Redalyc.BACTERIAL POPULATION DYNAMICS and SEPARATION of ACTIVE DEGRADERS by STABLE ISOTOPE PROBING DURING BENZENE DEGRADATION IN

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.BACTERIAL POPULATION DYNAMICS and SEPARATION of ACTIVE DEGRADERS by STABLE ISOTOPE PROBING DURING BENZENE DEGRADATION IN Revista Internacional de Contaminación Ambiental ISSN: 0188-4999 [email protected] Universidad Nacional Autónoma de México México ABURTO, Arturo; BALL, Andrew S. BACTERIAL POPULATION DYNAMICS AND SEPARATION OF ACTIVE DEGRADERS BY STABLE ISOTOPE PROBING DURING BENZENE DEGRADATION IN A BTEX-IMPACTED AQUIFER Revista Internacional de Contaminación Ambiental, vol. 25, núm. 3, 2009, pp. 147-156 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=37012012003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Rev. Int. Contam. Ambient. 25 (3) 147-156, 2009 BACTERIAL POPULATION DYNAMICS AND SEPARATION OF ACTIVE DEGRADERS BY STABLE ISOTOPE PROBING DURING BENZENE DEGRADATION IN A BTEX-IMPACTED AQUIFER Arturo ABURTO1,2*, and Andrew S. BALL1,3 1 Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom. *Corresponding author: Arturo Aburto. Tel.: +52 55 58044600 ext 2677, Fax: +52 55 58046407. E-mail address: [email protected] 2 Present address: Universidad Autonoma Metropolitana, Artificios 40, Miguel Hidalgo, Cuajimalpa, México. 3 Present address: School of Biological Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide, South Australia 5001 (Recibido agosto 2008, aceptado febrero 2009) Key words: aerobic benzene degradation, SIP, groundwater, population dynamics ABSTRACT The activity and diversity of a groundwater bacterial community was studied during the degradation of benzene in samples from a BTEX-contaminated aquifer (SIReN, UK) through the use of denaturing gradient gel electrophoresis (DGGE), followed by excision and sequencing of dominant bands. Rapid aerobic benzene degradation occurred in all samples, with 60-70 % degradation of benzene. DGGE analysis revealed that unique, stable bacterial communities were formed in each sample. Pseudomonas putida and Aci- dovorax delafieldii were identified in groundwater samples 308s and W6s respectively, suggesting they are the important taxa involved in the degradation of benzene. Further work based on stable isotope probing (SIP) of RNA using 13C benzene was carried out. Prominent bands were identified as Acidovorax and Malikia genera; the latter is very similar to the benzene-degrader Hydrogenophaga, which confirms the presence of ac- tive benzene degraders in the groundwater samples. The identification of the prominent communities provides knowledge of the bioremediation processes occurring in situ and the potential to enhance degradation. This study highlights the potential of combining community fingerprinting techniques, such as DGGE, together with SIP. Palabras clave: degradación aeróbica de benceno, SIP, agua subterránea, dinámica de poblaciones RESUMEN El presente estudio investiga la dinámica de poblaciones durante la degradación de ben- ceno en muestras de un acuífero contaminado con BTEX mediante la técnica de DGGE, obtención de bandas y su posterior secuenciación. Los resultados indican degradación aeróbica de benceno en todas las muestras y que las poblaciones son diferentes en cada muestra, pero se mantienen estables durante la degradación del contaminante. Las prin- cipales bandas obtenidas en el gel de poliacrilamida fueron secuenciadas e identificadas como Pseudomonas putida y Acidovorax delafieldii en las muestras 308s y W6s respec- tivamente, lo que sugiere que estos microorganismos son los principales degradadores 148 A. Aburto and A.S. Ball en ciertas muestras. Mediante el uso de isótopos estables se comprobó la existencia de microorganismos aerobios degradadores de benceno, los cuales fueron identificados como miembros de los géneros Acidovorax y presumiblemente Hydrogenophaga en otra de las muestras. La identificación de comunidades prominentes brinda información sobre los procesos que ocurren in situ y del potencial para aumentar la degradación. El presente estudio muestra el potencial de combinar técnicas como DGGE con isótopos estables. INTRODUCTION substrate. This is achieved by labelling the substrate with a stable isotope (the most common is 13C) that The contamination of groundwater represents a will be incorporated into the microorganism’s cellu- major hazard in terms of both environmental damage lar biomarkers (e.g. lipids, DNA and rRNA) if they and public health; contaminants such as PAH (pol- utilize the substrate. The labelled nucleic acids can yaromatic hydrocarbons), MTBE (methyl tert-butyl then be resolved from the unlabelled ones by density ether), and BTEX (benzene, toluene, ethylbenzene gradient ultracentrifugation, specific genes amplified and xylenes) enter natural waters via wastewater ef- and separated in a denaturing gel, and sequenced. fluents from petroleum refining industries, rainwater Thus, by sequencing the labelled nucleic acids, the runoff from roads, accidental spills and leakages microorganisms responsible for the substrate uptake from underground storage tanks. The most soluble can be identified and therefore link function to mi- components of gasoline and diesel fuel are the BTEX crobial identity. Although SIP can be performed with compounds, making them common contaminants in DNA or rRNA, the latter presents some advantages a large number of aquifers. Among the BTEX com- over DNA, such as a higher copy number and a higher pounds, benzene requires special attention because turnover rate, which is a reflection of cellular activity it is the most toxic, the most soluble (Sikkema et al. independent of replication (Manefield et al. 2002a, 1995) and carcinogenic (Dean 1985). Benzene is readi- Manefield et al. 2002b, Lueders et al. 2004, Dumont ly degraded aerobically, and recent studies have shown and Murrell 2005). it is also degraded in the absence of oxygen (Phelps The aim of this study was to obtain a profile of et al. 1998, Rooney-Varga et al. 1999, Caldwell and the bacterial community in several groundwater Suflita 2000, Villatoro-Monzón et al. 2003, Kasai et al. samples during benzene degradation and also to link 2006). Further work is now required to elucidate the the aerobic bacterial community in the groundwater microorganisms responsible for benzene degradation sample DW3d to a specific function, i.e. benzene in the various environments. degradation. Sample DW3d was selected from the SIReN site for this experiment because it is heavily Stable isotope probing polluted (42.9 mgL−1; Table I) with benzene (Earle et Stable isotope probing (SIP) is used to identify al. 2001) and the microorganisms thriving in it have microorganisms that assimilate a specific growth been exposed to the contaminant for a long period, TABLE I. PHYSICAL AND CHEMICAL CHARACTERISTICS OF WELLS SAMPLED AT THE SIReN Well Classa pH DOb,c Benzenec Toluenec Ethyl m- & p- o- Total Total (mgl1) Benzenec xylenec xylenec PAH alkanes W6s Clean 5.3 0.00 <1 <1 <1 <1 <1 2.03 11.5 W18s Clean 7.0 2.22 46 2 <1 <1 <1 0.56 12.2 308s Low 10.2 0.16 15563 61 484 9 8 0.20 21.0 DW3s Low 6.1 0.91 16009 171 142 89 120 1.24 27.6 DW3d High 6.0 0.03 42969 1439 18390 1805 921 1.80 12.1 All values are in µg l−1 except where stated a. Class = Classification b. DO = Dissolved Oxygen c. Data from Shell Global Solutions measurements taken in April 2003 (G. Lethbridge, personal communication), except for benzene measurement from DW3d which was measured on the second sampling session as part of this study. POPULATION DYNAMICS DURING BENZENE DEGRADATION 149 suggesting adaptation to the pollutant. Furthermore, Partial 16S rRNA gene fragments were obtained from previous clone libraries indicate the presence of PCR amplification with bacterial Muyzer primers 1. aerobic hydrocarbon degraders such as Polaromonas Forward with GC clamp (CGC CCG CCG CGC GCG naphthalenivorans (Aburto et al. 2009). GCG GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG CAG) and 2 Reverse (ATT ACC GCG GCT GCT GG) (E. coli position 341 to MATERIALS AND METHODS 534) (Muyzer 1993). The cycling conditions were as follows: an initial denaturation step of 94 °C for 1 Study site and sampling min, followed by 30 cycles of denaturation at 94 °C The study site is a BTEX-contaminated aquifer for 1 min, annealing at 55 °C for 1 min, and extension located below an operational petrochemical plant at 72 °C for 2 min. Cycling was completed by a final known as SIReN (Site for Innovative Research in elongation at 72 °C for 10 min. Natural Attenuation) in the UK. This study focuses on five wells showing different physicochemical char- DGGE acteristics and levels of contamination, nominally PCR products with a GC clamp were separated classified as high, low or clean (Table I). Details without purification in an 8 % w/v polyacrylamide about the site can be found elsewhere (Earle et al. gel with a linear denaturing gradient, increasing 2001, Fahy et al. 2005). from 40 % at the top of the gel to 60 % at the bottom The groundwater used to prepare the micro- (100 % denaturants correspond to 7 M urea and 40 % cosms was collected on the second sampling ses- v/v formamide). The DGGE gel was run at 60 °C for sion (19/05/05) as described previously (Aburto 5 h in a D Code Universal Mutation Detection System et al. 2009). Samples DW3s, 308s and W18s were (Bio-Rad Hercules, CA, USA). Gels were stained collected with a peristaltic pump, while a bladder for 15 min with 15 µL of SYBR Gold (Molecular type was used for DW3d and W6s. Groundwater Probes BV, Leiden, Netherlands) diluted in 150 mL was flushed from wells until pH, temperature and of 1X TAE buffer. Stained gels were visualized in a conductivity were stable. Samples were collected in GelDoc System (Bio Rad). Dominant bands were 1 L glass bottles. The groundwater was refrigerated excised and incubated in 40 µL of elution buffer (0.5 and protected from light during transportation to the M ammonium acetate, 10 mM magnesium acetate, 1 laboratory.
Recommended publications
  • Publication List – Michael Wagner
    Publication list – Michael Wagner I have published between 1992 – April 2021 in my six major research fields (nitrification, single cell microbiology, microbiome, wastewater microbiology, endosymbionts, sulfate reduction) 269 papers and more than 30 book chapters. According to Scopus (April 2021) my publications have been cited 40,640 (ISI: 37,997; Google Scholar: 59,804) and I have an H-index of 107 (ISI: 103; Google Scholar: 131). Seven of my publications appeared in Nature (plus a News & Views piece), three in Science, 13 in PNAS (all direct submission) and two in PLoS Biology. More info about my publications can be found at: Scopus: https://www.scopus.com/authid/detail.uri?authorId=57200814774 ResearcherID: https://publons.com/researcher/2814586/michael-wagner/ GoogleScholar: https://scholar.google.com/citations?user=JF6OQ_0AAAAJ&hl=de 269. Neuditschko B, Legin AA, Baier D, Schintlmeister A, Reipert S, Wagner M, Keppler BK, Berger W, Meier-Menches SM, Gerner C. 2021. Interaction with ribosomal proteins accompanies stress induction of the anticancer metallodrug BOLD-100/KP1339 in the endoplasmic reticulum. Angew Chem Int Ed Engl, 60:5063-5068 268. Willeit P, Krause R, Lamprecht B, Berghold A, Hanson B, Stelzl E, Stoiber H, Zuber J, Heinen R, Köhler A, Bernhard D, Borena W, Doppler C, von Laer D, Schmidt H, Pröll J, Steinmetz I, Wagner M. 2021. Prevalence of RT-qPCR-detected SARS-CoV-2 infection at schools: First results from the Austrian School-SARS-CoV-2 prospective cohort study. The Lancet Regional Health - Europe, 5:100086 267. Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, Wagner M, Stocker R.
    [Show full text]
  • Bacterial Population Dynamics and Separation of Active Degraders by Stable Isotope Probing During Benzene Degradation in a Btex-Impacted Aquifer
    Rev. Int. Contam. Ambient. 25 (3) 147-156, 2009 BACTERIAL POPULATION DYNAMICS AND SEPARATION OF ACTIVE DEGRADERS BY STABLE ISOTOPE PROBING DURING BENZENE DEGRADATION IN A BTEX-IMPACTED AQUIFER Arturo ABURTO1,2*, and Andrew S. BALL1,3 1 Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom. *Corresponding author: Arturo Aburto. Tel.: +52 55 58044600 ext 2677, Fax: +52 55 58046407. E-mail address: [email protected] 2 Present address: Universidad Autonoma Metropolitana, Artificios 40, Miguel Hidalgo, Cuajimalpa, México. 3 Present address: School of Biological Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide, South Australia 5001 (Recibido agosto 2008, aceptado febrero 2009) Key words: aerobic benzene degradation, SIP, groundwater, population dynamics ABSTRACT The activity and diversity of a groundwater bacterial community was studied during the degradation of benzene in samples from a BTEX-contaminated aquifer (SIReN, UK) through the use of denaturing gradient gel electrophoresis (DGGE), followed by excision and sequencing of dominant bands. Rapid aerobic benzene degradation occurred in all samples, with 60-70 % degradation of benzene. DGGE analysis revealed that unique, stable bacterial communities were formed in each sample. Pseudomonas putida and Aci- dovorax delafieldii were identified in groundwater samples 308s and W6s respectively, suggesting they are the important taxa involved in the degradation of benzene. Further work based on stable isotope probing (SIP) of RNA using 13C benzene was carried out. Prominent bands were identified as Acidovorax and Malikia genera; the latter is very similar to the benzene-degrader Hydrogenophaga, which confirms the presence of ac- tive benzene degraders in the groundwater samples.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • And Allochthonous-Like Dissolved Organic Matter
    fmicb-10-02579 November 5, 2019 Time: 17:10 # 1 ORIGINAL RESEARCH published: 07 November 2019 doi: 10.3389/fmicb.2019.02579 Distinct Coastal Microbiome Populations Associated With Autochthonous- and Allochthonous-Like Dissolved Organic Matter Elias Broman1,2*, Eero Asmala3, Jacob Carstensen4, Jarone Pinhassi1 and Mark Dopson1 1 Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden, 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden, 3 Tvärminne Zoological Station, University of Helsinki, Hanko, Finland, 4 Department of Bioscience, Aarhus University, Roskilde, Denmark Coastal zones are important transitional areas between the land and sea, where both terrestrial and phytoplankton supplied dissolved organic matter (DOM) are respired or transformed. As climate change is expected to increase river discharge and water Edited by: temperatures, DOM from both allochthonous and autochthonous sources is projected Eva Ortega-Retuerta, to increase. As these transformations are largely regulated by bacteria, we analyzed Laboratoire d’Océanographie microbial community structure data in relation to a 6-month long time-series dataset of Microbienne (LOMIC), France DOM characteristics from Roskilde Fjord and adjacent streams, Denmark. The results Reviewed by: Craig E. Nelson, showed that the microbial community composition in the outer estuary (closer to the University of Hawai‘i at Manoa,¯ sea) was largely associated with salinity and nutrients, while the inner estuary formed United States Scott Michael Gifford, two clusters linked to either nutrients plus allochthonous DOM or autochthonous DOM University of North Carolina at Chapel characteristics. In contrast, the microbial community composition in the streams was Hill, United States found to be mainly associated with allochthonous DOM characteristics.
    [Show full text]
  • Abstract Tracing Hydrocarbon
    ABSTRACT TRACING HYDROCARBON CONTAMINATION THROUGH HYPERALKALINE ENVIRONMENTS IN THE CALUMET REGION OF SOUTHEASTERN CHICAGO Kathryn Quesnell, MS Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Melissa Lenczewski, Director The Calumet region of Southeastern Chicago was once known for industrialization, which left pollution as its legacy. Disposal of slag and other industrial wastes occurred in nearby wetlands in attempt to create areas suitable for future development. The waste creates an unpredictable, heterogeneous geology and a unique hyperalkaline environment. Upgradient to the field site is a former coking facility, where coke, creosote, and coal weather openly on the ground. Hydrocarbons weather into characteristic polycyclic aromatic hydrocarbons (PAHs), which can be used to create a fingerprint and correlate them to their original parent compound. This investigation identified PAHs present in the nearby surface and groundwaters through use of gas chromatography/mass spectrometry (GC/MS), as well as investigated the relationship between the alkaline environment and the organic contamination. PAH ratio analysis suggests that the organic contamination is not mobile in the groundwater, and instead originated from the air. 16S rDNA profiling suggests that some microbial communities are influenced more by pH, and some are influenced more by the hydrocarbon pollution. BIOLOG Ecoplates revealed that most communities have the ability to metabolize ring structures similar to the shape of PAHs. Analysis with bioinformatics using PICRUSt demonstrates that each community has microbes thought to be capable of hydrocarbon utilization. The field site, as well as nearby areas, are targets for habitat remediation and recreational development. In order for these remediation efforts to be successful, it is vital to understand the geochemistry, weathering, microbiology, and distribution of known contaminants.
    [Show full text]
  • Biological Phosphorus Removal from Abattoir Wastewater at Very Short Sludge Ages Mediated by Novel PAO Clade Comamonadaceae
    Accepted Manuscript Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae Huoqing Ge , Damien J. Batstone , Jürg Keller PII: S0043-1354(14)00796-9 DOI: 10.1016/j.watres.2014.11.026 Reference: WR 11009 To appear in: Water Research Received Date: 13 August 2014 Revised Date: 6 November 2014 Accepted Date: 16 November 2014 Please cite this article as: Ge, H., Batstone, D.J., Keller, J., Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae, Water Research (2014), doi: 10.1016/j.watres.2014.11.026. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Biological phosphorus removal from abattoir wastewater at 2 very short sludge ages mediated by novel PAO clade 3 Comamonadaceae 4 Huoqing Ge, Damien J. Batstone, Jürg Keller* 5 AWMC, Advanced Water Management Centre, The University of Queensland, St Lucia, 6 4072, Queensland, Australia 7 8 *Corresponding author: 9 Jürg Keller 10 11 Advanced Water Management Centre (AWMC), 12 The University of Queensland, St Lucia, MANUSCRIPT 13 QLD 4072, Australia 14 Phone: +61 7 3365 4727 15 Fax: +61 7 3365 4726 16 Email: [email protected] 17 18 19 20 21 ACCEPTED 22 23 24 1 ACCEPTED MANUSCRIPT 25 Abstract: 26 Recent increases in global phosphorus costs, together with the need to remove phosphorus 27 from wastewater to comply with water discharge regulations, make phosphorus recovery 28 from wastewater economically and environmentally attractive.
    [Show full text]
  • Physiological and Genomic Features of Highly Alkaliphilic Hydrogen-Utilizing Betaproteobacteria from a Continental Serpentinizing Site
    ARTICLE Received 17 Dec 2013 | Accepted 16 Apr 2014 | Published 21 May 2014 DOI: 10.1038/ncomms4900 OPEN Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site Shino Suzuki1, J. Gijs Kuenen2,3, Kira Schipper1,3, Suzanne van der Velde2,3, Shun’ichi Ishii1, Angela Wu1, Dimitry Y. Sorokin3,4, Aaron Tenney1, XianYing Meng5, Penny L. Morrill6, Yoichi Kamagata5, Gerard Muyzer3,7 & Kenneth H. Nealson1,2 Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. 1 J. Craig Venter Institute, 4120 Torrey Pines Road, La Jolla, California 92037, USA. 2 University of Southern California, 835 W. 37th St. SHS 560, Los Angeles, California 90089, USA. 3 Delft University of Technology, Julianalaan 67, Delft, 2628BC, The Netherlands.
    [Show full text]
  • Riverine Bacterial Communities Reveal Environmental Disturbance Signatures Within the Betaproteobacteria and Verrucomicrobia
    ORIGINAL RESEARCH published: 15 September 2016 doi: 10.3389/fmicb.2016.01441 Riverine Bacterial Communities Reveal Environmental Disturbance Signatures within the Betaproteobacteria and Verrucomicrobia John Paul Balmonte *, Carol Arnosti, Sarah Underwood, Brent A. McKee and Andreas Teske Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant Edited by: terrestrial input, the distinction between resident freshwater taxa vs. land-derived James Cotner, microbes can often become ambiguous. Furthermore, ecosystem perturbations could University of Minnesota, USA introduce allochthonous microbial groups and reshape riverine bacterial communities. Reviewed by: Barbara J. Campbell, Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the Clemson University, USA composition of bacterial communities in the Tar River of North Carolina from November Martin W. Hahn, 2010 to November 2011, during which a natural perturbation occurred: the inundation of University of Innsbruck, Austria the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, *Correspondence: John Paul Balmonte which passed over eastern North Carolina in late August 2011. This event provided the [email protected] opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed Specialty section: This article was submitted to on seasonal changes or other ecosystem variability independent of the hurricane. Our Aquatic Microbiology, findings demonstrate that downstream communities are more taxonomically diverse a section of the journal Frontiers in Microbiology and temporally variable than their upstream counterparts.
    [Show full text]
  • Understanding Molecular Identification and Polyphasic
    Journal of Microbiological Methods 103 (2014) 80–100 Contents lists available at ScienceDirect Journal of Microbiological Methods journal homepage: www.elsevier.com/locate/jmicmeth Review Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms Surajit Das ⁎, Hirak R. Dash, Neelam Mangwani, Jaya Chakraborty, Supriya Kumari Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India article info abstract Article history: The major proportion of earth's biological diversity is inhabited by microorganisms and they play a useful role in Received 21 November 2013 diversified environments. However, taxonomy of microorganisms is progressing at a snail's pace, thus less than Received in revised form 22 May 2014 1% of the microbial population has been identified so far. The major problem associated with this is due to a lack Accepted 22 May 2014 of uniform, reliable, advanced, and common to all practices for microbial identification and systematic studies. Available online 2 June 2014 However, recent advances have developed many useful techniques taking into account the house-keeping Keywords: genes as well as targeting other gene catalogues (16S rRNA, rpoA, rpoB, gyrA, gyrB etc. in case of bacteria and β Bacteria 26S, 28S, -tubulin gene in case of fungi). Some uncultivable approaches using much advanced techniques like Fungi flow cytometry and gel based techniques have also been used to decipher microbial diversity. However, all Molecular identification these techniques have their corresponding pros and cons. In this regard, a polyphasic taxonomic approach is ad- Gene sequencing vantageous because it exploits simultaneously both conventional as well as molecular identification techniques.
    [Show full text]
  • Outline Release 7 7C
    Taxonomic Outline of Bacteria and Archaea, Release 7.7 Taxonomic Outline of the Bacteria and Archaea, Release 7.7 March 6, 2007. Part 4 – The Bacteria: Phylum “Proteobacteria”, Class Betaproteobacteria George M. Garrity, Timothy G. Lilburn, James R. Cole, Scott H. Harrison, Jean Euzéby, and Brian J. Tindall Class Betaproteobacteria VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.16162 Order Burkholderiales VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.1617 Family Burkholderiaceae VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.1618 Genus Burkholderia VP Yabuuchi et al. 1993. GOLD ID: Gi01836. GCAT ID: 001596_GCAT. Sequenced strain: SRMrh-20 is from a non-type strain. Genome sequencing is incomplete. Number of genomes of this species sequenced 2 (GOLD) 1 (NCBI). N4Lid DOI: 10.1601/nm.1619 Burkholderia cepacia VP (Palleroni and Holmes 1981) Yabuuchi et al. 1993. <== Pseudomonas cepacia (basonym). Synonym links through N4Lid: 10.1601/ex.2584. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 25416. High-quality 16S rRNA sequence S000438917 (RDP), U96927 (Genbank). GOLD ID: Gc00309. GCAT ID: 000301_GCAT. Entrez genome id: 10695. Sequenced strain: ATCC 17760, LMG 6991, NCIMB9086 is from a non-type strain. Genome sequencing is completed. Number of genomes of this species sequenced 1 (GOLD) 1 (NCBI). N4Lid DOI: 10.1601/nm.1620 Pseudomonas cepacia VP (ex Burkholder 1950) Palleroni and Holmes 1981. ==> Burkholderia cepacia (new combination). Synonym links through N4Lid: 10.1601/ex.2584. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 25416. High- quality 16S rRNA sequence S000438917 (RDP), U96927 (Genbank).
    [Show full text]
  • Report of 29 Unrecorded Bacterial Species from the Phylum Proteobacteria
    Journal60 of Species Research 7(1):60-72, 2018JOURNAL OF SPECIES RESEARCH Vol. 7, No. 1 Report of 29 unrecorded bacterial species from the phylum Proteobacteria Yoon-Jong Nam, Kiwoon Beak, Ji-Hye Han, Sanghwa Park and Mi-Hwa Lee* Bacterial Resources Research Division, Freshwater Bioresources Research Bureau, Nakdonggang National Institute of Biological Resources (NNIBR), Donam 2-gil 137, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea *Correspondent: [email protected] Our study aimed to discover indigenous prokaryotic species in Korea. A total of 29 bacterial species in the phylum Proteobacteria were isolated from freshwater and sediment of rivers and brackish zones in Korea. From the high 16S rRNA gene sequence similarity (≥98.8%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to an independent and predefined bacterial species. To our knowledge, there is no official report or publication that has previously described these 29 species in Korea. Specifically, we identified 10, 12, and seven species of eight, 12, and seven genera that belong to classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, respectively; all are reported as previously unrecorded bacterial species in Korea. The Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs for each are also described. Keywords: 16S rRNA gene, Proteobacteria, unrecorded species Ⓒ 2018 National Institute of Biological Resources DOI:10.12651/JSR.2018.7.1.060 INTRODUCTION In 2015-16, we collected freshwater samples from the major rivers (Han, Nakdong, and Seomjin Rivers) Proteobacteria (Stackebrandt et al., 1988; Garrity et in Korea and isolated myriads of novel and unrecorded al., 2005) is the largest phylum of bacteria, containing bacterial species.
    [Show full text]
  • Cellular Polyamine Catalogues of the Five Classes of the Phylum Proteobacteria: Distributions of Homospermidine Within the Class
    Ann Gunma Health Sci 27:1-16,2006 1 Cellular Polyamine Catalogues of the Five Classes of the Phylum Proteobacteria: Distributions of Homospermidine within the Class Alphaproteobacteria, Hydroxyputrescine within the Class Betaproteobacteria, Norspermidine within the Class Gammaproteobacteria, and Spermine within the Classes Deltaproteobacteria and Epsilonproteobacteria Koei HAMANA1)*, Wakako SATO1), Kanako GOUMA1), Jia YU1), Yurie INO1), Yukiko UMEMURA1), Chiharu MOCHIZUKI1), Kenji TAKATSUKA1), Yoshie KIGURE1), Nagisa TANAKA1), Takashi ITOH2) and Akira YOKOTA3) (Received September 30, 2006; Accepted December 11, 2006) Abstract : Cellular polyamines extracted from reclassified or newly validated 47 alphaproteobacteria, 46 betaproteobacteria, 96 gammaproteobacteria, 12 deltaproteobacteria and 10 epsilonproteobacteria were analyzed by high-performance liquid chromatography. Homospermidine was widely distributed within the class Alphaproteobacteria, however, homospermidine-dominant type, spermidine-dominant type and homospermidine/spermidine- dominant type were found and the three triamine profiles were genus-specific. The all genera belonging to the class Betaproteobacteria, ubiquitously contained putrescine and 2- hydroxyputrescine. Triamines were absent in almost betaproteobacteria. Many genera, including psychrophilic species, of the class Gammaproteobacteria, contained putrescine and spermidine as the major polyaminenes. Diaminopropane and norspermidine were selectively distributed in several genera of the class Gammaproteobacteria. Spermidine
    [Show full text]