What Is Witricity and Its Advantages Over Inductive Charging

Total Page:16

File Type:pdf, Size:1020Kb

What Is Witricity and Its Advantages Over Inductive Charging What is Witricity and its Advantages over Inductive Charging Henry Ho∗ Department of Physics and Astronomy, University of British Columbia 6224 Agricultural Road, Vancouver, British Columbia, Canada, V6T 1Z1 (Dated: December 7, 2011) A new form of wireless energy transfer, named Witricity, is compared with traditional inductive charging. Its use of magnetic resonance coupling makes it far more efficient than inductive coupling at varying distances, but only at the resonant frequency. There is also evidence that supports the use of Witricity for handheld devices. I. INTRODUCTION As our modern lifestyle continues to become increas- ingly complex with the emergence of new electronic de- vices, the need to power them also grows in complex- ity. Power cables are becoming a hindrance as they oc- cupy multiple power sockets and require frequent main- tenance. The proposed solution for these problems is wireless charging. Wireless charging allows devices to charge in areas near or under water. This method of charging can extend to the medical field where implants, such as pace makers, can be charged wirelessly [1]. Wire- FIG. 1. Set-up for this experiment less charging is not theoretically difficult, but there are obstacles researchers must face. Efficiency and versatility problems are inherent in inductive charging. In 2007, a addition, their modified inductive coupling system built group of researchers in MIT presented an alternative to specifically for high power energy transfer (in this case, 2 traditional wireless charging through inductive coupling. kW) had an 80 percent efficiency over a distance of 1 cm. They used the principle of magnetic resonance coupling This is impractical because a power cable would be much and branded this method as Witricity. In order to ob- more reasonable and efficient at this distance. In addi- serve the differences between Witricity and traditional tion, efficiency in traditional inductive charging systems inductive charging, one must first understand the basics drop quickly as a function of distance. A higher current of both techniques. will need to run through the source coil to compensate for this drop. However, a higher current will generate more heat, which in turns increases the system’s resistivity. In II. INDUCTIVE CHARGING the end, the problem remains unsolved. Although inductive charging is plagued by obstacles, Inductive charging is a familiar concept; it is essen- practical uses for it surfaced in the medical realm. tially electromagnetic induction, which is governed by Stephenson et al. (1967) demonstrated the use of in- Faraday’s law of induction. ductive coupling to charge implants. Patients will no The inductive charging system is essentially comprised longer have to undergo surgery to have their pacemaker of two coils. One coil acts as the power source, the other recharged. Inductive charging was the leading method for the receiver. A fluctuating electromagnetic field is cre- wireless energy transfer until the emergence of Witricity ated by running an electric current through the power in 2007. coil. The receiver coil interacts with this field and pro- duces its own current in response. Figure 1 illustrates how the system operates. III. WITRICITY Though theoretically simple, application of this method has proven to be somewhat ineffective. Vande- Witricity is a company name that specializes in de- voorde, G., and Puers, R. (2001) observed the effects signing products that transfer energy wirelessly through of high power energy transfer with inductive charging. strongly coupled magnetic resonances. Witricity is simi- Their analysis indicated that traditional inductive cou- lar to traditional inductive coupling, but it utilizes mag- pling designs are not suitable for high power transfers. In netic resonances. The system also involves two coils. One coil acts as the power source, and the other acts as the receiver. An alternating current on the source coil, run- ning at a frequency ω0, induces a fluctuating magnetic ∗ [email protected] field. The frequency, ω0, is the resonant frequency of the 2 coil, which is dependent on the coil’s dimensions. The receiver coil interacts with the magnetic field and then resonates at the same frequency. To resonate, the current must oscillate so that the cur- rent at the coil’s ends is zero. The lowest mode at which s 0 this is possible is denoted by: I = I cos(π l )exp(iωt), where I = current at point s, I0 = maximum current, l is the wire’s length and s is the coordinate along the wire. The current and the charge density then become π/2 out of phase with each other. This means the energy is at times totally dependent on the current, and some- times totally dependent on the charge. Knowing that 1 2 1 2 0 0 U = 2 L|I | = 2C |q | , the resonant frequency of the 1/2 coil equals f0 = 1/[2π(LC) ], where L = inductance and C = capacitance. The coil radiates a magnetic field which the receiver coil receives. Since the two coils are FIG. 2. The theoretical results compared with the actual identical, the receiver coil will also resonate at the same experimental results. frequency. The system’s efficiencty also depends on the coils’ syn- chonicity, definted as their coupling coefficient. The cou- with a capacitor, there was almost no interaction with pling coeffecient is a representation of the fraction of flux extraneous objects. The capacitor confines the electric the receiver coil receives from the transmitting coil. If the field, leaving only the magnetic field to radiate. Since receiver’s flux is not in synch with the transmitter coil’s, every-day objects rarely interact with magnetic fields, κ is zero. The higher the synchronicity, the higher the the energy does not dissipate into extraneous objects. value of κ. The coils’ inductance, frequency, and mutual This was supported in the experiment carried by Soljaˇci´c inductance affect the value of κ with this relationship: et al. (2007). Extraneous objects shifted the resonant 1/2 κ = ωM/[2(LSLR) ], where M = effective mutual in- frequency, but this was easily corrected for with a feed- ductance, LS = inductance from the source coil, LR = back circuit. Confining the electric field also makes it inductance from the receiver coil. Maximization of κ is safer because fewer objects will interact with the field. done by choosing a frequency specific to the coil’s param- High efficiency and long range seems to give Witricity eters. the advantage over traditional inductive charging. Soljaˇci´cet al. (2007) designed an experiment to test the practicality of this theory. The team used two copper wires with a radius of 25 cm and 5.25 loops. The expected IV. WITRICITY VS. INDUCTIVE CHARGING resonant frequencies of these loops were f0 = 10.56 ± 0.3 MHz. They aligned these two coils coaxially and Without empirical proof that Witricity is superior to tested the efficiency at varying distances. Though the traditional inductive charging, it is difficult to convince system outputted a frequency of 9.9 MHz (5 percent off consumers to discard traditional inductive charging and from theoretical), the system yielded results really close adopt Witricity. In 2011, Ho et al. (2011) set out to to the theoretical prediction. The receiver coil, which compare the efficiency between Witricity and traditional was loaded with a calibrated 60 W lightbulb, achieved inductive charging. Due to the high coupling rates as resonance at all distances. Figure 2 compares efficiency a result of resonance, Witricity should be more efficient between the actual results and theoretical prediction. than traditional inductive charging. The researchers de- The shaded area illustrates the maximum efficiency signed an experiment with two identical copper square when given the theoretical and the experimental value coils, varying only the number of spirals for the tradi- for the coupling coefficiecy, κ. The black points are pre- tional inductive charging (the effects of using square coils dictions based on the experimental value of κ, while the are later discussed). When tested for efficiency over a red points are actual experimental data. Though κ de- range of frequencies and distances, the Witricity system creased with distance, the light bulb illuminated even at proved to be more efficient. Figure 3 shows that though distances of more than 2 m. However, this only worked if overall the received power in a Witricity system is less both coils are resonating. In addition to these results, the than that of a traditional inductive charging system, it team also found that external objects have no observable is by far more efficient at the resonant frequency at 4.8 interaction with the radiating field unless placed a few MHz. Figure 4 shows the vast difference in efficiency be- centimetres away. tween Witricity and traditional inductive charging from The experiment also tested the theoretical predictions 0 to 20 cm. outlined in a paper by Soljaˇci´cet al. (2008). The paper This comparative study demonstrated that Witricity is discussed the possible effects of extraneous objects on far superior to traditional inductive charging in efficiency, the system. When a loop of conducting wire was loaded range and also practicability. 3 The researchers presented flat rectangular coils to re- place traditional circular coils. The coils had a maximum length of 208 mm. Geometry is not a problem if the transmitting coil’s frequency is a resonant mode of the receiver coil. Experimental results indicated that geom- etry did not influence the resonant nature of this Witric- ity system. At a range of 5 cm, the system’s efficiency was 50-80 percent based on simulations and experimen- tal results. Although this is much smaller than the rates produced in Soljaˇci´cet al.’s (2007) experiment, it is still far more efficient than inductive coupling. A traditional inductive charging system will require a separation dis- FIG.
Recommended publications
  • PIC6049F Wireless Charging Module Diagnosis Models
    Bulletin No.: PIC6049F Published date: 02/13/2017 Preliminary Information PIC6049F Wireless Charging Module Diagnosis Models VIN: Brand: Model: Model Years: Engine: Transmissions: from to Buick LaCrosse 2017 All All All All Cadillac ATS 2015 - 2017 All All All All Cadillac CTS VIN A 2015 - 2017 All All All All Cadillac Escalade Models 2015 - 2017 All All All All Cadillac CT6 2016 - 2017 All All All All Cadillac ELR 2016 - 2017 All All All All Cadillac XTS 2016 - 2017 All All All All Cadillac XT5 2017 All All All All Chevrolet Suburban 2015 - 2017 All All All All Chevrolet Camaro 2016 - 2017 All All All All Chevrolet Cruze 2016 - 2017 All All All All Chevrolet Impala 2016 - 2017 All All All All Chevrolet Malibu 2016 - 2017 All All All All Chevrolet Volt 2016 - 2017 All All All All Chevrolet Silverado HD 2016 - 2017 All All All All Chevrolet Colorado 2017 All All All All GMC Yukon Models 2016 - 2017 All All All All GMC Sierra HD 2016 - 2017 All All All All GMC Acadia 2017 All All All All GMC Canyon 2017 All All All All Chevrolet Equinox 2018 All All All With Inductive Portable Wireless Device Charger (RPO K4C) Supersession Statement: This PI was superseded to end a part restriction and update EL 51755 ‘Inductive Charging Test Tool’ with new sleeve diagnostics and add the 2018 Chevrolet Equinox. Please discard PIC6049E The following diagnosis might be helpful if the vehicle exhibits the symptom(s) described in this PI. Condition / Concern The following procedure REQUIRES the use of EL 51755 ‘Inductive Charging Test Tool’ which is an essential tool shipped to every GM store earlier this year.
    [Show full text]
  • Witricity:Wireless Power Transfer by Non-Radiative Method Ajey Kumar
    International Journal of Engineering Trends and Technology (IJETT) – Volume 11 Number 6 - May 2014 WiTricity:Wireless Power Transfer By Non-radiative Method Ajey Kumar. R1, Gayathri. H. R2, Bette Gowda. R3, Yashwanth. B4 1Dept. of ECE, Malnad College of Engineering, Hassan, India 2Centre for Emerging Technologies, Jain University, Bangalore, India 3Dept. of EEE, Basaveshwara College of Engineering, Bagalkot, India 4Dept. of ECE, BVB College of Engineering & Technology, Hubli, India Abstract— A non-radiative energy transfer, commonly referred Thanks to the advent in power electronics, inductive charging, as WiTricity and based on ‘strong coupling’ between two coils also known as wireless charging, has found much successes which are separated physically by medium-range distances, is and is now receiving increasing attention by virtue of its proposed to realize efficient wireless energy transfer. WiTricity simplicity and efficiency. The most important distinctive idea is spear-headed by MIT researcher Marin Soljacic, which structural difference between contactless transformers and describes the ability to provide electricity to remote objects without wires. The advent of WiTricity technology is though old conventional transformers is that the two ‘coils’ in the former of 1899, explored by Nikola Tesla, but has founded its grip in are separated by a large air gap. Compared with plug and recent years with numerous gadgets and there snaking cables socket (i.e., conductive) charging, the primary advantage of around us. The technology is in turn expels E-waste and will free the inductive charging approach is that the system can work us from the power cords. WiTricity depends upon strong coupled with no exposed conductors, no interlocks and no connectors, resonance between transmitter and receiver coils.
    [Show full text]
  • Wireless Charging Headset Stand HSS-2020 a Tidy Space for Your Headset and Wireless Charger for Your Phone
    HEAR. BE HEARD. Wireless Charging Headset Stand HSS-2020 A Tidy Space for Your Headset and Wireless Charger for Your Phone Save space on your desk while you charge your phone at the same time. • Fast Charging at 10W using your own QC 2.0/3.0 Adapter, if your phone supports it (see below). Adapter is not included in box. • Fast Charging using your own QC 2.0/3.0 Adapter, at 7.5W, for iPhones that support it. • 5W mode compatible with all Qi-enabled devices. • You can also charge your other devices, like Totally Wireless Earbuds, that allow inductive charging. • Stand is sturdy enough to hold virtually any sized headset you want to rest on it. • A micro USB charging cable is included in the box. AC adapter is not included. • Stylish black will continue to look clean and scratch free even with everyday use. • The LED ring on the base will let you know when the device is charging and when the charge is complete. Phone Compatibility • Fast Charging at 10W: Samsung Galaxy Note 9, Note 8, S9, S9 Plus, S8, S8 Plus, S7, S7 Edge, S6 Edge Plus • Fast Charging at 7.5W iPhone XS, iPhone XR, iPhone XS Max, iPhone X, iPhone 8, iPhone 8 plus • Other Qi enabled smartphones Headset and phone for demonstration only and not included • Use with most wired and wireless headsets. Note: Does not charge the Specifications headset. • Material: Anodized Aluminum, TPU and ABS • Input: (QC2.0/3.0) DC5.0V/2A DC9.0V/1.8A • Power: 5W / 7.5W / 10W Model • Charging distance: 0.15” to 0.4” ( ≈ 4-10mm) Part HSS-2020 • Charging efficiency: ≥72% • Package Dim: 5” w x 9” h x 1” d UPC 800807320079 • Master Carton Dim: 18.5” x 6.5” x 5.7” MSRP $24.99 • Master Carton Wt: 4.85 lb • Master Carton Qty: 10 ©2019 SPRACHT® Ph: 650.215.7500 974 Commercial Street, Suite 108 Fx: 650.485.2453 Palo Alto, CA 94303 www.spracht.com HEAR.
    [Show full text]
  • Wireless Charging
    The convenience of wireless charging: It’s just physics White paper By Mark Estabrook, MediaTek www.mediatek.com Contents New hope emerges amidst standards war ................................................................................................... 2 Operator strategies for power management in LTE phones ........................................................................ 3 Why inductive charging may underwhelm consumers ................................................................................ 4 How tightly coupled technology is much like that of wired chargers .......................................................... 5 How tightly coupled technology constrains design ...................................................................................... 6 Summary on characteristics of tightly coupled inductive solutions ............................................................. 6 The convenience of loosely coupled highly resonant systems ..................................................................... 8 The theory behind highly resonant systems ................................................................................................. 9 Summary on characteristics of loosely coupled highly resonant solutions .................................................. 9 The efficiency of loosely coupled resonant systems .................................................................................. 10 Cost comparison of loosely coupled resonant and tightly coupled systems .............................................
    [Show full text]
  • Highly Resonant Wireless Power Transfer: Safe, Efficient, and Over Distance
    Highly Resonant Wireless Power Transfer: WiTricity Safe, Efficient, and over Distance Dr. Morris Kesler WiTricity Corporation ©WiTricity Corporation, 2013 WiTricity Highly Resonant Wireless Power Transfer: Safe, Efficient, and over Distance Introduction Driving home from the airport, Marin noticed his new smart phone was low on battery once again. Its HD display, and apps using GPS, Bluetooth, and LTE/4G data communications conspired to drain the battery quickly. Without looking, he dropped his phone into an open cup-holder in the center console. Hidden several centimeters below the console, a wireless power source sensed the presence of the phone, and queried the device to determine whether or not it was wireless power enabled. The phone gave a valid response and configured itself for resonant wireless power transfer. Under the console, the source electronics turned on and began charging the phone wirelessly—with no need for a charging cradle, power cord, or especially accurate placement of the phone. Marin relaxed when he heard the recharging chime and focused his attention on the road ahead. After exiting the highway, Marin was surprised to see that the price of gasoline had climbed to over $4.00 per gallon, as it had been months since he had last filled his tank of his new car-- a wirelessly charged hybrid electric vehicle. Since installing a wireless 3.3 kW charger in his home and office garage, his car’s traction battery was fully charged every morning before work and every evening as he began his commute home. As Marin’s car silently pulled into his driveway, it communicated with the wireless charger in his garage.
    [Show full text]
  • Genium X3 3B5-2/3B5-2=ST
    Genium X3 3B5-2/3B5-2=ST Instructions for use (qualified personnel) ................................................................. 5 DE | INFORMATION Zusätzlich zu der gedruckten Gebrauchsanweisung, sind auch weitere Sprachen auf CD beigelegt (siehe rückseitigen Um­ schlag). Auf Anfrage können Sie eine gedruckte Gebrauchsanweisung kostenlos in der jeweiligen Landessprache unter der un­ ten angegebenen Anschrift bestellen. EN | INFORMATION In addition to the printed Instructions for Use, additional language versions are also included on CD (see back cover). You can order a printed version of the Instructions for Use at no charge in the respective national language at the address below. FR | INFORMATION Le mode d‘emploi est disponible en d‘autres langues sur CD en supplément de la version imprimée (voir au dos de la couver­ ture). Vous pouvez commander gratuitement une version imprimée du mode d‘emploi dans la langue de votre choix en envoyant votre demande à l‘adresse indiquée ci-dessous. ES | INFORMAĆION Aparte de las instrucciones de uso impresas, se incluye un CD con dichas instrucciones en otros idiomas (véase la solapa del dorso). Puede solicitar de forma gratuita unas instrucciones de uso impresas en el idioma de su país a la dirección que se indi­ ca más abajo. IT | INFORMAZIONE In aggiunta alle istruzioni per l‘uso in formato cartaceo, il CD contiene le istruzioni anche in altre lingue (vedere il retro della co­ pertina). Su richiesta, potete ordinare gratuitamente le istruzioni per l‘uso in formato cartaceo nella relativa lingua del vostro Paese all‘indirizzo di seguito riportato. PT | INFORMAÇÃO Adicionalmente ao manual de utilização impresso encontra-se incluído um CD com mais idiomas (consultar a contracapa).
    [Show full text]
  • Development of Wireless Charging Component in Vehicle Design and Positioning Master’S Thesis in Product Development
    Development of Wireless Charging Component in Vehicle Design and Positioning Master’s thesis in Product Development IDA ANDERSSON JOSEFIN ODDEBY Department of Industrial and Materials Science CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2018 Development of Wireless Charging Component in Vehicle Design and Positioning IDA ANDERSSON JOSEFIN ODDEBY Department of Industrial and Materials Science CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2018 Development of Wireless Charging Component in Vehicle Ida Andersson Josefin Oddeby © Ida Andersson and Josefin Oddeby, 2018. Supervisors: Johan Malmqvist, Chalmers University of Technology Torbjörn Andersson, Volvo Cars Examiner: Johan Malmqvist, Chalmers University of Technology Chalmers University of Technology Department of Industrial and Materials Science SE-412 96 Göteborg, Sweden Telephone +46 (0)31-772 10 00 Cover: A visualisation of the developed vehicle assembly induction plate positioned in a Volvo car. Gothenburg, Sweden 2018 Abstract Inductive charging, or wireless charging, is an upcoming technology in the automotive industry. A fluctuating magnetic field is created by alternating current in the transmitting coil. This magnetic field then induces current in the receiving coil. In this way, the energy transfer is accomplished wirelessly. The wireless charging system consists of three main parts: wall box, ground assembly and vehicle assembly. The vehicle assembly is the component which is placed in the vehicle and consists of, amongst other parts, the receiving coil. Volvo Cars is currently developing the technology together with suppliers. However, the problem is to find a proper position and geometry of the vehicle assembly component that fits in their electric vehicle platform. In addition, the inductive charging system must not affect the overall performance of the vehicle negatively.
    [Show full text]
  • Wireless Charging
    About This Product With this stylish accessory, available in black sapphire or white, you can charge your compatible Galaxy smartphones and other Qi-compatible devices without the need to plug your device in to a wall charger or USB port. Simply place your device directly onto the charging pad and your phone begins to charge. Wide compatibility The Samsung Wireless Charging Pad is Qi certified by the Wireless Power Consortium (WPC) and is compatible with all Qi-enabled devices including from Samsung: Galaxy S4, Galaxy S5, Galaxy Note4, Galaxy Note Edge and Galaxy Note3 (these Galaxy smartphones require Wireless Charging Battery Covers, sold separately) as well as the Galaxy S6, Galaxy S6 active, Galaxy S6 edge, Galaxy S6 edge+ and Galaxy Note5 which do not require additional charging battery covers. Wireless charging pad Power your compatible Samsung device without cables or cords using this Samsung wireless charging pad, which replenishes battery power in as little as 4 hours. Overload protection provides defense against damage. The small footprint takes up minimal desktop space and is easy to transport. No Cables. No Problem. Say goodbye to tangled wires and lost charging cables. The Samsung Wireless Charging Pad utilizes Qi Inductive Charging Technology that eliminates the need to attach a charging cable every time you want to charge your device. The dedicated Charging Pad is always at the ready, providing wireless power whenever you set your device on the pad. You can still use your device while charging, and your device is always accessible so you can answer a call without having to unplug.
    [Show full text]
  • Case 1:20-Cv-01671-UNA Document 1 Filed 12/09/20 Page 1 of 23 Pageid #: 1
    Case 1:20-cv-01671-UNA Document 1 Filed 12/09/20 Page 1 of 23 PageID #: 1 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE WITRICITY CORPORATION, ) MASSACHUSETTS INSTITUTE OF ) TECHNOLOGY, and AUCKLAND ) C.A. No. ____________ UNISERVICES LIMITED, ) ) JURY TRIAL DEMANDED Plaintiffs, ) ) v. ) ) MOMENTUM DYNAMICS CORPORATION, ) ) Defendant. ) COMPLAINT Plaintiffs WiTricity Corporation (“WiTricity”), Massachusetts Institute of Technology (“MIT”) and Auckland UniServices Limited (“Auckland”) (collectively, “Plaintiffs”) for their Complaint against Defendant Momentum Dynamics Corporation (“Momentum Dynamics”), hereby allege as follows: PARTIES 1. Plaintiff WiTricity is a Delaware corporation having a principal place of business at 57 Water Street, Watertown, MA 02472. 2. Plaintiff MIT is a non-profit private research and educational institution duly incorporated and existing under the laws of the Commonwealth of Massachusetts with a principal place of business at 77 Massachusetts Avenue, Cambridge, MA 02139. 3. Plaintiff Auckland is a New Zealand limited liability company with a principal place of business at Level 10, 49 Symonds Street, Auckland, 1010, New Zealand. 4. Upon information and belief, Defendant Momentum Dynamics is a Delaware corporation having a principal place of business at 3 Pennsylvania Avenue, Malvern, PA 19355. Case 1:20-cv-01671-UNA Document 1 Filed 12/09/20 Page 2 of 23 PageID #: 2 Upon information and belief, Defendant Momentum Dynamics develops wireless charging systems for the automotive and transportation industries in the United States. 5. Upon information and belief, Defendant Momentum Dynamics maintains a website at www.momentumdynamics.com that commercializes the accused technology by offering the technology for sale and development throughout the United States, including this District.
    [Show full text]
  • Featuring a Wireless Charging Pad with Qi Inductive Charging Technology
    ADESSOHOME.COM FEATURING A WIRELESS CHARGING PAD WITH QI INDUCTIVE CHARGING TECHNOLOGY. AdessoCharge lamps include a wireless charging pad with Qi inductive charging technology. Many smartphones (list below) have Qi technology built in, so just place your phone on the pad and it will charge right up. All AdessoCharge product is Qi certified by the Wireless Power Consortium. Please visit www.wirelesspowerconsortium.com/products/ search/ to see a list of Qi certified products. Our product has been tested and verified to be safe and in compliance with the Qi standard. The AdessoCharge pad supports 5W charging on contact with the charging pad. A USB is located on the base and can charge up a second device simultaneously. FORM AND FUNCTIONALITY. The charging pad will work when the lamp is plugged in, with the light on or off. This wireless charging pad will charge your phone through most materials, you do not even need to remove your case! Only metal and magnetic materials will hinder the function of the charging pad to charge through the case. QI CERTIFIED. If your smartphone doesn’t support Qi wireless charging, you can purchase a Qi compatible case, which is sold through a variety of retail channels. Please be sure to only use a Qi Certified case. Products using the Qi standard must be tested rigorously to help ensure safety, interoperability and energy efficiency. Only products that have passed these independent laboratory tests can use the Qi logo and are considered “Qi Certified.” All Qi Certified products are listed on the WPC website mentioned above.
    [Show full text]
  • Charging Pad
    Charging Pad Download Instructions Product Detail: SIMPLE AND IC2B Designation: 2 Position Qi Inductive Charging Pad with CONVENIENT Next generation charging technology for one additional USB charging port smartphones is now available – enabling you • Drop and Charge to charge without cords and cables. If your Model: IC2B • Non-Critical smartphone is Qi enabled, simply place your Alignment phone on the Energizer Inductive Charger. If Color: Black your smartphone is not Qi enabled, attach a • Charge up to 3 Qi sleeve or adapter, then charge. This dual Inductive Technology Certified Qi low power standard by the Devices zone charging pad allows for inductive Wireless Power Consortium charging of two devices simultaneously, and it www.wirelesspowerconsortium.com has an additional USB charging port for Qi INDUCTIVE charging of a third device. And our technology Inductive Compatibility: Works with all other Qi low power TECHNOLOGY allows for easy placement of devices. There inductive recievers (see the list on the are no magnets or need for precise alignment. WPC’s website coming soon) Watch for Qi technology to be included in The Standard for • your next smart phone. Inductive Charging USB Output: 5.0 V ± 5%, 500mA (D+/D- Shorted) • Coming to Other Devices Charging Pad Input: DC 9V, 2.3A • Supported by a AC Adapter Input: 100-240VAC 50/60Hz Consortium of >70 Companies AC Adapter Output: 9VDC, 2.3A Typical Weight: Charging Pad: 345 grams WORKS WITH... Dimensions (mm): 24(H) x 185(L) x 202(W) • iPhone 3G/3Gs and 4G Inductive Operating Temperature: 0-35°C Charging Sleeves • Blackberry Curve 8900 inductive Charging Door Before Using Your Charger: • More Qi Adapters and Please read all instructions and cautionary Important Notice Devices Coming Soon markings on the package and charger This datasheet contains information specific to products manufactured at the time of its publication Contents herein do not constitute a warranty ©Energizer / All Rights Reserved Form No.
    [Show full text]
  • Wireless Charging Technologies: Fundamentals, Standards, And
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, TO APPEAR 1 Wireless Charging Technologies: Fundamentals, Standards, and Network Applications Xiao Lu†, Ping Wang‡, Dusit Niyato‡, Dong In Kim§, and Zhu Han≀ † Department of Electrical and Computer Engineering, University of Alberta, Canada ‡ School of Computer Engineering, Nanyang Technological University, Singapore § School of Information and Communication Engineering, Sungkyunkwan University (SKKU), Korea ≀ Electrical and Computer Engineering, University of Houston, Texas, USA. Abstract—Wireless charging is a technology of transmitting Firstly, it improves user-friendliness as the hassle from • power through an air gap to electrical devices for the pur- connecting cables is removed. Different brands and dif- pose of energy replenishment. The recent progress in wireless ferent models of devices can also use the same charger. charging techniques and development of commercial products Secondly, it renders the design and fabrication of much have provided a promising alternative way to address the energy • bottleneck of conventionally portable battery-powered devices. smaller devices without the attachment of batteries. However, the incorporation of wireless charging into the existing Thirdly, it provides better product durability (e.g., water- • wireless communication systems also brings along a series of proof and dustproof) for contact-free devices. challenging issues with regard to implementation, scheduling, and Fourthly, it enhances flexibility, especially for the devices power management. In this article, we present a comprehensive • overview of wireless charging techniques, the developments for which replacing their batteries or connecting cables in technical standards, and their recent advances in network for charging is costly, hazardous, or infeasible (e.g., body- applications. In particular, with regard to network applications, implanted sensors).
    [Show full text]