The Influence of Exotic Plant Invasion on Native Bee Abundance and Demography, and the Pollination and Abundance of Native Plants

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Exotic Plant Invasion on Native Bee Abundance and Demography, and the Pollination and Abundance of Native Plants University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2013 The influence of exotic plant invasion on native bee abundance and demography, and the pollination and abundance of native plants Jennifer Palladini The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Palladini, Jennifer, "The influence of exotic plant invasion on native bee abundance and demography, and the pollination and abundance of native plants" (2013). Graduate Student Theses, Dissertations, & Professional Papers. 10621. https://scholarworks.umt.edu/etd/10621 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE INFLUENCE OF EXOTIC PLANT INVASION ON NATIVE BEE ABUNDANCE AND DEMOGRAPHY, AND THE POLLINATION AND ABUNDANCE OF NATIVE PLANTS By Jennifer Dawn Palladini B.S. College of Charleston, South Carolina, 1999 M.A. Humboldt State University, California, 2002 Dissertation Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology and Ecology The University of Montana Missoula, Montana Spring 2013 Approved by: Dr. John Maron, Chair, Division of Biological Sciences Dr. Ragan M. Callaway Division of Biological Sciences Dr. Winsor Lowe Division of Biological Sciences Dr. Elizabeth Crone Harvard Forest Dr. Monica Geber Department of Ecology and Evolutionary Biology UMI Number: 3568125 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3568125 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 ABSTRACT Palladini, Jenniter, PhD 2013 Chairperson: Dr. John L. Maron Flowering plants and bees are fundamentally linked. Bees rely wholly on floral resources for food and many native plants rely on bees to assist in reproduction. Despite this fundamental connection, how plants and their bee pollinators influence one another’s abundance remains unclear. Also unclear is how invasion by exotic flowering plants disrupts bee- native plant relationships. I examined how the invasive plant, Euphorbia esula (Euphorbiaceae) influenced the native annual forb, Clarkia pulchella (Onagraceae) by altering pollinator visitation (i.e., indirect effects) and through direct resource competition. I observed pollinator visitation and estimated the extent to which plant reproduction was limited by pollen receipt (i.e., pollinator visits) in invaded and native-dominated sites. Though pollinator visitation was strongly reduced in invaded sites, plants were only weakly pollen limited. In contrast, E. esula removal experiments indicated that the effect of resource competition on C. pulchella fitness was very strong. Seed addition experiments indicated that changes in fecundity resulting from ameliorating competition for pollinators could influence future plant abundance, however these effects were dwarfed by the effects of resource competition. To determine if strong reductions in pollinator visitation in invaded sites was mirrored by changes in entire bee communities, I quantified bee communities in sites dominated by E. esula and native-dominated sites. Bee abundance, richness and diversity were reduced in invaded sites. Thus, though native bees foraged on E. esula flowers, the net effect of invasion on bee communities was negative. However, because bees are highly mobile, patterns of forager abundance in relation to floral abundance may be misleading. Such patterns may be the result of bees moving to high resource patches rather than any fundamental change in bee abundance based on altered demographic processes. To examine this issue, I quantified the influence of floral resources and plant invasion on the demography of the native solitary bee, Osmia lignaria (Megachilidae). I placed nest blocks and preemergent cocoons in 27 sites that varied along a floral resource gradient and in extent of invasion, and found that nesting and fecundity were positively correlated with the abundance and richness of the native forb community and that nesting decreased with increasing exotic forb species richness. Despite increased parasitism in high-resource native-dominated sites, a marginally positive relationship between native forb species richness and bee population growth rates remained, suggesting that floral resources can positively influence bee demography. Finally, via a literature review, I examined whether excessive harvesting of pollen by bees has led to the evolution of chemical defense of pollen. While bees are generally perceived as mutualists, they also act as herbivores, collecting substantial quantities of pollen to rear larvae, and the loss of pollen to consumption by bees has the potential to decrease plant fitness. Many morphological features of flowers are interpreted to serve in defense of pollen from excessive harvesting, and there is growing evidence that pollen can contain secondary compounds that may be an additional means of pollen defense. ii TABLE OF CONTENTS Chapter 1. Indirect competition for pollinators is weak compared to direct resource competition: pollination and performance in the face of an invader 1 Abstract 2 Introduction 3 Methods 6 Results 11 Discussion 13 Acknowledgements 17 Literature Cited 18 Figures 27 Appendix 30 Chapter 2. Exotic plant invasion reduces abundance, richness and diversity of native bees in Montana grasslands 31 Abstract 32 Introduction 33 Methods 35 Results 40 Discussion 41 Acknowledgements 45 Literature Cited 46 Figures 56 Appendix 60 Chapter 3. Demographic responses of a solitary bee to floral resource gradients created by native and invasive plants 62 Abstract 63 Introduction 64 Methods 68 Results 75 Discussion 77 Literature Cited 84 Figures 92 Appendices 95 Chapter 4. Pollen defense: Do plants chemically protect pollen from consumption by bees? 100 Abstract 101 Introduction 102 Bees sequester substantial amounts of pollen 103 iii Pollen consumption and plant reproduction 105 Plant defense of pollen 106 Toxic pollen 108 Toxic pollen and specialization 111 Benefits to plants 114 Future research priorities 117 Literature Cited 122 Tables 133 iv CHAPTER ONE INDIRECT COMPETITION FOR POLLINATORS IS WEAK COMPARED TO DIRECT RESOURCE COMPETITION: POLLINATION AND PERFORMANCE IN THE FACE OF AN INVADER 1 Abstract Invasive plants have the potential to reduce native plant abundance through both direct and indirect interactions. Direct interactions, such as competition for soil resources, and indirect interactions, such as competition for shared pollinators, have been shown to influence native plant performance, however, we know much less about how these interactions influence native plant abundance in the field. While direct competitive interactions are often assumed to drive declines in native abundance, an evaluation of their influence relative to indirect mechanisms is needed to more fully understand invasive plant impacts. We quantified the direct effects of resource competition by the invasive perennial forb, Euphorbia esula (Euphorbiaceae), on the recruitment, subsequent performance, and ultimate adult abundance of the native annual, Clarkia pulchella (Onagraceae). We contrast these direct effects with those that indirectly resulted from competition for shared pollinators. Although E. esula dramatically reduced pollinator visitation to C. pulchella , plants were only weakly pollen-limited. Pollen supplementation increased the number of seeds per fruit from 41.28 to 46.38. Seed addition experiments revealed that the impacts of ameliorating pollen limitation only increased potential recruitment by 12.3%. In contrast, seed addition experiments that ameliorated direct competition with E. esula resulted in an increase in potential future recruitment of 574%. Our results show that while the indirect effects of competition for pollinators can influence plant abundance, its effects are dwarfed by the magnitude of direct effects of competition for resources. 2 Introduction Invasive plants often have well documented negative impacts on native plant abundance (reviews by Levine et al. 2003; Vilá et al. 2011). These impacts are most commonly thought to derive from invasives outcompeting natives for resources such as nutrients or light (Melgoza et al. 1990; D'Antonio and Mahall 1991; Gorchov and Trisel 2003; Vilá and Weiner 2004; Combs et al. 2011), however, indirect interactions between invasives and natives, which can be mediated by soil microbes (Klironomos 2002; Stinson et al. 2006), herbivores (White et al. 2006; Meiners 2007; Orrock et al. 2008), or pollinators (Bjerknes et al. 2007; Morales and Traveset 2009) may also play a role. A key question concerns what the relative strength of
Recommended publications
  • Plant Species of Special Concern and Vascular Plant Flora of the National
    Plant Species of Special Concern and Vascular Plant Flora of the National Elk Refuge Prepared for the US Fish and Wildlife Service National Elk Refuge By Walter Fertig Wyoming Natural Diversity Database The Nature Conservancy 1604 Grand Avenue Laramie, WY 82070 February 28, 1998 Acknowledgements I would like to thank the following individuals for their assistance with this project: Jim Ozenberger, ecologist with the Jackson Ranger District of Bridger-Teton National Forest, for guiding me in his canoe on Flat Creek and for providing aerial photographs and lodging; Jennifer Whipple, Yellowstone National Park botanist, for field assistance and help with field identification of rare Carex species; Dr. David Cooper of Colorado State University, for sharing field information from his 1994 studies; Dr. Ron Hartman and Ernie Nelson of the Rocky Mountain Herbarium, for providing access to unmounted collections by Michele Potkin and others from the National Elk Refuge; Dr. Anton Reznicek of the University of Michigan, for confirming the identification of several problematic Carex specimens; Dr. Robert Dorn for confirming the identification of several vegetative Salix specimens; and lastly Bruce Smith and the staff of the National Elk Refuge for providing funding and logistical support and for allowing me free rein to roam the refuge for plants. 2 Table of Contents Page Introduction . 6 Study Area . 6 Methods . 8 Results . 10 Vascular Plant Flora of the National Elk Refuge . 10 Plant Species of Special Concern . 10 Species Summaries . 23 Aster borealis . 24 Astragalus terminalis . 26 Carex buxbaumii . 28 Carex parryana var. parryana . 30 Carex sartwellii . 32 Carex scirpoidea var. scirpiformis .
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Chapter 1 the California Flora
    CHAPTER 1 THE CALIFORNIA FLORA The Californian Floristic Province California is a large state with a complex topography and a great diversity of climates and habitats,resulting in a very large assemblage of plant species that vary in size and include both the world’s largest trees and some of the smallest and most unique plant species. In order to create manageable units for plant investigations, botanists have divided the continental landform into geographic units called floristic provinces. These units reflect the wide variations in natural landscapes and assist botanists in predicting where a given plant might be found. Within the borders of California, there are three floristic provinces, each extending beyond the state’s political boundaries. The California Floristic Province includes the geographi- cal area that contains assemblages of plant species that are more or less characteristic of California and that are best de- veloped in the state.This province includes southwestern Ore- gon and northern Baja California but excludes certain areas of the southeastern California desert regions, as well as the area of the state that is east of the Sierra Nevada–Cascade Range axis (map 1).The flora of the desert areas and those east of the Sierra Nevada crest are best developed outside the state, and therefore, parts of the state of California are not in the Cali- fornia Floristic Province. The Great Basin Floristic Province includes some of the area east of the Sierra Nevada and some regions in the northeastern part of the state, although some botanists consider the latter area to belong to another distinct floristic province, the Columbia Plateau Floristic Province.
    [Show full text]
  • (Cytisus Scoparius, Fabaceae) and the Pollination and Reproductive Success Of
    UNIVERSITY OF CALGARY Scotch broom (Cytisus scoparius, Fabaceae) and the pollination and reproductive success of three Garry oak-associated plant species by Jennifer Lynn Muir A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA MAY, 2013 © Jennifer Lynn Muir 2013 Abstract A growing number of studies are observing an effect of invasive species on the pollination and reproductive success of co-flowering plants, over and above direct competition for resources. In this study, I investigate the effect of the invader Scotch broom (Cytisus scoparius) on the pollinator visitation, pollen deposition, and female reproductive output of three co-flowering members (two native, one exotic) of the critically endangered Garry oak grassland ecosystem on the Saanich peninsula of Vancouver Island. Higher pollinator sharing between native Camassia leichtlinii and Scotch broom increased pollen deposition and fruit set in invaded sites, despite a decreased visitation rate. Conversely, the invader had little detectable effect on the native Collinsia parviflora or the exotic Geranium molle where pollinator sharing was low. This study provides evidence that Scotch broom neither competes for pollination with natives, nor facilitates invasion of other exotics in Garry oak ecosystem remnants. ii Acknowledgements This thesis is the culmination of the efforts of many amazing people, and would not otherwise ever have been completed. First and foremost I am grateful for the freedom, insight and opportunities provided to me by my supervisor Jana Vamosi. Jana’s profound patience, generosity, creativity and lightning fast email response time were integral to keeping my project steadily moving forward.
    [Show full text]
  • Chapter Vii Table of Contents
    CHAPTER VII TABLE OF CONTENTS VII. APPENDICES AND REFERENCES CITED........................................................................1 Appendix 1: Description of Vegetation Databases......................................................................1 Appendix 2: Suggested Stocking Levels......................................................................................8 Appendix 3: Known Plants of the Desolation Watershed.........................................................15 Literature Cited............................................................................................................................25 CHAPTER VII - APPENDICES & REFERENCES - DESOLATION ECOSYSTEM ANALYSIS i VII. APPENDICES AND REFERENCES CITED Appendix 1: Description of Vegetation Databases Vegetation data for the Desolation ecosystem analysis was stored in three different databases. This document serves as a data dictionary for the existing vegetation, historical vegetation, and potential natural vegetation databases, as described below: • Interpretation of aerial photography acquired in 1995, 1996, and 1997 was used to characterize existing (current) conditions. The 1996 and 1997 photography was obtained after cessation of the Bull and Summit wildfires in order to characterize post-fire conditions. The database name is: 97veg. • Interpretation of late-1930s and early-1940s photography was used to characterize historical conditions. The database name is: 39veg. • The potential natural vegetation was determined for each polygon in the analysis
    [Show full text]
  • Iowa State Journal of Research 61.2
    oufiiil of Research Volume 61, No. 2 ISSN0092-6345 November, 1986 ISJRA6 61(2) 153-296 1986 From the Editors . 153 ISELY, D. Leguminosae of the United States. Astragalus L.: IV. Species Summary N-Z.. 157 Book Reviews . 291 IOWA STATE JOURNAL OF RESEARCH Published under the auspices of the Vice President for Research, Iowa State University EDITOR .................................................. DUANE ISELY ASSOCIATE EDITOR .............................. KENNETH G. MADISON ASSOCIATE EDITOR ...................................... PAUL N. HINZ ASSOCIATE EDITOR . BRUCE W. MENZEL ASSOCIATE EDITOR ................................... RAND D. CONGER COMPOSITOR-ASSISTANT EDITOR ............... CHRISTINE V. McDANIEL Administrative Board N. L. Jacobson, Chairman J. E. Galejs, I. S. U. Library D. Isely, Editor W. H. Kelly, College of Sciences and Humanities W. R. Madden, Office of Business and Finance J. P. Mahlstede, Agriculture and Horne Economics Experiment Station W. M. Schmitt, Information Service G. K. Serovy, College of Engineering Editorial Board G. J. Musick, Associate Editor for Entomology, University of Arkansas Paul W. Unger, Associate Editor for Agronomy, USDA, Bushland, Texas Dwight W. Bensend, Associate Editor for Forestry, Hale, Missouri L. Glenn Smith, Associate Editor for Education, Northern Illinois Univ. Faye S. Yates, Promotion Specialist, I. S. U. Gerald Klonglan, Consultant for Sociology, I. S. U. All matters pertaining to subscriptions, remittances, etc. should be addressed to the Iowa State University Press, 2121 South State Avenue, Ames, Iowa 50010. Most back issues of the IOWA STATE JOURNAL OF RESEARCH are available. Single copies starting with Volume 55 are $7.50 each, plus postage. Prior issues are $4.50 each, plus postage. Because of limited stocks, payment is required prior to shipment.
    [Show full text]
  • Dispersers and Herbivores : the Positive and Negative Effects of Consumers on Plants
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2003 Dispersers and herbivores : the positive and negative effects of consumers on plants Lindsay K. Amsberry The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Amsberry, Lindsay K., "Dispersers and herbivores : the positive and negative effects of consumers on plants" (2003). Graduate Student Theses, Dissertations, & Professional Papers. 6684. https://scholarworks.umt.edu/etd/6684 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature ** Yes, I grant permission No, I do not grant permission _________ Author's Signature: 1 (] t ^ Date : |2_ _________________ Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Dispersers and herbivores: The positive and negative effects of consumers on plants Lindsay K.
    [Show full text]
  • Special Status Species List
    APPENDIX J SPECIAL STATUS SPECIES LIST SPECIAL STATUS SPECIES LIST APPENDIX J SPECIAL STATUS SPECIES LIST Common Name Scientific Name State Class Status1 A Caddisfly Farula constricta OR Insect BS Adder’s-tongue Ophioglossum pusillum OR Plant BS Agave, Arizona Agave arizonica AZ Plant FE Agave, Murphey Agave murpheyi AZ Plant BS Agave, Santa Cruz Striped Agave parviflora AZ Plant BS Agoseris, Pink Agoseris lackschewitzii ID Plant BS Albatross, Short-tailed Phoebastris albatrus AK, CA Bird FE Alkaligrass, Howell’s Puccinellia howelli CA Plant BS Alkaligrass, Lemon’s Puccinellia lemmonii CA Plant BS Alkaligrass, Parish’s Puccinellia parishii CA, MT Plant BS Alpine-aster, Tall Oreostemma elatum CA Plant BS Alpine-parsley, Trotter’s Oreoxis trotteri UT Plant BS Alumroot, Duran’s Heuchera duranii CA Plant BS Amaranth, California Amaranthus californicus MT Plant BS Ambersnail, Kanab Oxyloma haydeni kanabensis AZ, UT Snail FE Ambrosia, San Diego Ambrosia pumila CA Plant FE Chlorogalum purpureum var. Amole, Purple CA Plant FT purpureum Amphipod, Malheur Cave Stygobromus hubbsi OR Crustacean BS Amphipod, Noel’s Gammarus desperatus NM Crustacean PE Angelica, King’s Angelica kingii ID Plant BS Angelica, Rough Angelica scabrida NV Plant BS Apachebush Apacheria chircahuensis NM Plant BS Apple, Indian Peraphyllum ramosissimum ID Plant BS Arrowhead, Sanford’s Sagittaria sanfordii CA Plant BS Aster, Gorman’s Eucephalus gormanii OR Plant BS Aster, Pygmy Eurybia pygmaea AK Plant BS Aster, Red Rock Canyon Ionactis caelestis NV Plant BS Avens, Mountain Senecio moresbiensis AK Plant BS Baccharis, Encinitis Baccharis vanessae CA Plant FT Balloonvine Cardiospermum corindum AZ Plant BS Balsamorhiza macrolepis var. Balsamroot, Big-scale CA Plant BS macrolepis Balsamroot, Large-leaved Balsamorhiza macrophylla MT Plant BS Balsamroot, Silky Balsamorhiza sericea CA Plant BS Balsamroot, Woolly Balsamorhiza hookeri var.
    [Show full text]
  • Disturbance and Recovery in a Changing World; 2006 June 6–8; Cedar City, UT
    Reproductive Biology of Larrea tridentata: A Preliminary Comparison Between Core Shrubland and Isolated Grassland Plants at the Sevilleta National Wildlife Refuge, New Mexico Rosemary L. Pendleton, Burton K. Pendleton, Karen R. Wetherill, and Terry Griswold Abstract—Expansion of diploid creosote shrubs (Larrea tridentata Introduction_______________________ (Sessé & Moc. ex DC.) Coville)) into grassland sites occurs exclusively through seed production. We compared the reproductive biology Chihuahuan Desert shrubland is expanding into semiarid of Larrea shrubs located in a Chihuahuan desert shrubland with grasslands of the Southwest. Creosote (Larrea tridentata) isolated shrubs well-dispersed into the semiarid grasslands at the seedling establishment in grasslands is a key factor in this Sevilleta National Wildlife Refuge. Specifically, we examined (1) re- conversion. Diploid Larrea plants of the Chihuahuan Des- productive success on open-pollinated branches, (2) the potential ert are not clonal as has been reported for some hexaploid of individual shrubs to self-pollinate, and (3) bee pollinator guild Mojave populations (Vasek 1980). Consequently, Larrea composition at shrubland and grassland sites. Sampling of the bee guild suggests that there are adequate numbers of pollinators at establishment in semiarid grasslands of New Mexico must both locations; however, the community composition differs between occur exclusively through seed. At McKenzie Flats in the shrub and grassland sites. More Larrea specialist bee species were Sevilleta National Wildlife Refuge, there exists a gradient found at the shrubland site as compared with the isolated shrubs. in Larrea density stretching from dense Larrea shrubland Large numbers of generalist bees were found on isolated grassland (4,000 to 6,000 plants per hectare) to semiarid desert grass- bushes, but their efficiency in pollinating Larrea is currently un- land with only a few scattered shrubs.
    [Show full text]
  • Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • The Campanulaceae of Ohio1
    CORE Metadata, citation and similar papers at core.ac.uk Provided by KnowledgeBank at OSU 142 WIENS ET AL. Vol. 62 THE CAMPANULACEAE OF OHIO1 ROBERT W. CRUDEN2 Department of Botany and Plant Pathology, Ohio State University, Columbus 10 In Ohio the family Campanulaceae is represented by three genera: Campanula, Lobelia, and Specularia; and eleven species, of which five are common throughout the state and two are quite limited in their distribution. Following the key to species each species is briefly described, and distribution, common names, chromosome numbers, if known, and other pertinent data are given. Chromosome numbers are those given in Darlington and Wylie (1956) and in the papers of Bowden (1959a, 1959b). Average time of flowering is indi- ^ontribution Nc. 666 of the Department of Botany and Plant Pathology, The Ohio State University. Research completed while a National Science Foundation Co-operative Fellow. 2Present address: Department of Botany, University of California, Berkeley 4, California. THE OHIO JOURNAL OF SCIENCE 62(3): 142, May, 1962. No. 3 CAMPANULACEAE OF OHIO 143 cated as well as the extreme flowering dates as determined from a study of her- barium material. The genera and species are arranged alphabetically. Distri- bution maps are included. A dot represents a collection of a particular species in a given county. No attempt has been made to indicate the general area of collection within the county, as a majority of herbarium specimens do not have this information. It should also be pointed out that many of the collections examined are forty or more years old and thus the distribution maps do not neces- sarily indicate present distribution.
    [Show full text]
  • Rare Plant Survey of San Juan Public Lands, Colorado
    Rare Plant Survey of San Juan Public Lands, Colorado 2005 Prepared by Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 Rare Plant Survey of San Juan Public Lands, Colorado 2005 Prepared by Peggy Lyon and Julia Hanson Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 December 2005 Cover: Imperiled (G1 and G2) plants of the San Juan Public Lands, top left to bottom right: Lesquerella pruinosa, Draba graminea, Cryptantha gypsophila, Machaeranthera coloradoensis, Astragalus naturitensis, Physaria pulvinata, Ipomopsis polyantha, Townsendia glabella, Townsendia rothrockii. Executive Summary This survey was a continuation of several years of rare plant survey on San Juan Public Lands. Funding for the project was provided by San Juan National Forest and the San Juan Resource Area of the Bureau of Land Management. Previous rare plant surveys on San Juan Public Lands by CNHP were conducted in conjunction with county wide surveys of La Plata, Archuleta, San Juan and San Miguel counties, with partial funding from Great Outdoors Colorado (GOCO); and in 2004, public lands only in Dolores and Montezuma counties, funded entirely by the San Juan Public Lands. Funding for 2005 was again provided by San Juan Public Lands. The primary emphases for field work in 2005 were: 1. revisit and update information on rare plant occurrences of agency sensitive species in the Colorado Natural Heritage Program (CNHP) database that were last observed prior to 2000, in order to have the most current information available for informing the revision of the Resource Management Plan for the San Juan Public Lands (BLM and San Juan National Forest); 2.
    [Show full text]