Hymenoptera: Andrenidae)

Total Page:16

File Type:pdf, Size:1020Kb

Hymenoptera: Andrenidae) Female Foraging and Intranest Behavior of a Communal Bee, Perdita portalis (Hymenoptera: Andrenidae) BRYAN N. DANFORTH1 Snow Entomological Museum, Department of Entomology, University of Kansas, Lawrence, Kansas 66045 Ann. Entomol. Soc. Am. 84(5): 537-548 (1991) ABSTRACT Female Perdita portalis Timberlake are ground-nesting, partially bivoltine, communal bees that inhabit the deserts and arid grasslands of Arizona, New Mexico, and northern Mexico. From 2 to 29 adult females may share a single nest. Nests are commonly reused from year to year and may become very large, with >200 overwintering prepupae, although some new nests are started each year. By constructing artificial, below-ground observation nests, it was possible to observe the details of cell provisioning and of female (and male) nestmate interactions within the nest. The details of cell construction, pollen collection, pollen ball formation, and oviposition are described. There was no evidence of cooperation among female nestmates or reproductive division of labor, nor was there any indication of intraspecific cleptoparasitism. The behavior of female P. portalis is compared with the behavior of females in other species of Perdita and with what is known of the intranest behavior of other bees. KEY WORDS Insecta, Perdita portalis, nesting behavior, sociality THE GENUS Perdita contains >600 species of small the intranest interactions among nestmates shed to minute bees which are most common in the arid light on theories of social evolution (Lin & Mich- southwestern United States and northern Mexico. ener 1972, Eickwort 1981)? To answer these ques- All species studied to date excavate nests in the tions, one must observe females under seminatural ground, which consist of tunnels leading to cells conditions within nests. This paper outlines the ba- where pollen and nectar are stored for larval de- sic natural history of P. portalis and presents the velopment. Most species are narrowly oligolectic, first observations on intranest behavior of a com- usually restricting pollen collection to a small group munal andrenid bee. of closely related plants. Rozen (1967) and Dan- Although the behavior and morphology of fe- forth (1989) review the published information on male P. portalis are similar to those of many of its Perdita nesting behavior. close relatives, the males of this species are highly Although in many species of Perdita each nest unusual in having two discrete morphs differing in contains just one female (e.g., P. octomaculata (Say) both structure and behavior. One morph is capable [Eickwort 1977]), several species are communal, of flight, is relatively small-headed, and is found with >30 adult females per nest: e.g., P. texana regularly on Sphaeralcea St.-Hilaire (Malvaceae) Cresson (Neff & Danforth 1991); P. opuntiae Cock- flowers, where they mate with foraging females. erell (Bennett & Breed 1985, Custer 1928); P. mel- First discovered by Rozen (1970), the other (de- lea Timberlake (J. G. Rozen, Jr., personal com- rived) morph is strikingly modified, as judged by munication); P. latior Cockerell (J. G. Rozen, Jr., comparison with related bees, possessing a greatly personal communication); P. coreopsidis Cockerell enlarged head, enlarged facial foveae, reduced (Danforth 1989); P. lingualis Cockerell (Michener compound eyes, elongate pointed mandibles, a 1963); and P. portalis. Communal nesting by fe- three-pronged clypeus, and reduced thoracic mus- male Perdita raises a number of questions about culature which renders them flightless and restrict- how females interact behaviorally within nests. Do ed to a life within the natal nest. Unlike most of females cooperate in any aspect of nest construc- its close relatives, which vary continuously in head tion, maintenance, defense, or foraging? Is there size, albeit with strong positive allometry (e.g., P. reproductive division of labor? In communal nests, texana), the males of P. portalis are truly dimor- females have access to the fruits of each others' phic. A detailed description of male intranest be- labor (the pollen and nectar needed for larval de- havior and comparison of the two male morphs is velopment). Does cell robbing or cleptoparasitism presented elsewhere (Danforth 1991). occur under such circumstances? And finally, do Materials and Methods 1 Current address: Department of Entomology, National Mu- seum of Natural History, Smithsonian Institution, Washington, Perdita portalis has been collected from north- D.C. 20560. central Arizona east to the southwestern corner of 0013-8746/91 /0537-0548$02.00/0 © 1991 Entomological Society of America 538 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 84, no. 5 New Mexico (Hidalgo, Grant, and Luna counties) was gently packed into the wire enclosure on the and south to Zacatecas state, Mexico (Timberlake Plexiglas plate with a rolling pin. When the soil 1954, 1968). Adult foraging is restricted to species was packed tightly enough that tunnels could be of Sphaeralcea. cut into the soil with a razor blade, no more soil This study was conducted at a locality 2 km north was added. A simple system of tunnels and cells, of Rodeo, Hidalgo County, where ~10 nests in with one main tunnel leading to the opening at the 1987, 24 nests in 1988, and 33 nests in 1989 were top of the plate connected to laterals leading to located. Nests were also found at other localities: cells, was cut into the packed soil surface (Fig. IB). 30 km north of Hachita, Grant County (1988) and Pupae were then placed into the artificial cells with 9.2 km east of Animas, Hidalgo County (1989). All their heads facing toward the main tunnel. From localities were mixed Chihuahuan desert-grassland 2 to 10 female pupae were placed in each obser- habitat with scattered Sphaeralcea plants, the sole vation nest and, in some nests, 1-6 male pupae. source of pollen and nectar for this species. Sphaer- Finally, another rectangular piece of red Plexiglas alcea subhastata Coulter predominates at the Ro- of the same size was placed on top and clamped deo locality and S. angustifolia (Cavanilles) at the into place with 5.1-cm (2 in.) paper binder clips Animas locality. All nests were found in patches of (Fig. 1C). It was important to clean the surface of fine claylike soil devoid of vegetation. the wire gasket before attaching the top plate to Nests 2 km north of Rodeo were mapped in 1988 ensure a tight seal between plate and gasket. Nests and 1989 to determine the frequency of nest reuse were kept upright in an incubator at 30°C for 1- and new nest founding from year to year. As at 2 d before they were placed in the field. the other localities, nests were located only in areas In this study, unlike previous studies of halictine of exposed soil devoid of vegetation. Five such bees in which observation nests were placed in areas were found on the west side of a dirt road indoor flight rooms (Batra 1964, 1968, 1970; Stock- that extended northeast from Highway 80 to a cattle hammer 1966; Kukuk & Schwarz 1987,1988), nests tank and a wind-operated water pump. The five were placed in the field so that bees could forage patches together stretched «110 m. To map nests under natural conditions (Fig. ID). To do this, a accurately, a metal stake was placed roughly at the hole (1.5 m deep, 1.5 m wide, 2 m long) was dug center of each of the five areas and all nests were at the Rodeo locality and covered with a 1.9-cm mapped with respect to the central stakes. The (% in.) plywood top fitted with a trap door (Fig. 2). metal stakes were then mapped with respect to Four slots (1.0 by 20.3 cm) were cut along one edge each other. Mapping was done using a hand-held of the plywood top into which the uppermost edges compass and a 50-m measuring tape. of the observation nests could be fitted. The nests Nests were excavated by blowing a fine mist of were supported from beneath by a wooden shelf. talcum powder down the tunnels and carefully dig- The entire plywood lid (except the trap door) was ging away the soil with a penknife. Care was taken covered with a thin layer of soil. to excavate nests early or late in the day or on When adult bees eclosed in such nests, they fol- cloudy days to ensure that all resident bees would lowed the artificial main tunnel and then dug the be present. Larvae and pupae were placed in 96- remaining 3-4 cm of soil to the surface. In 1988, well tissue culture dishes for rearing in a laboratory seven nests were constructed and three were even- incubator at 30°C and 100% RH. tually accepted by at least one female and one The body weights of adult bees and pollen balls macrocephalic male. In 1989, six nests were con- were measured after they had been dried for at structed and three were accepted by at least one least 2 d at 55°C (dry weight). Prepupae (postdefe- female. Large-headed males were deliberately ex- cating, last instars) were weighed live. Weights were cluded from the 1989 nests to observe female be- measured to the nearest 0.01 mg. havior in their absence: a situation like that in new- Observation nests, similar to those used to study ly initiated nests before the emergence of the first intranest behavior in Lasioglossum zephyrum macrocephalic males. Observation nests contained (Halictidae) (Michener & Brothers 1971), were at most six adult females and four adult macro- constructed in the following way. Each observation cephalic males. Fifty-six cells were completed in nest consisted of a thin layer of soil sandwiched the six successful observation nests. In one nest, a between two transparent red Plexiglas plates, with single cell was completed by the solitary female a soil thickness equal to the diameter of tunnels resident; whereas, in another nest, 24 cells were and cells in natural nests (2.2-2.5 mm in diameter).
Recommended publications
  • (Cytisus Scoparius, Fabaceae) and the Pollination and Reproductive Success Of
    UNIVERSITY OF CALGARY Scotch broom (Cytisus scoparius, Fabaceae) and the pollination and reproductive success of three Garry oak-associated plant species by Jennifer Lynn Muir A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA MAY, 2013 © Jennifer Lynn Muir 2013 Abstract A growing number of studies are observing an effect of invasive species on the pollination and reproductive success of co-flowering plants, over and above direct competition for resources. In this study, I investigate the effect of the invader Scotch broom (Cytisus scoparius) on the pollinator visitation, pollen deposition, and female reproductive output of three co-flowering members (two native, one exotic) of the critically endangered Garry oak grassland ecosystem on the Saanich peninsula of Vancouver Island. Higher pollinator sharing between native Camassia leichtlinii and Scotch broom increased pollen deposition and fruit set in invaded sites, despite a decreased visitation rate. Conversely, the invader had little detectable effect on the native Collinsia parviflora or the exotic Geranium molle where pollinator sharing was low. This study provides evidence that Scotch broom neither competes for pollination with natives, nor facilitates invasion of other exotics in Garry oak ecosystem remnants. ii Acknowledgements This thesis is the culmination of the efforts of many amazing people, and would not otherwise ever have been completed. First and foremost I am grateful for the freedom, insight and opportunities provided to me by my supervisor Jana Vamosi. Jana’s profound patience, generosity, creativity and lightning fast email response time were integral to keeping my project steadily moving forward.
    [Show full text]
  • Molecular Ecology and Social Evolution of the Eastern Carpenter Bee
    Molecular ecology and social evolution of the eastern carpenter bee, Xylocopa virginica Jessica L. Vickruck, B.Sc., M.Sc. Department of Biological Sciences Submitted in partial fulfillment of the requirements for the degree of PhD Faculty of Mathematics and Science, Brock University St. Catharines, Ontario © 2017 Abstract Bees are extremely valuable models in both ecology and evolutionary biology. Their link to agriculture and sensitivity to climate change make them an excellent group to examine how anthropogenic disturbance can affect how genes flow through populations. In addition, many bees demonstrate behavioural flexibility, making certain species excellent models with which to study the evolution of social groups. This thesis studies the molecular ecology and social evolution of one such bee, the eastern carpenter bee, Xylocopa virginica. As a generalist native pollinator that nests almost exclusively in milled lumber, anthropogenic disturbance and climate change have the power to drastically alter how genes flow through eastern carpenter bee populations. In addition, X. virginica is facultatively social and is an excellent organism to examine how species evolve from solitary to group living. Across their range of eastern North America, X. virginica appears to be structured into three main subpopulations: a northern group, a western group and a core group. Population genetic analyses suggest that the northern and potentially the western group represent recent range expansions. Climate data also suggest that summer and winter temperatures describe a significant amount of the genetic differentiation seen across their range. Taken together, this suggests that climate warming may have allowed eastern carpenter bees to expand their range northward. Despite nesting predominantly in disturbed areas, eastern carpenter bees have adapted to newly available habitat and appear to be thriving.
    [Show full text]
  • Annual Variation in Bee Community Structure in the Context Of
    Annual Variation in Bee Community Structure in the Context of Disturbance (Niagara Region, South-Western Ontario) ~" . by Rodrigo Leon Cordero, B.Sc. A thesis submitted to the Department of Biological Sciences in partial fulfilment of the requirements for the degree of Master of Science September, 2011 Department of Biological Sciences Brock University St. Catharines, Ontario © Rodrigo Leon Cordero, 2011 1 ABSTRACT This study examined annual variation in phenology, abundance and diversity of a bee community during 2003, 2004, 2006, and 2008 in rec~6vered landscapes at the southern end of St. Catharines, Ontario, Canada. Overall, 8139 individuals were collected from 26 genera and sub-genera and at least 57 species. These individuals belonged to the 5 families found in eastern North America (Andrenidae, Apidae, Colletidae, Halictidae and Megachilidae). The bee community was characterized by three distinct periods of flight activity over the four years studied (early spring, late spring/early summer, and late summer). The number of bees collected in spring was significantly higher than those collected in summer. In 2003 and 2006 abundance was higher, seasons started earlier and lasted longer than in 2004 and 2008, as a result of annual rainfall fluctuations. Differences in abundance for low and high disturbance sites decreased with years. Annual trends of generic richness resembled those detected for species. Likewise, similarity in genus and species composition decreased with time. Abundant and common taxa (13 genera and 18 species) were more persistent than rarer taxa being largely responsible for the annual fluctuations of the overall community. Numerous species were sporadic or newly introduced. The invasive species Anthidium oblongatum was first recorded in Niagara in 2006 and 2008.
    [Show full text]
  • Comparative Behavioral Biology of Two Middle East Species of Carpenter Bees (Xylocopa Latreille) (Hymenoptera: Apoidea)
    Comparative Behavioral Biology of Two Middle East Species of Carpenter Bees (Xylocopa Latreille) (Hymenoptera: Apoidea) DAN GERLING, PAUL D. HURD, JR., and ABRAHAM HEFETZ SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 369 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Plant Protection Department College of Food and Agriculture Sciences King Saud University P
    Plant Protection Department College of Food and Agriculture Sciences King Saud University P. O. Box 2460, Riyadh 11451 Saudi Arabia Tel: +966 1 467 8422 Fax: +966 1 467 8423 E.mail: [email protected] قائمة بعدد البحاث العلمية التي تم نشرها بدأ نشر البحاث بالقسم بعد تأسيسه عام 1965 بست سنوات بعد مرحلة التأسيس وتكوين الكوادر التعليمية والبحثية وذلك عام 1972. تواصل نشر البحاث حتى بلغت مايزيد على 70 بحثا خلل العام 2013. بلغ إجمالي .البحاث المنشورة للقسم منذ تأسيسه 549 بحثا 2013 1. Abdel-Dayem M.S. and Kippenhan M.G. (2013). A New Record of Cylindera (ifasina) rectangularis (Klug) (Coleoptera: Carabidae: Cicindelinae) for the Kingdom of Saudi Arabia. The Coleopterists Bulletin, 67(1):19-21. 2. Abdel-Halim M. Ismail , Ayman A. Owayss , Karem M. Mohanny and Rasha A. Salem (2013). Evaluation of pollen collected by honey bee, Apis mellifera L. colonies at Fayoum Governorate, Egypt. Part 1: Botanical origin. Journal of the Saudi Society of Agricultural Sciences, 12: 129-135. 3. Abera Belay, W.K. Solomon, Geremew Bultossa, Nuru Adgaba, Samuel Melaku (2013) Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chemistry. 141 3386–3392 4. Abou-Shaara H., Al-Ghamdi A. and Mohamed A. (2013). A Suitability Map for Keeping Honey Bees under Harsh Environmental Conditions Using Geographical Information System. World Applied Sciences Journal, 22(8): 1099-1105. 5. Abou-Shaara H., Al-Ghamdi A. and Mohamed, (2013). Elemental analysis of eggs for two honey bee races. Iranian Journal of Entomology, 3: 14-17. 6. Al Dhafer, H. Y. Aldryhim, And A.
    [Show full text]
  • An Inventory of Native Bees (Hymenoptera: Apiformes)
    An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming BY David J. Drons A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2012 ii An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming This thesis is approved as a credible and independent investigation by a candidate for the Master of Plant Science degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. __________________________________ Dr. Paul J. Johnson Thesis Advisor Date __________________________________ Dr. Doug Malo Assistant Plant Date Science Department Head iii Acknowledgements I (the author) would like to thank my advisor, Dr. Paul J. Johnson and my committee members Dr. Carter Johnson and Dr. Alyssa Gallant for their guidance. I would also like to thank the South Dakota Game Fish and Parks department for funding this important project through the State Wildlife Grants program (grant #T2-6-R-1, Study #2447), and Custer State Park assisting with housing during the field seasons. A special thank you to taxonomists who helped with bee identifications: Dr. Terry Griswold, Jonathan Koch, and others from the USDA Logan bee lab; Karen Witherhill of the Sivelletta lab at the University of New Mexico; Dr. Laurence Packer, Shelia Dumesh, and Nicholai de Silva from York University; Rita Velez from South Dakota State University, and Jelle Devalez a visiting scientist at the US Geological Survey.
    [Show full text]
  • The Large Carpenter Bees of Central Saudi Arabia, with Notes
    A peer-reviewed open-access journal ZooKeys 201: 1–14 (2012)The large carpenter bees of central Saudi Arabia, with notes... 1 doi: 10.3897/zookeys.201.3246 RESEARCH articLE www.zookeys.org Launched to accelerate biodiversity research The large carpenter bees of central Saudi Arabia, with notes on the biology of Xylocopa sulcatipes Maa (Hymenoptera, Apidae, Xylocopinae) Mohammed A. Hannan1, Abdulaziz S. Alqarni1, Ayman A. Owayss1, Michael S. Engel2 1 Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, PO Box 2460, KSA 2 Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, Kansas 66049- 2811, USA Corresponding author: Abdulaziz S. Alqarni ([email protected]) Academic editor: Michael Ohl | Received 17 April 2012 | Accepted 16 May 2012 | Published 14 June 2012 Citation: Hannan MA, Alqarni AS, Owayss AA, Engel MS (2012) The large carpenter bees of central Saudi Arabia, with notes on the biology of Xylocopa sulcatipes Maa (Hymenoptera, Apidae, Xylocopinae). ZooKeys 201: 1–14. doi: 10.3897/ zookeys.201.3246 Abstract The large carpenter bees (Xylocopinae, Xylocopa Latreille) occurring in central Saudi Arabia are reviewed. Two species are recognized in the fauna, Xylocopa (Koptortosoma) aestuans (Linnaeus) and X. (Ctenoxylocopa) sulcatipes Maa. Diagnoses for and keys to the species of these prominent components of the central Saudi Arabian bee fauna are provided to aid their identification by pollination researchers active in the region. Fe- males and males of both species are figured and biological notes provided for X. sulcatipes. Notes on the nest- ing biology and ecology of X.
    [Show full text]
  • Carpenter Bees (Xylocopa Virginica) M.H
    615 ARTICLE Ergonomic skew and reproductive queuing based on social and seasonal variation in foraging activity of eastern carpenter bees (Xylocopa virginica) M.H. Richards and C. Course Abstract: Reproductive division of labour in social carpenter bees differs from that in classically eusocial insects because reproductive output and ergonomic inputs are positively correlated—dominant females monopolize both foraging and repro- duction. We quantified ergonomic skew in the facultatively social bee Xylocopa virginica (L., 1771) (eastern carpenter bee) based on detailed observations of foraging activity by individually marked females in 2009. Unusually for a univoltine bee, this species exhibits a spring foraging phase during which females feed pollen to other adults, probably as part of behavioural interactions to establish dominance hierarchies. During brood-provisioning, foraging in social nests was dominated by one female at a time, with replacement by a succession of foragers as dominants disappeared and were succeeded by a subordinate. The principal foragers (individuals that did the largest share of foraging in each colony) did 85%–100% of all pollen trips, so contributions to pollen-provisioning by female nest mates were highly uneven. Individual foraging rate was unaffected by group size and total colony foraging effort was a function of the number of foragers per group. Transient females that moved to new nests were as successful in achieving dominant forager status as females resident in their natal nests. This evidence indicates that colony social organisation is based on reproductive queues, whereby the first-ranked bee is the dominant forager and subordinates queue for opportunities to replace her. Key words: foraging behaviour, social behaviour, ergonomic skew, Xylocopa virginica, eastern carpenter bee.
    [Show full text]
  • Xylocopa Virginica)
    The Implications of Forager Behaviour for Social Organisation in a Socially Polymorphic Carpenter Bee (Xylocopa virginica) by Chris Course, B.Sc. A Thesis submitted to the Department of Biological Sciences in partial fulfillment of the requirements for the degree of Master of Science Brock University St. Catharines, Ontario © Chris Course, 2011 2 Abstract In social Hymenoptera, the division of labour is a major step in the evolution of sociality. Bees, which express many different kinds of sociality, can be classified according to how individuals share or do not share foraging and reproductive activities (Michener, 1974). The large carpenter bee, Xylocopa virginica, lives in populations with both solitary and social nests. In social nests, reproduction is controlled by the dominant female, who does all of her own foraging and egg-laying, while the subordinates guard the nest only. This study examined foraging behaviour as a way to classify the social hierarchy. Individual females were marked, measured and intensely observed for the foraging season. It was found that a large number of subordinates forage and likely obtain more reproductive fitness than previously thought. The dominance hierarchy is very likely a social queue, in which bees take turns foraging and egg-laying. 3 Acknowledgements I would like to dedicate this thesis to myself. While at first this may appear a slightly conceited dedication - when I looked back at the monstrosity of this project and thought of all that I have accomplished and had been through, there seemed to be a no more fitting dedicatee, than me. Doing a Master's degree is an interesting and unique decision mostly because in addition to becoming a "real" scientist, it is also a fantastic way to learn a lot about oneself.
    [Show full text]
  • Review Article Large Carpenter Bees As Agricultural Pollinators
    Hindawi Publishing Corporation Psyche Volume 2010, Article ID 927463, 7 pages doi:10.1155/2010/927463 Review Article Large Carpenter Bees as Agricultural Pollinators Tamar Keasar Department of Science Education—Biology, University of Haifa, Oranim, Tivon 36006, Israel Correspondence should be addressed to Tamar Keasar, [email protected] Received 12 September 2009; Accepted 9 January 2010 Academic Editor: Claus Rasmussen Copyright © 2010 Tamar Keasar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Large carpenter bees (genus Xylocopa) are wood-nesting generalist pollinators of broad geographical distribution that exhibit varying levels of sociality. Their foraging is characterized by a wide range of food plants, long season of activity, tolerance of high temperatures, and activity under low illumination levels. These traits make them attractive candidates for agricultural pollination in hot climates, particularly in greenhouses, and of night-blooming crops. Carpenter bees have demonstrated efficient pollination service in passionflower, blueberries, greenhouse tomatoes and greenhouse melons. Current challenges to the commercialization of these attempts lie in the difficulties of mass-rearing Xylocopa, and in the high levels of nectar robbing exhibited by the bees. 1.TheRoleofNon-ApisBeesin services. Aspects of these bees’ life-history, social organiza- Agricultural Pollination tion, and foraging ecology are discussed in the context of their potential role as crop pollination agents. Insect pollination of agricultural crops is a critical ecosystem service. Fruit, vegetable or seed production from 87 of 2. The Biology and Life History of the 115 leading global food crops depends upon animal Carpenter Bees pollination [1].
    [Show full text]
  • Fire, Grazing, and Other Drivers of Bee Communities in Remnant Tallgrass Prairie
    The Revery Alone Won’t Do: Fire, Grazing, and Other Drivers of Bee Communities in Remnant Tallgrass Prairie A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Patrick Pennarola IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Ralph Holzenthal, adviser April 2019 © Patrick Pennarola, 2019 Acknowledgement: This research was conducted on the colonized homelands of the Anishinaabe, Dakota, and Lakota peoples, who are still here. i Dedication To Anya, for who you are To my child, for whoever you become To Nora, for the courage to see it through ii Table of contents Acknowledgement . .. i Dedication . .. ii List of Tables . .. iv List of Figures . .. v Introduction . .. 1 Bees in decline . .. .1 Tallgrass prairie in Minnesota. .. 5 Bees’ response to management. .. 9 Conclusion . .. .12 Chapter 1: The role of fire and grazing in driving patterns of bee abundance, species richness, and diversity . .. 13 Synopsis. .13 Introduction . .13 Methods . .18 Results. 26 Discussion. 28 Chapter 2: The trait-based responses of bee communities to environmental drivers of tallgrass prairie . .. .51 Synopsis. .51 Introduction . .52 Methods . .57 Results. 68 Discussion. 70 Bibliography . .. 81 Appendix A: Table of species collected . .82 Appendix B: Table of species by traits . .96 iii List of Tables Table 1: Parameters for all linear and generalized-linear mixed-effects models built. 37 Table 2: Wald’s Test χ2 values for terms in generalized linear model of adjusted bee abundance . .38 Table 3: Wald’s Test χ2 values for terms in generalized linear model of Chao 2 estimated species richness . .39 Table 4: F-test values for terms in linear model of Shannon’s H diversity index .
    [Show full text]
  • Historical Changes in Northeastern US Bee Pollinators Related to Shared Ecological Traits Ignasi Bartomeusa,B,1, John S
    Historical changes in northeastern US bee pollinators related to shared ecological traits Ignasi Bartomeusa,b,1, John S. Ascherc,d, Jason Gibbse, Bryan N. Danforthe, David L. Wagnerf, Shannon M. Hedtkee, and Rachael Winfreea,g aDepartment of Entomology, Rutgers University, New Brunswick, NJ 08901; bDepartment of Ecology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden; cDivision of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024-5192; dDepartment of Biological Sciences, Raffles Museum of Biodiversity Research, National University of Singapore, Singapore 117546; eDepartment of Entomology, Cornell University, Ithaca, NY 14853; fDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043; and gDepartment of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved February 1, 2013 (received for review October 24, 2012) Pollinators such as bees are essential to the functioning of ter- characterized by particularly intensive land use and may not be restrial ecosystems. However, despite concerns about a global representative of changes in the status of bees in other parts of pollinator crisis, long-term data on the status of bee species are the world. Thus, the existence of a widespread crisis in pollinator limited. We present a long-term study of relative rates of change declines, as often portrayed in the media and elsewhere (4), rests for an entire regional bee fauna in the northeastern United States, on data of limited taxonomic or geographic scope. based on >30,000 museum records representing 438 species. Over Environmental change affects species differentially, creating a 140-y period, aggregate native species richness weakly de- “losers” that decline with increased human activity, but also creased, but richness declines were significant only for the genus “winners” that thrive in human-altered environments (14).
    [Show full text]