the apparent celestial have very different redshifts, with NGC 5011C couple, NGC 5011 B and C, taken with the 3.6-m moving away from us five times slower than its ESO telescope, reveal that the two galaxies are companion on the sky. "This indicates they are at not at the same distance, as was believed for the different distances and not at all associated", says past 23 years. The observations show that NGC Jerjen. "Clearly, NGC 5011C belongs to the close 5011C is not a giant but a dwarf galaxy, an group of galaxies centred around Centaurus A, overlooked member of a group of galaxies in the while NGC 5011B is part of the much farther vicinity of the Milky Way. Centaurus cluster." The galaxy NGC 5011C is located towards the The astronomers also established that the two Centaurus constellation, in the direction of the galaxies have very different intrinsic properties. Centaurus A group of galaxies and the Centaurus NGC 5011B contains for example more heavy cluster of galaxies. The former is about 13 million chemical elements than NGC 5011C, and the latter light-years from our Milky Way, while the latter is seems to contain only about 10 million times the about 12 times farther away. mass of the Sun in stars and is therefore a true dwarf galaxy. For comparison, our Milky Way The appearance of NGC 5011C, with its low contains thousands of times more stars. density of stars and absence of distinctive features, would normally lead astronomers to "Our new observations with the 3.6-m ESO classify it as a nearby dwarf elliptical galaxy.