Mdm2 and Atrx Drive the Transition from Quiescence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
O-Glcnacylation Regulates the Stability and Enzymatic Activity of the Histone Methyltransferase EZH2
O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2 Pei-Wen Loa, Jiun-Jie Shieb, Chein-Hung Chena, Chung-Yi Wua, Tsui-Ling Hsua, and Chi-Huey Wonga,1 aGenomics Research Center, Academia Sinica, Taipei 115, Taiwan; and bInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan Contributed by Chi-Huey Wong, May 16, 2018 (sent for review February 1, 2018; reviewed by Michael D. Burkart, Benjamin G. Davis, and Gerald W. Hart) Protein O-glycosylation by attachment of β-N-acetylglucosamine maintenance and differentiation in embryonic stem cells (14, 15). (GlcNAc) to the Ser or Thr residue is a major posttranslational It was suggested that O-GlcNAcylation might play an important glycosylation event and is often associated with protein folding, role in the regulation of PRC1-mediated gene expression, and stability, and activity. The methylation of histone H3 at Lys-27 along this line the O-GlcNAcylation of EZH2 at S76 in the PRC2 catalyzed by the methyltransferase EZH2 was known to suppress complex was reported to stablize EZH2 in our previous study (16). gene expression and cancer development, and we previously The PRC2 complex is composed of Enhancer of zeste 2 (EZH2), reported that the O-GlcNAcylation of EZH2 at S76 stabilized Suppressor of Zeste 12 (Suz12), Extraembryonic endoderm (EED), EZH2 and facilitated the formation of H3K27me3 to inhibit tumor AE binding protein 2 (AEBP2), and retinoblastoma binding protein suppression. In this study, we employed a fluorescence-based method 4/7 (RBBP4/7) (17, 18). Within the PRC2 complex, EZH2 catalyzes the di- and trimethylation of histone H3 at lysine 27 (K27) to form of sugar labeling combined with mass spectrometry to investigate H3K27me2/3 to regulate embryonic and cancer development EZH2 glycosylation and identified five O-GlcNAcylation sites. -
T-Cell Protein Tyrosine Phosphatase Attenuates STAT3 and Insulin
ORIGINAL ARTICLE T-Cell Protein Tyrosine Phosphatase Attenuates STAT3 and Insulin Signaling in the Liver to Regulate Gluconeogenesis Atsushi Fukushima,1 Kim Loh,1 Sandra Galic,1 Barbara Fam,2 Ben Shields,1 Florian Wiede,1 Michel L. Tremblay,3 Matthew J. Watt,4 Sofianos Andrikopoulos,2 and Tony Tiganis1 OBJECTIVE—Insulin-induced phosphatidylinositol 3-kinase (PI3K)/Akt signaling and interleukin-6 (IL-6)-instigated JAK/ STAT3-signaling pathways in the liver inhibit the expression of ype 2 diabetes has reached epidemic propor- gluconeogenic genes to decrease hepatic glucose output. The tions, afflicting roughly 170 million people world- insulin receptor (IR) and JAK1 tyrosine kinases and STAT3 can wide. Although the underlying genetic causes serve as direct substrates for the T-cell protein tyrosine phos- Tand the associated pathologic symptoms are phatase (TCPTP). Homozygous TCPTP-deficiency results in peri- heterogenous, a common feature is high blood glucose due natal lethality prohibiting any informative assessment of to peripheral insulin resistance. Circulating insulin re- TCPTP’s role in glucose homeostasis. Here we have used leased from -cells in the pancreas serves to lower blood Ptpn2ϩ/Ϫ mice to investigate TCPTP’s function in glucose glucose by triggering the translocation of the facilitative homeostasis. GLUT4 to the plasma membrane in muscle and adipose RESEARCH DESIGN AND METHODS—We analyzed insulin tissue (1). Insulin also acts in the liver to promote glycogen sensitivity and gluconeogenesis in chow versus high-fat–fed synthesis and lipogenesis and to suppress hepatic glucose (HFF) Ptpn2ϩ/Ϫ and Ptpn2ϩ/ϩ mice and insulin and IL-6 production (HGP) by inhibiting gluconeogenesis and gly- signaling and gluconeogenic gene expression in Ptpn2ϩ/Ϫ and cogenolysis (1). -
The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways. -
Sirt7 Promotes Adipogenesis in the Mouse by Inhibiting Autocatalytic
Sirt7 promotes adipogenesis in the mouse by inhibiting PNAS PLUS autocatalytic activation of Sirt1 Jian Fanga,1, Alessandro Iannia,1, Christian Smolkaa,b, Olesya Vakhrushevaa,c, Hendrik Noltea,d, Marcus Krügera,d, Astrid Wietelmanna, Nicolas G. Simonete, Juan M. Adrian-Segarraa, Alejandro Vaqueroe, Thomas Brauna,2, and Eva Bobera,2 aDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany; bMedizin III Kardiologie und Angiologie, Universitätsklinikum Freiburg, D-79106 Freiburg, Germany; cDepartment of Medicine, Hematology/Oncology, Goethe University, D-60595 Frankfurt am Main, Germany; dInstitute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Köln, Germany; and eCancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain Edited by C. Ronald Kahn, Section of Integrative Physiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and approved August 23, 2017 (received for review April 26, 2017) Sirtuins (Sirt1–Sirt7) are NAD+-dependent protein deacetylases/ adipogenesis and accumulation of lipids in 3T3-L1 adipocytes by ADP ribosyltransferases, which play decisive roles in chromatin deacetylation of FOXO1, which represses PPARγ (10). The role of silencing, cell cycle regulation, cellular differentiation, and metab- Sirt6 in the regulation of adipogenic differentiation is less clear olism. Different sirtuins control similar cellular processes, suggest- although it is known that Sirt6 knockout (KO) mice suffer from ing a coordinated mode of action but information about potential reduced adipose tissue stores, while Sirt6 overexpressing mice cross-regulatory interactions within the sirtuin family is still lim- are protected against high-fat diet-induced obesity (11, 12). -
ATRX Protects Cells Against Replication-Induced Genomic Instability
ATRX Protects Cells Against Replication-Induced Genomic Instability Danton Ivanochko M.Sc. Thesis This thesis is submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master of Science in Biochemistry with a specialization in Human and Molecular Genetics Department of Biochemistry, Microbiology, and Immunology Faculty of Medicine University of Ottawa, Ontario, Ontario, Canada © Danton Ivanochko, Ottawa, Canada, 2016 Dedicated to my parents. ii Abstract Expansive proliferation of neural progenitor cells (NPCs) is a prerequisite to the temporal waves of neuronal differentiation that generate the six-layered cerebral cortex. NPC expansion places a heavy burden on proteins that regulate chromatin packaging and genome integrity, which is further reflected by the growing number of developmental disorders caused by mutations in chromatin regulators. Accordingly, mutations in ATRX, a chromatin remodelling protein required for heterochromatin maintenance at telomeres and simple repeats, cause the ATR-X syndrome. Here, we demonstrate that proliferating ATRX-null cells accumulate DNA damage, while also exhibiting sensitivity to hydroxyurea-induced replication fork stalling. Specifically, PARP1 hyperactivation and replication-dependent double strand DNA breakage indicated replication fork protection defects, while DNA fiber assays confirmed that ATRX was required to protect replication forks from degradation. Interestingly, inhibition of the exonuclease MRE11 by the small molecule mirin could prevent degradation. Thus, ATRX is required to limit replication stress during NPC expansion. iii Acknowledgements First and foremost, I would like to thank my supervisor, Dr. David Picketts, for his guidance and support during my undergraduate and graduate studies. Thanks to the members of my thesis advisory committee, Dr. -
Automethylation of PRC2 Promotes H3K27 Methylation and Is Impaired in H3K27M Pediatric Glioma
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma Chul-Hwan Lee,1,2,7 Jia-Ray Yu,1,2,7 Jeffrey Granat,1,2,7 Ricardo Saldaña-Meyer,1,2 Joshua Andrade,3 Gary LeRoy,1,2 Ying Jin,4 Peder Lund,5 James M. Stafford,1,2,6 Benjamin A. Garcia,5 Beatrix Ueberheide,3 and Danny Reinberg1,2 1Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 3Proteomics Laboratory, New York University School of Medicine, New York, New York 10016, USA; 4Shared Bioinformatics Core, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 5Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/ EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring inde- pendently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2. -
Polycomb Repressor Complex 2 Function in Breast Cancer (Review)
INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1085-1094, 2020 Polycomb repressor complex 2 function in breast cancer (Review) COURTNEY J. MARTIN and ROGER A. MOOREHEAD Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada Received July 10, 2020; Accepted September 7, 2020 DOI: 10.3892/ijo.2020.5122 Abstract. Epigenetic modifications are important contributors 1. Introduction to the regulation of genes within the chromatin. The poly- comb repressive complex 2 (PRC2) is a multi‑subunit protein Epigenetic modifications, including DNA methylation complex that is involved in silencing gene expression through and histone modifications, play an important role in gene the trimethylation of lysine 27 at histone 3 (H3K27me3). The regulation. The dysregulation of these modifications can dysregulation of this modification has been associated with result in pathogenicity, including tumorigenicity. Research tumorigenicity through the increased repression of tumour has indicated an important influence of the trimethylation suppressor genes via condensing DNA to reduce access to the modification at lysine 27 on histone H3 (H3K27me3) within transcription start site (TSS) within tumor suppressor gene chromatin. This methylation is involved in the repression promoters. In the present review, the core proteins of PRC2, as of multiple genes within the genome by condensing DNA well as key accessory proteins, will be described. In addition, to reduce access to the transcription start site (TSS) within mechanisms controlling the recruitment of the PRC2 complex gene promoter sequences (1). The recruitment of H1.2, an H1 to H3K27 will be outlined. Finally, literature identifying the histone subtype, by the H3K27me3 modification has been a role of PRC2 in breast cancer proliferation, apoptosis and suggested as a mechanism for mediating this compaction (1). -
A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets
biomolecules Review A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets Rubayat Islam Khan †, Saif Shahriar Rahman Nirzhor † and Raushanara Akter * Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh; [email protected] (R.I.K.); [email protected] (S.S.R.N.) * Correspondence: [email protected]; Tel.: +880-179-8321-273 † These authors contributed equally to this work. Received: 10 June 2018; Accepted: 26 June 2018; Published: 29 June 2018 Abstract: Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings -
Engaging Chromatin: PRC2 Structure Meets Function
www.nature.com/bjc REVIEW ARTICLE Engaging chromatin: PRC2 structure meets function Paul Chammas1, Ivano Mocavini1 and Luciano Di Croce1,2,3 Polycomb repressive complex 2 (PRC2) is a key epigenetic multiprotein complex involved in the regulation of gene expression in metazoans. PRC2 is formed by a tetrameric core that endows the complex with histone methyltransferase activity, allowing it to mono-, di- and tri-methylate histone H3 on lysine 27 (H3K27me1/2/3); H3K27me3 is a hallmark of facultative heterochromatin. The core complex of PRC2 is bound by several associated factors that are responsible for modulating its targeting specificity and enzymatic activity. Depletion and/or mutation of the subunits of this complex can result in severe developmental defects, or even lethality. Furthermore, mutations of these proteins in somatic cells can be drivers of tumorigenesis, by altering the transcriptional regulation of key tumour suppressors or oncogenes. In this review, we present the latest results from structural studies that have characterised PRC2 composition and function. We compare this information with data and literature for both gain-of function and loss-of-function missense mutations in cancers to provide an overview of the impact of these mutations on PRC2 activity. British Journal of Cancer (2020) 122:315–328; https://doi.org/10.1038/s41416-019-0615-2 BACKGROUND and embryonic ectoderm development (EED) (Table 1). These Transcriptional diversity is one of the hallmarks of cellular three proteins form the minimal core that confers histone identity. It is largely regulated at the level of chromatin, where methyltransferase (HMT) activity. A fourth factor, retinoblastoma- different protein complexes act as initiators, enhancers and/or binding protein (RBBP)4/7 (also known as RBAP48/46), has a repressors of transcription. -
Targeting the Gastrointestinal Tract to Treat Type 2 Diabetes
230 3 P V BAUER and F A DUCA Gut treatment for diabetes 230:3 R95–R113 Review Targeting the gastrointestinal tract to treat type 2 diabetes Correspondence should be addressed 1,2 and 1 Paige V Bauer Frank A Duca to F A Duca 1Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, ON, Canada Email 2Department of Physiology, University of Toronto, Toronto, ON, Canada frank.duca@uhnres. utoronto.ca Abstract The rising global rates of type 2 diabetes and obesity present a significant economic and Key Words social burden, underscoring the importance for effective and safe therapeutic options. f gut The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 f metformin diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight f gut sensing the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, f gut microbiota recent evidence suggests that the gut plays a prominent role in the ability of metformin f bile acids to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. Endocrinology A better understanding of these pathways will lay the groundwork for novel of gut-targeted antidiabetic therapies, some of which have already shown initial promise. Journal of Endocrinology (2016) 230, R95–R113 Journal Introduction The incidence of type 2 diabetes has more than doubled Interestingly, this is not the only evidence for a since 1980, with over 382 million affected individuals therapeutic role of the gut in diabetes treatment. -
The Sirtuin Family's Role in Aging and Age-Associated Pathologies
The sirtuin family’s role in aging and age-associated pathologies Jessica A. Hall, … , Yoonjin Lee, Pere Puigserver J Clin Invest. 2013;123(3):973-979. https://doi.org/10.1172/JCI64094. Review Series The 7 mammalian sirtuin proteins compose a protective cavalry of enzymes that can be invoked by cells to aid in the defense against a vast array of stressors. The pathologies associated with aging, such as metabolic syndrome, neurodegeneration, and cancer, are either caused by or exacerbated by a lifetime of chronic stress. As such, the activation of sirtuin proteins could provide a therapeutic approach to buffer against chronic stress and ameliorate age- related decline. Here we review experimental evidence both for and against this proposal, as well as the implications that isoform-specific sirtuin activation may have for healthy aging in humans. Find the latest version: https://jci.me/64094/pdf Review series The sirtuin family’s role in aging and age-associated pathologies Jessica A. Hall, John E. Dominy, Yoonjin Lee, and Pere Puigserver Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA. The 7 mammalian sirtuin proteins compose a protective cavalry of enzymes that can be invoked by cells to aid in the defense against a vast array of stressors. The pathologies associated with aging, such as metabolic syndrome, neuro- degeneration, and cancer, are either caused by or exacerbated by a lifetime of chronic stress. As such, the activation of sirtuin proteins could provide a therapeutic approach to buffer against chronic stress and ameliorate age-related decline. -
Patient Mutations Alter ATRX Targeting to PML Nuclear Bodies
European Journal of Human Genetics (2008) 16, 192–201 & 2008 Nature Publishing Group All rights reserved 1018-4813/08 $30.00 www.nature.com/ejhg ARTICLE Patient mutations alter ATRX targeting to PML nuclear bodies Nathalie G Be´rube´1,3,4, Jasmine Healy1,4, Chantal F Medina1, Shaobo Wu1, Todd Hodgson1, Magdalena Jagla1 and David J Picketts*,2 1Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada; 2Departments of Medicine and Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada ATRX is a SWI/SNF-like chromatin remodeling protein mutated in several X-linked mental retardation syndromes. Gene inactivation studies in mice demonstrate that ATRX is an essential protein and suggest that patient mutations likely retain partial activity. ATRX associates with the nuclear matrix, pericentromeric heterochromatin, and promyelocytic leukemia nuclear bodies (PML-NBs) in a speckled nuclear staining pattern. Here, we used GFP–ATRX fusion proteins to identify the specific domains of ATRX necessary for subnuclear targeting and the effect of patient mutations on this localization. We identified two functional nuclear localization signals (NLSs) and two domains that target ATRX to nuclear speckles. One of the latter domains is responsible for targeting ATRX to PML-NBs. Surprisingly, this domain encompassed motifs IV–VI of the SNF2 domain suggesting that in addition to chromatin remodeling, it may also have a role in subnuclear targeting. More importantly, four different patient mutations within this domain resulted in an B80% reduction in the number of transfected cells with ATRX nuclear speckles and PML colocalization. These results demonstrate that patient mutations have a dramatic effect on subnuclear targeting to PML-NBs.