Infection by Entomophthora Sensu Stricto (Entomophthoromycota: Entomophthorales) in Diaphorina Citri (Hemiptera: Liviidae) in Veracruz, Mexico Author(S): L

Total Page:16

File Type:pdf, Size:1020Kb

Infection by Entomophthora Sensu Stricto (Entomophthoromycota: Entomophthorales) in Diaphorina Citri (Hemiptera: Liviidae) in Veracruz, Mexico Author(S): L Infection by Entomophthora Sensu Stricto (Entomophthoromycota: Entomophthorales) in Diaphorina citri (Hemiptera: Liviidae) in Veracruz, Mexico Author(s): L. Guizar-Guzman and S. R. Sanchez-Peña Source: Florida Entomologist, 96(2):624-627. 2013. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.096.0230 URL: http://www.bioone.org/doi/full/10.1653/024.096.0230 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 624 Florida Entomologist 96(2) June 2013 INFECTION BY ENTOMOPHTHORA SENSU STRICTO (ENTOMOPHTHOROMYCOTA: ENTOMOPHTHORALES) IN DIAPHORINA CITRI (HEMIPTERA: LIVIIDAE) IN VERACRUZ, MEXICO L. GUIZAR-GUZMAN AND S. R. SANCHEZ-PEÑA* Departamento de Parasitología, Universidad Autonoma Agraria Antonio Narro, Saltillo, Coahuila, 25315, Mexico *Corresponding author; E-mail: [email protected] The Asian citrus psyllid, Diaphorina citri Ku- insects off infested branches into the bags. The wayama is one of the most important pests of cit- opening of each bag was folded and sealed with rus. It vectors the pathogenic bacterium causing masking tape. The puffed bags containing D. citri the disease Huanglongbing (HLB) or Greening of adults were carefully placed in large plastic bags, citrus trees (Halbert & Manjunath 2004). Ento- moistened slightly and held at 25-30 °C during mopathogenic fungi are important biological con- transport to the laboratory in Saltillo. In this way trol agents of insects and often cause epizootics live healthy insects can be maintained in bags for that reduce host populations dramatically (Mc- a few days. We expected to find mainly infections Coy et al. 1988). Among the entomopathogenic by H. citriformis, a slow-growing fungus that is fungi infecting D. citri in the field are Beauveria commonly found attacking D. citri adults in the bassiana (Bals.) Vuill. (Rivero-Aragon & Grillo- Gulf Coast region of Mexico (Casique-Valdes et Ravelo 2000; Yang et al. 2006), Hirsutella citrifor- al. 2011). mis Speare, (Rivero-Aragon & Grillo-Ravelo 2000; After 3 days of keeping insects in paper bags, Subandiyah et al. 2000; Meyer et al. 2007; Ca- dead (n = 203) and live (n = 7) insects were placed sique-Valdes & Sanchez-Peña 2010; Casique-Val- in petri dishes at room temperature, under dif- des et al. 2011), Isaria fumosorosea Wize (Samson fuse fluorescent light (10:14 h L:D) with a piece 1974; Subandiyah et al. 2000; Casique-Valdes & of wet cotton to maintain high humidity. Insects Sanchez-Peña 2010), Isaria javanica (Friederichs were observed daily to detect fungal development. & Bally) Samson & Hywel-Jones (=Paecilomyces One dead D. citri showing the typical signs of in- javanicus (Friederichs & Bally) Brown & Smith) fection by an Entomophthora species (Entomoph- (Yang et al. 2006), and Lecanicillium lecanii thorales: Entomophthoraceae) was observed in (Zimm.) Zare & W. Gams (=Acrostalagmus aphi- a paper bag on day 3 after collection; on day 6, dum Oudem., Verticillium lecanii (Zimm.) Viegas) there were 2 additional similar dead insects (all (Rivero-Aragon & Grillo-Ravelo 2000; Yang et al. from Venustiano Carranza, Papantla) in petri 2006; Casique-Valdes & Sanchez-Peña 2010). Au- dishes (total 1.4% infection) (Fig. 1A-C). These bert (1987) also lists Cladosporium nr. oxysporum insects had swollen abdomens, that angled away Berk. & M.A. Curtis and the sooty mold, Capno- from the substrate; wings spread latero-dorsally dium citri Berk. and Desm. attacking D. citri, but and raised above the abdomen, and conspicuous the pathogenicities of these 2 usually saprophytic masses of glutinous hyphae and conidiophores fungi are not clear. on the abdomen and thorax, similar to the well- In a survey of entomopathogenic fungi of D. known fungus Entomophthora muscae (Cohn) citri, about 600 plants of Citrus spp. (Persian Fres., infecting flies (Diptera: Muscidae) (Mullens lime, sweet orange and tangerine) and orange 1990; Krasnoff et al. 1995). All infected insects jessamine (Murraya paniculata (L.) Jack) were were collected at Venustiano Carranza, Papantla: examined for dead infected insects on foliage on N 20° 27’ 18” W 97° 17’ 06”. No similarly killed 9-13 Oct 2012, across 90 km in Veracruz state, insects were detected in the field survey. Fungi in Mexico. The area (described below) includes the the Entomophthorales forcibly eject their prima- main production zone of Persian lime in Mexico ry conidia (PC) (Keller 2007). Thus, slides were (Sánchez-Torres et al. 2011). We also collected live placed in the petri dish under infected insects in D. citri adults in our search for fungal infections, an attempt to collect discharged conidia. On 12 October 2012, live adults were collected on Two of these insects became rapidly overgrown M. paniculata, at the localities of Ixtacuaco, La by saprophytic fungi (mainly Cladosporium sp.; Guadalupe, San Andres, San Pedro, Totomoxtle Capnodiales: Davidiellaceae), which completely ob- and Venustiano Carranza, in the municipali- scured the original pathogen. In petri dishes, some ties of Papantla, San Rafael, and Tlapacoyan in dead adults in typical Entomophthora-infected pos- north-central Veracruz state (highway distance: ture were also overgrown by fungal saprophytes. aprox. 90 km). At Ixtacuaco, insects were col- This rapid secondary fungal growth is frequently lected from sweet orange (Citrus × sinensis (L.) observed on other insects killed by Entomophtho- Osbeck) also. Psyllids (n = 210) were placed in rales (Sanchez-Peña 1993). Thus the percent infec- brown paper bags (38.5 × 16 cm) by shaking the tion by Entomophthora is possibly underestimated. Scientific Notes 625 Fig. 1. Entomophthora sp. on Diaphorina citri. Figs. 1A-1C. Dead D. citri adults with typical position of Ento- mophthora-infected insects (see text); the same insect is in A and B. Figs. 1D-1F. Conidia of Entomophthora sp. Fig. 1D. Empty or dehydrated primary conidium (22.7 x 16.6 μm) with typical shape of Entomophthora species. Fig. 1E. Empty primary conidium (*) and production of secondary conidium (14.1 × 11.6 μm) with small germ tube. Fig. 1F. Empty campanulate primary conidium (*) and production of secondary conidium. The halos in D-E (arrows) formed upon conidial attachment to hard surfaces. Bar = 1mm (Figs. 1A-1C); Bar =11 μm (Fig. 1D), Bar = 7 μm (Figs. 1E-1F). Unfortunately no PC landed on the slides We also observed the mucous cytoplasm halo placed under infected insects for microscopical ex- around the discharged PC, typical of Entomoph- amination; they landed on the bottom of the petri thora (Fig. 1D-F) (Eilenberg et al. 1986). Most PC dish. Pictures of unstained conidia shown were were empty (had germinated) when detected, and taken from the dish bottom under the compound no nuclei were observed; they also lysed a few hours microscope. Most PC observed had germinated, later. Thus it is not possible to assign this fungus to producing long germ tubes and/or secondary co- a species with certainty since number and size of nidia (SC) (Humber 1981; Keller et al. 2007). The conidial nuclei are essential criteria for the identi- pictures herein are either of PC emptied of cyto- fication of Entomophthora species (Humber 1981; plasmic contents, or perhaps slightly dehydrated, Keller 2007). Entomophthorales have been occa- and measured with the software Axioma Vision sionally reported to attack psyllids in temperate 4.5 (n = 4). Average measurements are provided. regions of Europe (Prischepa et al. 2011; Jankevica Both PC and SC observed are typical of the genus 2004) and the tropics of South Asia (see review in Entomophthora Cohn in the strict sense (Humber Villacarlos & Wilding 1994). In the New World 1981). PC are campanulate, with a flat base, sur- tropics, Alves et al. (2009) reported Zoophthora rounded with a halo of mucilage upon discharge radicans on psyllids (Gyropsylla spegazziniana) (Fig. 1 D-F), with prominent apical point and in Brazil; however, the globose spores and coarse broad basal papilla, 16.6 × 22.7 μm; SC were glo- hyphae shown do not correspond to the capillary bose, with broad basal papilla, 14.1 × 11.6 μm, conidia characteristic of Zoophthora and perhaps borne apically on a short conidiophore arising describe a mixed infection with the fungus, Bat- from PC (Fig. 2). This is similar to the spore size koa, or other fungus. Felix-Alvarez et al. (2003) (PC: 11.5-20.5 × 9-18.5 μm; SC: 11.5-16 × 9-11.5 mentioned infections by Entomophthorales on D. μm) of Entomophthora philippinensis Villacarlos citri in Matanzas, Cuba, but provide no further de- & Wilding infecting the leucaena psyllid, Hetero- scription of the fungi involved. psylla cubana Crawford, in the Philippines (Vil- Most Entomophthora species are restricted lacarlos & Wilding 1994). to a narrow range of closely related host species 626 Florida Entomologist 96(2) June 2013 (Geden et al. 1993). It is possible that in the New colectados de limonaria, Murraya paniculata, en World this fungus host-jumped to the exotic D. el pueblo de Venustiano Carranza, municipio de citri from another (psyllid?) host. This was pos- Papantla. Diaphorina citri es un nuevo registro sibly the case for E. philippinensis on H. cubana, de hospedero para este género de hongo entomo- which is exotic in the Philippines (Villacarlos & patógeno. Wilding 1994).
Recommended publications
  • Morphological and Molecular Characterization of Entomophthorales
    Acta Mycologica Article ID: 5522 DOI: 10.5586/am.5522 ORIGINAL RESEARCH PAPER in MICROSCOPIC FUNGI Publication History Received: 2020-02-27 Morphological and Molecular Accepted: 2020-06-26 Published: 2020-11-27 Characterization of Entomophthorales Handling Editor (Entomophthoromycota: Malgorzata Ruszkiewicz-Michalska; Institute Entomophthoromycotina) from Argentina for Agricultural and Forest Environment, Polish Academy of Sciences; University of Łódź; 1* 2 Romina G. Manfrino , Louela A. Castrillo , https://orcid.org/0000-0001- 1 3 8901-0552 Claudia C. López Lastra , Andrea V. Toledo , , 1 4 Authors Contributions Walter Ferrari , Annette B. Jensen RGM and WF conducted the DNA 1Centro de Estudios Parasitólogicos y de Vectores – CEPAVE (CONICET, Consejo Nacional de extraction and PCR assays; ABJ, Investigaciones Científcas y Tecnológicas; UNLP, Universidad Nacional de La Plata), La Plata, AVT, and LAC conducted the Buenos Aires, Argentina phylogenetic analyses; RGM, 2Robert W. Holley Center for Agriculture & Health, U.S. Department of Agriculture, CCLL, and LAC wrote the Agriculture Research Service, Ithaca, 14853, NY, USA manuscript; CCLL and ABJ 3Facultad de Ciencias Agrarias y Forestales, Centro de Investigacioness de Fitopatología – secured funding CIDEFI (CICPBA, Comisión de Investigaciones Científcas de la Provincia de Buenos Aires; UNLP, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina Funding 4Department of Agriculture and Ecology, University of Copenhagen, Thorvaldsensvej 40, This study was supported by the Frederiksberg C, 1871, Denmark National Research Council of Argentina (CONICET) and by *To whom correspondence should be addressed. Email: [email protected] University of La Plata (UNLP). Competing Interests Abstract No competing interests have been declared. We characterized 17 insect-pathogenic entomophthoralean fungal isolates (Entomophthoromycotina: Entomophthorales) using morphological and Copyright Notice molecular techniques.
    [Show full text]
  • R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 the Diptera of Lundy Have Been Poorly Studied in the Past
    Swallow 3 Spotted Flytcatcher 28 *Jackdaw I Pied Flycatcher 5 Blue Tit I Dunnock 2 Wren 2 Meadow Pipit 10 Song Thrush 7 Pied Wagtail 4 Redwing 4 Woodchat Shrike 1 Blackbird 60 Red-backed Shrike 1 Stonechat 2 Starling 15 Redstart 7 Greenfinch 5 Black Redstart I Goldfinch 1 Robin I9 Linnet 8 Grasshopper Warbler 2 Chaffinch 47 Reed Warbler 1 House Sparrow 16 Sedge Warbler 14 *Jackdaw is new to the Lundy ringing list. RECOVERIES OF RINGED BIRDS Guillemot GM I9384 ringed 5.6.67 adult found dead Eastbourne 4.12.76. Guillemot GP 95566 ringed 29.6.73 pullus found dead Woolacombe, Devon 8.6.77 Starling XA 92903 ringed 20.8.76 found dead Werl, West Holtun, West Germany 7.10.77 Willow Warbler 836473 ringed 14.4.77 controlled Portland, Dorset 19.8.77 Linnet KC09559 ringed 20.9.76 controlled St Agnes, Scilly 20.4.77 RINGED STRANGERS ON LUNDY Manx Shearwater F.S 92490 ringed 4.9.74 pullus Skokholm, dead Lundy s. Light 13.5.77 Blackbird 3250.062 ringed 8.9.75 FG Eksel, Belgium, dead Lundy 16.1.77 Willow Warbler 993.086 ringed 19.4.76 adult Calf of Man controlled Lundy 6.4.77 THE DIPTERA (TWO-WINGED FLffiS) OF LUNDY ISLAND R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 The Diptera of Lundy have been poorly studied in the past. Therefore, it is hoped that the production of an annotated checklist, giving an indication of the habits and general distribution of the species recorded will encourage other entomologists to take an interest in the Diptera of Lundy.
    [Show full text]
  • Virulence of Two Entomophthoralean Fungi, Pandora Neoaphidis
    Article Virulence of Two Entomophthoralean Fungi, Pandora neoaphidis and Entomophthora planchoniana, to Their Conspecific (Sitobion avenae) and Heterospecific (Rhopalosiphum padi) Aphid Hosts Ibtissem Ben Fekih 1,2,3,*, Annette Bruun Jensen 2, Sonia Boukhris-Bouhachem 1, Gabor Pozsgai 4,5,*, Salah Rezgui 6, Christopher Rensing 3 and Jørgen Eilenberg 2 1 Plant Protection Laboratory, National Institute of Agricultural Research of Tunisia, Rue Hédi Karray, Ariana 2049, Tunisia; [email protected] 2 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 3rd floor, 1871 Frederiksberg C, Denmark; [email protected] (A.B.J.); [email protected] (J.E.) 3 Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] 4 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China 5 Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China 6 Department of ABV, National Agronomic Institute of Tunisia, 43 Avenue Charles Nicolle, 1082 EL Menzah, Tunisia; [email protected] * Correspondence: [email protected] (I.B.F.); [email protected] (G.P.) Received: 03 December 2018; Accepted: 02 February 2019; Published: 13 February 2019 Abstract: Pandora neoaphidis and Entomophthora planchoniana (phylum Entomophthoromycota) are important fungal pathogens on cereal aphids, Sitobion avenae and Rhopalosiphum padi. Here, we evaluated and compared for the first time the virulence of these two fungi, both produced in S. avenae cadavers, against the two aphid species subjected to the same exposure. Two laboratory bioassays were carried out using a method imitating entomophthoralean transmission in the field.
    [Show full text]
  • (Fungi, Entomophthoromycota) Attacking Coleoptera with a Key for Their Identification
    Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Autor(en): Keller, Siegfried Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 86 (2013) Heft 3-4 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-403074 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 86: 261-279.2013 Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Siegfried Keller Rheinweg 14, CH-8264 Eschenz; [email protected] A key to 30 species of entomophthoralean fungi is provided.
    [Show full text]
  • Two New Species of Entomophthoraceae (Zygomycetes, Entomophthorales) Linking the Genera Entomophaga and Eryniopsis
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1993 Band/Volume: 45 Autor(en)/Author(s): Keller Siegfried, Eilenberg Jorgen Artikel/Article: Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. 264- 274 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis S. Keller1 & J. Eilenberg2 •Federal Research Station for Agronomy, Reckenholzstr. 191, CH-8046 Zürich, Switzerland 2The Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Bülowsvej 13, DK 1870 Frederiksberg C, Copenhagen, Denmark Keller, S. & Eilenberg, J. (1993). Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. - Sydowia 45 (2): 264-274. Two new species of the genus Eryniopsis from nematoceran Diptera are descri- bed; E. ptychopterae from Ptychoptera contaminala and E. transitans from Limonia tripunctata. Both produce primary conidia and two types of secondary conidia. The primary conidia of E. ptychopterae are 36-39 x 23-26 urn and those of E. transitans 32-43 x 22-29 um. The two species are very similar but differ mainly in the shape of the conidia and number of nuclei they contain. Both species closely resemble mem- bers of the Entomophaga grilly group and probably form the missing link between Eryniopsis and Entomophaga. Keywords: Insect pathogenic fungi, taxonomy, Diptera, Limoniidae, Ptychop- teridae. The Entomophthoraceae consists of mostly insect pathogenic fun- gi whose taxonomy has not been lully resolved. One controversial genus is Eryniopsis which is characterized by unitunicate, plurinucleate and elongate primary conidia usually produced on un- branched conidiophores and discharged by papillar eversion (Hum- ber, 1984).
    [Show full text]
  • Soil As a Huge Laboratory for Microorganisms
    Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium.
    [Show full text]
  • Biological Pest Control
    ■ ,VVXHG LQ IXUWKHUDQFH RI WKH &RRSHUDWLYH ([WHQVLRQ :RUN$FWV RI 0D\ DQG -XQH LQ FRRSHUDWLRQ ZLWK WKH 8QLWHG 6WDWHV 'HSDUWPHQWRI$JULFXOWXUH 'LUHFWRU&RRSHUDWLYH([WHQVLRQ8QLYHUVLW\RI0LVVRXUL&ROXPELD02 ■DQHTXDORSSRUWXQLW\$'$LQVWLWXWLRQ■■H[WHQVLRQPLVVRXULHGX AGRICULTURE Biological Pest Control ntegrated pest management (IPM) involves the use of a combination of strategies to reduce pest populations Steps for conserving beneficial insects Isafely and economically. This guide describes various • Recognize beneficial insects. agents of biological pest control. These strategies include judicious use of pesticides and cultural practices, such as • Minimize insecticide applications. crop rotation, tillage, timing of planting or harvesting, • Use selective (microbial) insecticides, or treat selectively. planting trap crops, sanitation, and use of natural enemies. • Maintain ground covers and crop residues. • Provide pollen and nectar sources or artificial foods. Natural vs. biological control Natural pest control results from living and nonliving Predators and parasites factors and has no human involvement. For example, weather and wind are nonliving factors that can contribute Predator insects actively hunt and feed on other insects, to natural control of an insect pest. Living factors could often preying on numerous species. Parasitic insects lay include a fungus or pathogen that naturally controls a pest. their eggs on or in the body of certain other insects, and Biological pest control does involve human action and the young feed on and often destroy their hosts. Not all is often achieved through the use of beneficial insects that predacious or parasitic insects are beneficial; some kill the are natural enemies of the pest. Biological control is not the natural enemies of pests instead of the pests themselves, so natural control of pests by their natural enemies; host plant be sure to properly identify an insect as beneficial before resistance; or the judicious use of pesticides.
    [Show full text]
  • Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical Agroecosystem
    62 The Open Ecology Journal, 2009, 2, 62-73 Open Access Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical Agroecosystem Doug Jackson*,1, John Vandermeer1,2 and Ivette Perfecto2 1Department of Ecology and Evolutionary Biology, 2School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA Abstract: Recent studies have shown that the spatial pattern of nests of an arboreal ant, Azteca instabilis (Hymenoptera: Formicidae), in a tropical coffee agroecosystem may emerge through self-organization. The proposed self-organization process involves both local expansion and density-dependent mortality of the ant colonies. We explored a possible mechanism for the density-dependent mortality involving the entomopathogenic fungus Lecanicillium lecanii. L. lecanii attacks a scale insect, Coccus viridis (Coccidae, Hemiptera), which is tended by A. instabilis in a mutualistic association. By attacking C. viridis, L. lecanii may have an indirect, negative effect on ant colony survival. To explore this hypothesis, we conducted investigations into the spatial and temporal distributions of L. lecanii. We measured incidence and severity at 4 spatial scales: (1) throughout a 45 hectare study plot; (2) in two 40 X 50 meter plots; (3) on coffee bushes within 4 m of two ant nests; and (3) on individual branches in a single coffee bush. The plot-level censuses did not reveal a clear spatial pattern, but the finer scale surveys show distinct patterns in the spread of infection over time. We also developed a simple cellular automata model of the coupled ant nest-L. lecanii system which is able to produce spatial patterns qualitatively and quantitatively similar to that found in the field.
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • 1 Project Title: the Role of Entomopathogenic Fungi In
    Project title: The role of entomopathogenic fungi in regulating aphid populations in field Brassicas Project number: CP092 Project leader: Dr. Dave Chandler, Warwick Crop Centre, University of Warwick, CV35 9EF Report: [Final] report, October 2016 Previous report: [Annual] report, February 2015 Key staff: Liam Harvey, Warwick Crop Centre, University of Warwick, CV35 9EF Location of project: Warwick Crop Centre, University of Warwick, CV35 9EF Industry Representative: Andy Richardson, Allium & Brassica Centre, Wash Road, Kirton, Boston, Lincs., PE20 1QQ Date project commenced: 01/02/2013 Date project completed 30/04/2016 (or expected completion date): 1 DISCLAIMER AHDB, operating through its HDC division seeks to ensure that the information contained within this document is accurate at the time of printing. No warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document. Copyright, Agriculture and Horticulture Development Board 2017. All rights reserved. No part of this publication may be reproduced in any material form (including by photocopy or storage in any medium by electronic means) or any copy or adaptation stored, published or distributed (by physical, electronic or other means) without the prior permission in writing of the Agriculture and Horticulture Development Board, other than by reproduction in an unmodified form for the sole purpose of use as an information resource when the Agriculture and Horticulture Development Board or HDC is clearly acknowledged as the source, or in accordance with the provisions of the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Diversity of Entomopathogens Fungi: Which Groups Conquered
    bioRxiv preprint doi: https://doi.org/10.1101/003756; this version posted April 4, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diversity of entomopathogens Fungi: Which groups conquered the insect body? João P. M. Araújoa & David P. Hughesb aDepartment of Biology, Penn State University, University Park, Pennsylvania, United States of America. bDepartment of Entomology and Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. [email protected]; [email protected]; Abstract The entomopathogenic Fungi comprise a wide range of ecologically diverse species. This group of parasites can be found distributed among all fungal phyla and as well as among the ecologically similar but phylogenetically distinct Oomycetes or water molds, that belong to a different kingdom (Stramenopila). As a group, the entomopathogenic fungi and water molds parasitize a wide range of insect hosts from aquatic larvae in streams to adult insects of high canopy tropical forests. Their hosts are spread among 18 orders of insects, in all developmental stages such as: eggs, larvae, pupae, nymphs and adults exhibiting completely different ecologies. Such assortment of niches has resulted in these parasites evolving a considerable morphological diversity, resulting in enormous biodiversity, much of which remains unknown. Here we gather together a huge amount of records of these entomopathogens to comparing and describe both their morphologies and ecological traits. These findings highlight a wide range of adaptations that evolved following the evolutionary transition to infecting the most diverse and widespread animals on Earth, the insects.
    [Show full text]
  • A Computer Model of the Gypsy Moth and Its Fungal Pathogen 5
    Abstract A one-host generation computer model, with a time-step of 1 day, has been developed to simulate the interaction between the very effective fungal pathogen, Entomophaga maimaiga, and its host, the gypsy moth. This publication describes the structure of the validated model, the kinds of model inputs needed and the outputs produced, and gives examples of model results. The model can be used to construct scenarios of future gypsy moth-fungus interactions and to evaluate the effectiveness of the fungus as a biological control agent. A Computer Model of the Gyl--, Moth and its Fungal Pathogen By Ronald M. Weseloh The gypsy moth fungal pathogen, Entomophaga rroper weather conditions are very impoftant for the maimaiga, was first found to be established in North fungus to be effective. Moist soil during the gypsy moth America in 1989 (Andreadis and Weseloh 1990), and larval season and adequate rainfall at the times of conidial positively identified as a species from Japan (Hajek et al. sporulation must occur for the fungus to infect larvae. The 1990). Since 1989, the fungus has significantly suppressed number of resting spores in the soil (resting spore load) and the gypsy moth in the generally infested areas of North the number of gypsy moths available for infection probably America. Numerous scenarios have been proposed for how it also influence hngus activity. Using these inputs, colleagues became established (Hajek et at. 1995), but we probably will and I have developed a computer model that simulates the never know for sure. infection, growth, and death of the host and pathogen over a Fortunately, E.
    [Show full text]