1 ANXIOLYTIC ACTIVITY of Apocynum Venetum L. and ITS

Total Page:16

File Type:pdf, Size:1020Kb

1 ANXIOLYTIC ACTIVITY of Apocynum Venetum L. and ITS ANXIOLYTIC ACTIVITY OF Apocynum venetum L. AND ITS PROPOSED MECHANISMS OF ACTION By OLIVER GRUNDMANN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 1 © 2007 Oliver Grundmann 2 To all the people who shaped me in so many ways – particular my partner Bob, my father, my aunt, my parents-in-law, and my grandparents. Thank you from the bottom of my heart for all your support and encouragement 3 ACKNOWLEDGMENTS Many people helped in the completion of this thesis in many different ways. I thank my advisor, Dr. Veronika Butterweck, for providing me with the greatest opportunity and challenge of my life – coming over to America. It has profusely changed my life in many ways. Also, I would like to thank Dr. Butterweck for her continued support, providing me with great opportunities, and involving me in research projects besides my dissertation work – I have learned so many things during my studies. I would like to thank my dissertation committee, namely Dr. Hartmut Derendorf, Dr. Guenther Hochhaus, Dr. Cary Mobley, and Dr. Saunjoo Yoon, for their advice and providing me with new input and equipment. Special thanks go to the research groups of Dr. David Rossi, Neurological Science Institute, Oregon Health & Science University, and Dr. Junji Terao, Department of Nutrition, University of Tokushima, for letting me join their research group to conduct research on my project. Especially the group members of Dr. Rossi (David, Claudia, James, and Adrianna) were very welcoming and are now valuable friends as is Dr. Hiroyuki Sakakibara, who helped me in so many ways during my stay in Tokushima. Thanks to Kevin Spelman from the University of North Carolina for analyzing the NMR samples and helping with the identification as well. For their continued financial and personal support I would like to thank Tokiwa Phytochemical Co. LTD and especially Dr. Jun-Ichiro Nakajima, who has provided me with every possible advice and information as well as his personal support, and Mr. Takashi Tatsuzaki, and Dr. Sujiro Seo. All of my lab members and friends were the biggest support throughout my years as a graduate student. Immo, Matt, Yui, Mew, Prajakta, Elanor, Ella, Anna-Maria, Stephan, and Victor have been a great help by being there for professional and personal advice. Without them, this dissertation would probably not have turned out the way it did. Summer students, namely 4 Claire, Andrea, Faryda, and Tanya, have contributed to the success of smaller parts of this work. I thank them for their dedication and hard work. Interns have for sure been a big support for my research. Many thanks go to Katrin, Carmen, Antje, Chris, and Michael for their help with many animal studies and their dedication to the work. Last, but at no means least, I would like to thank my family and friends for their understanding, support, and taking me the way I am. Thank you from the bottom of my heart to my partner Bob for waiting so patiently and endure the separation that followed each of our unities. Thank you to my dad for supporting me and giving me advice if things got rough. Thanks to Michele and Mike for being the best parents-in-law one can wish for. Thanks to my aunt Vera and my grandparents – you made me the person I am today and I am proud to be your child. Thanks to Christel and her parents – you played a major part and shaped my understanding of the world. Friends, who have always been supportive of me and keep in touch no matter what: Arnfried and Alexandra, Dorys, Asha, Roger, Martina, Marisol, Sam and Brian, David, Arielle, Daniela and Nikki, and my brother Mirko and his wife Claudia. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................................... 4 LIST OF TABLES................................................................................................................................ 8 LIST OF FIGURES ............................................................................................................................ 10 LIST OF ABBREVIATIONS ............................................................................................................ 13 ABSTRACT ........................................................................................................................................ 14 CHAPTER 1 INTRODUCTION ....................................................................................................... 16 Anxiety Disorders ....................................................................................................................... 16 Epidemiology ....................................................................................................................... 16 Physiology, Pathophysiology, and Pharmacology............................................................. 17 Apocynum venetum...................................................................................................................... 20 Apocynaceae ........................................................................................................................ 20 Apocynum venetum .............................................................................................................. 20 Historic development and taxonomy .......................................................................... 20 Traditional uses and modern indications .................................................................... 23 Known substance classes from Apocynum venetum .................................................. 25 Hypothesis and Specific Aims ................................................................................................... 27 Specific Aim 1 ..................................................................................................................... 28 Specific Aim 2 ..................................................................................................................... 28 Specific Aim 3 ..................................................................................................................... 28 CHAPTER 2 ANALYSIS OF Apocynum venetum EXTRACT AND FRACTIONS ................... 34 Extract Preparation ...................................................................................................................... 34 Extract Analysis .......................................................................................................................... 34 Analytical Equipment .......................................................................................................... 34 Identified compounds from extract..................................................................................... 35 Bioguided Fractionation ............................................................................................................. 35 Preparation of Fractions from Apocynum venetum Extract............................................... 36 Fraction Analysis ................................................................................................................. 37 Preparation of Subfractions of Fraction C from Apocynum venetum ............................... 39 Subfraction Analysis............................................................................................................ 40 Evaluation of Antioxidant Activity ............................................................................................ 42 Conclusions ................................................................................................................................. 45 CHAPTER 3 PHARMACOLOGICAL EVALUATION OF Apocynum venetum AND ITS FRACTIONS ............................................................................................................................... 66 Animal Models ............................................................................................................................ 66 6 Elevated Plus Maze ............................................................................................................. 66 Light-Dark Transition Test ................................................................................................. 68 Stress-Induced Hyperthermia .............................................................................................. 68 Open Field ............................................................................................................................ 69 Evaluation of Anxiolytic-Like Activity of Apocynum venetum ............................................... 70 Elevated Plus Maze ............................................................................................................. 70 Acute anxiolytic effect ................................................................................................. 70 Anxiolytic activity after chronic treatment ................................................................. 73 Light-Dark Transition Test ................................................................................................. 74 Stress-Induced Hyperthermia .............................................................................................. 75 Evaluation of Anxiolytic-like Activity of Fractions prepared from Apocynum venetum ....... 75 Elevated Plus Maze ............................................................................................................
Recommended publications
  • FDA OTC Reviews Summary of Back Issues
    Number 23 The Journal of the AMERICAN BOTANI CAL COUNCIL and the HERB RESEARCH FOUNDATION Chinese Medicinals -A Comprehensive Review of Chinese Materia Medica Legal and Regulatory- FDA OTC Reviews Summary of Back Issues Ongoing Market Report, Research Reviews (glimpses of studies published in over a dozen scientific and technical journals), Access, Book Reviews, Calendar, Legal and Regulatory, Herb Blurbs and Potpourri columns. #1 -Summer 83 (4 pp.) Eucalyptus Repels Reas, Stones Koalas; FDA OTC tiveness; Fungal Studies; More Polysaccharides; Recent Research on Ginseng; Heart Panel Reviews Menstrual & Aphrodisiac Herbs; Tabasco Toxicity?; Garlic Odor Peppers; Yew Continues to Amaze; Licorice O.D. Prevention; Ginseng in Perspec­ Repels Deer; and more. tive; Poisonous Plants Update; Medicinal Plant Conservation Project; 1989 Oberly #2- Fall/Winter 83-84 (8 pp.) Appeals Court Overrules FDA on Food Safety; Award Nominations; Trends in Self-Care Conference; License Plates to Fund Native FDA Magazine Pans Herbs; Beware of Bay Leaves; Tiny Tree: Cancer Cure?; Plant Manual; and more. Comfrey Tea Recall; plus. #17-Summer 88. (24 pp.) Sarsaparilla, A Literature Review by Christopher #3-Spring 84 (8 pp.) Celestial Sells to Kraft; Rowers and Dinosaurs Demise?; Hobbs; Hops May Help Metabolize Toxins; Herbal Roach Killer; Epazote Getting Citrus Peels for Kitty Litter; Saffron; Antibacterial Sassafras; WHO Studies Anti· More Popular, Aloe Market Levels Off; Herbal Tick Repellent?; Chinese Herb fertility Plants; Chinese Herbal Drugs; Feverfew Migraines;
    [Show full text]
  • Apocynum Androsaemifolium L
    Scientific name: Apocynum androsaemifolium L. Family: Apocynaceae Common Names: spreading dogbane, bitterroot, flytrap, Indian hemp Fruit: 8 to 12 cm long follicles and 5 mm thick, Plant Description paired pods that split along one side to release the Erect perennial herb, 20 to 100 cm high; well seeds (Moss 1983). branched stems above; rhizomes up to 25 cm deep Seed: Numerous 2.5 to 3 mm long seeds each with that can form extensive colonies; opposite, ovate to long (1 to 2 cm) off-white tuft of hairs at tip. oblong, simple, mucronate leaves 2.5 to 8 cm long; short-petioled; fragrant, pink, bell-shaped flowers in Habitat and Distribution loose, terminal, panicled cymes hanging from stem Shade tolerant. Common in sandy areas on well tips and leaf axils, petals 6 to 9 mm long (Moss drained, open sites in woods, roadsides, open 1983). hillsides and ridges. Can also be found in riparian Stems when broken exude a milky sap (Budd and zones, moist areas with clayey soil (Hardy BBT best 1969). 1989). Seral Stage: It is a mid-seral species in multiple habitat types (Groen 2005). Soils: Found on fine to medium soil textures and dry soils (Gerling et al. 1996). Found in soils with pH ranging from 5.0 to 7.7 (Groen 2005). Distribution: Widespread across Alberta, north and west to Great Slave Lake and interior Alaska. Alaska, Yukon, southwestern District of Mackenzie to James Bay, southern Quebec, Newfoundland south to California, Arizona, Texas, Georgia (Moss 1983). Phenology Flowers bloom in June and July. Seeds are ripe in late summer (September) (Shultz et al.
    [Show full text]
  • Genome Survey and SSR Analysis of Apocynum Venetum
    Bioscience Reports (2019) 39 BSR20190146 https://doi.org/10.1042/BSR20190146 Research Article Genome survey and SSR analysis of Apocynum venetum Guo-qi Li1,2,Li-xiaoSong1,2, Chang-qing Jin1,2,MiaoLi1,3, Shi-pei Gong1,2 and Ya-fang Wang1,2 1Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Yinchuan 750021, Ningxia, P.R. China; 2Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia 750021, P.R. China; 3Ningxia Academy of Agro-Forestry Science, Ningxia 750002, P.R. China Downloaded from http://portlandpress.com/bioscirep/article-pdf/39/6/BSR20190146/845714/bsr-2019-0146.pdf by guest on 02 October 2021 Correspondence: Guo-qi Li ([email protected]) or Li-xiao Song ([email protected]) Apocynum venetum is an eco-economic plant that exhibits high stress resistance. In the present paper, we carried out a whole-genome survey of A. venetum in order to provide a foundation for its whole-genome sequencing. High-throughput sequencing technology (Illumina NovaSep) was first used to measure the genome size of A. venetum, and bioin- formatics methods were employed for the evaluation of the genome size, heterozygosity ratio, repeated sequences, and GC content in order to provide a foundation for subsequent whole-genome sequencing. The sequencing analysis results indicated that the preliminary estimated genome size of A. venetum was 254.40 Mbp, and its heterozygosity ratio and per- centage of repeated sequences were 0.63 and 40.87%, respectively, indicating that it has a complex genome. We used k-mer = 41 to carry out a preliminary assembly and obtained contig N50, which was 3841 bp with a total length of 223949699 bp.
    [Show full text]
  • Sand-Dune Vegetation of Igneada Coast in the Thracian Part of Turkey
    HACQUETIA 6/2 • 2007, 171–182 DOI: 10.2478/v10028–007–00010–z Sand-dUnE vEgetation of IgneadA CoAsT In the THracian pArT of TUrkey Ali KAVgACI* Abstract Igneada is located in the northwest part of Turkey on the Black Sea coast and it is also near the national bor- der between Turkey and Bulgaria. The Igneada region was accepted as one of the most important plant areas of Turkey. In this work, a study was made on the phytosociological structure of Igneada sand dune vegetation, which is the one of the important components of the richness in the region. At the end of the assessment of the data, 3 communities were defined. These communities are otantho-leymetum sabulosi, medicago rigidula- Cionura erecta basal community and meadow behind the sand dune. The part of the sand dune closest to the sea has width of 30 m, ascends with a specific inclination and has no vegetation coverage. Behind this part, otantho-leymetum sabulosi occurs at places where the sand dune has an unstable structure. The medicago rigi- dula-Cionura erecta basal community appears behind �������������������������otantho-leymetum sabulosi and the sand dune has a stable structure at these areas. Behind these communities, another vegetation belt occurs, formed by the species that are cosmopolite or characteristic for meadow vegetation. Key words: Igneada, nature conservation, phytosociology, sand dune. Izvleček Igneada se nahaja v severozahodnem delu Turčije na obali Črnega morja ob državni meji med Turčijo in Bolgarijo. glede rastlinske raznovrstnosti je območje Igneada eno najpomembnejših v Turčiji. V članku je ob- ravnavana fitocenološka struktura vegetacije peščenih sipin, ki je ena najpomembnejših sestavin rastlinskega bogatstva območja.
    [Show full text]
  • Sustainable Sourcing : Markets for Certified Chinese
    SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS In collaboration with SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS Abstract for trade information services ID=43163 2016 SITC-292.4 SUS International Trade Centre (ITC) Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants. Geneva: ITC, 2016. xvi, 141 pages (Technical paper) Doc. No. SC-2016-5.E This study on the market potential of sustainably wild-collected botanical ingredients originating from the People’s Republic of China with fair and organic certifications provides an overview of current export trade in both wild-collected and cultivated botanical, algal and fungal ingredients from China, market segments such as the fair trade and organic sectors, and the market trends for certified ingredients. It also investigates which international standards would be the most appropriate and applicable to the special case of China in consideration of its biodiversity conservation efforts in traditional wild collection communities and regions, and includes bibliographical references (pp. 139–140). Descriptors: Medicinal Plants, Spices, Certification, Organic Products, Fair Trade, China, Market Research English For further information on this technical paper, contact Mr. Alexander Kasterine ([email protected]) The International Trade Centre (ITC) is the joint agency of the World Trade Organization and the United Nations. ITC, Palais des Nations, 1211 Geneva 10, Switzerland (www.intracen.org) Suggested citation: International Trade Centre (2016). Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants, International Trade Centre, Geneva, Switzerland. This publication has been produced with the financial assistance of the European Union.
    [Show full text]
  • Caryologia International Journal of Cytology, Cytosystematics and Cytogenetics
    0008-7114 2019 Vol. 72 – n. 1 72 – n. Vol. Caryologia 2019 International Journal of Cytology, Vol. 72 - n. 1 Cytosystematics and Cytogenetics Caryologia International Journal of Cytology, Cytosystematics and Cytogenetics International Journal of Cytology, FIRENZE PRESSUNIVERSITY FUP Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics Caryologia is devoted to the publication of original papers, and occasionally of reviews, about plant, animal and human kar- yological, cytological, cytogenetic, embryological and ultrastructural studies. Articles about the structure, the organization and the biological events relating to DNA and chromatin organization in eukaryotic cells are considered. Caryologia has a strong tradition in plant and animal cytosystematics and in cytotoxicology. Bioinformatics articles may be considered, but only if they have an emphasis on the relationship between the nucleus and cytoplasm and/or the structural organization of the eukaryotic cell. Editor in Chief Associate Editors Alessio Papini Alfonso Carabez-Trejo - Mexico City, Mexico Dipartimento di Biologia Vegetale Katsuhiko Kondo - Hagishi-Hiroshima, Japan Università degli Studi di Firenze Canio G. Vosa - Pisa, Italy Via La Pira, 4 – 0121 Firenze, Italy Subject Editors Mycology Plant Cytogenetics Histology and Cell Biology Renato Benesperi Lorenzo Peruzzi Alessio Papini Università di Firenze, Italy Università di Pisa Università di Firenze Human and Animal Cytogenetics Plant Karyology and Phylogeny Zoology Michael Schmid Andrea Coppi Mauro Mandrioli University of Würzburg, Germany Università di Firenze Università di Modena e Reggio Emilia Editorial Assistant Sara Falsini Università degli Studi di Firenze, Italy Editorial Advisory Board G. Berta - Alessandria, Italy G. Delfno - Firenze, Italy M. Mandrioli - Modena, Italy D. Bizzaro - Ancona, Italy S. D'Emerico - Bari, Italy G.
    [Show full text]
  • Apocynum Leaf Extract Inhibits the Progress of Atherosclerosis in Rats Via the AMPK/Mtor Pathway
    ORIGINAL ARTICLES Department of Experimental Pharmacology and Toxicology1, School of Pharmaceutical Science, Jilin University; Department of Cardiovascular2, The First Bethune Hospital of Jilin University, Changchun; School of Pharmaceutics and Food Science3, Tonghua Normal University, Tonghua, PR China Apocynum leaf extract inhibits the progress of atherosclerosis in rats via the AMPK/mTOR pathway LI LÜ1, DAN ZHANG2, BO SUN1, YANWU HU3, MENGTONG YAN1, KAI LIU1, XIANGJUN LI1,*, LIQUN REN1 Received June 8, 2016, accepted July 8, 2016 *Corresponding author: Xiangjun Li, Department of Experimental Pharmacology and Toxicology, School of Phar- maceutical Science, Jilin University, 1266 Fujin Road, Changchun 130021, Jilin Province, P.R. China [email protected] Pharmazie 72: 41–48 (2017) doi: 10.1691/ph.2017.6703 Apocynum leaf extract is an extract of the dried leaves of Apocynum venetum (a member of the Apocynaceae family) that has many effects on the cardiovascular system. The aim of the present study was to evaluate the protec- tive effects of apocynum leaf extract on the atherosclerosis in rats induced by high-fat diet combined with vitamin D3 intraperitoneal injection. The atherosclerosis in rats were induced with a high-fat diet and an intraperitoneal th injection of VD3 once daily for three contiguous days at a total injection dose of 70 U/kg. At the end of the 18 week, serum total cholesterol (TC) and triglyceride (TG) contents were measured. Hydroxyproline content in the aorta were measured by the alkali hydrolysis method. The hematoxylin-eosin (HE) and immunohistochemical staining were applied to evaluate the morphological changes and the collagen I and α-smooth muscle actin expression.
    [Show full text]
  • Dna Sequence and Rapd Information Re-Affirms the Taxonomic Relationships Between Apocynum Venetum L
    Pak. J. Bot., 44(4): 1261-1266, 2012. DNA SEQUENCE AND RAPD INFORMATION RE-AFFIRMS THE TAXONOMIC RELATIONSHIPS BETWEEN APOCYNUM VENETUM L. AND POACYNUM PICTUM (SCHRENK) BAILL. PENG XUEMEI1,3, CAO YAN1, YANG ZIYI1, ZHANG WEIMING1,2, LIU QITANG4 AND LU CHANGMEI1* 1Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; 2Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China; 3Analysis and Testing Center, Shanxi Datong University, Datong, 037009, China; 4Xinjiang Gebao Luobuhongma and Luobubaima Co1L td, Altai 836500, China *Corresponding author’s e-mail: [email protected]; Tel: (086)-025-85891971; Fax: (086)-025-85891526 Abstract Medicinal plants Apocynum venetum L. and Poacynum pictum (Schrenk) Baill. having similar efficacy belong to two genera. However, many similarities of morphological characteristics in pollen, seeds, leaves and stems etc. between the two species recommend it under one genus Apocynum L. To address this question, we selected DNA sequences [nuclear rDNA internal transcribed spacer (ITS), trnL intron and trnL-trnF intergenic spacer (IGS) sequence] and RAPD markers to assess the relationship between them, with samples from 10 populations of A. venetum and 5 populations of P. pictum from China. ITS sequences from all samples of A. venetum and P. pictum were same, and only two different sites were found in the trnL intron region and one different site in the trnL-trnF IGS region. The genetic distance between A. venetum and P. pictum calculated upon these regions was much smaller than both the intergeneric and interspecies genetic distances calculated upon the same regions in the vast majority of plants.
    [Show full text]
  • Enabling Evolutionary Studies at Multiple Scales in Apocynaceae Through Hyb-Seq
    APPLICATION ARTICLE Enabling evolutionary studies at multiple scales in Apocynaceae through Hyb-Seq Shannon C. K. Straub1,4 , Julien Boutte1, Mark Fishbein2 , and Tatyana Livshultz3 Manuscript received 1 July 2020; revision accepted 12 September PREMISE: Apocynaceae is the 10th largest flowering plant family and a focus for study of 2020. plant–insect interactions, especially as mediated by secondary metabolites. However, it has 1 Department of Biology, Hobart and William Smith Colleges, 300 few genomic resources relative to its size. Target capture sequencing is a powerful approach Pulteney Street, Geneva, New York 14456, USA for genome reduction that facilitates studies requiring data from the nuclear genome in non- 2 Department of Plant Biology, Ecology, and Evolution, Oklahoma model taxa, such as Apocynaceae. State University, 301 Physical Sciences, Stillwater, Oklahoma 74078, USA METHODS: Transcriptomes were used to design probes for targeted sequencing of putatively 3 Department of Biodiversity, Earth, and Environmental Sciences single-copy nuclear genes across Apocynaceae. The sequences obtained were used to assess and the Academy of Natural Sciences, Drexel University, 1900 the success of the probe design, the intrageneric and intraspecific variation in the targeted Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103, USA genes, and the utility of the genes for inferring phylogeny. 4Author for correspondence: [email protected] RESULTS: From 853 candidate nuclear genes, 835 were consistently recovered in single Citation: Straub, S. C. K., J. Boutte, M. Fishbein, and T. Livshultz. copy and were variable enough for phylogenomics. The inferred gene trees were useful for 2020. Enabling evolutionary studies at multiple scales in coalescent-based species tree analysis, which showed all subfamilies of Apocynaceae as Apocynaceae through Hyb-Seq.
    [Show full text]
  • Storage Period and Different Abiotic Factors Regulate Seed Germination of Two Apocynum Species — Cash Crops in Arid Saline Regions in the Northwestern China
    fpls-12-671157 June 16, 2021 Time: 12:14 # 1 ORIGINAL RESEARCH published: 17 June 2021 doi: 10.3389/fpls.2021.671157 Storage Period and Different Abiotic Factors Regulate Seed Germination of Two Apocynum Species — Cash Crops in Arid Saline Regions in the Northwestern China Li Jiang1,2,3†, Chaowen She1,2†, Changyan Tian3,4, Mohsin Tanveer5 and Lei Wang3,4* 1 Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, China, 2 Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua, China, 3 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Edited by: Chinese Academy of Sciences, Ürümqi, China, 4 University of Chinese Academy of Sciences, Beijing, China, 5 Tasmanian Rosa M. Rivero, Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia Center for Edaphology and Applied Biology of Segura, Spanish National Research Council, Spain On degraded land in arid regions, cultivation of Apocynum species can provide Reviewed by: significant environmental benefits by preventing soil erosion and desertification. Akbar Hossain, Bangladesh Wheat and Maize Furthermore, Apocynum venetum and Apocynum pictum, which are mainly distributed Research Institute (BWMRI), in salt-barren lands in the northwestern region of China, are traditionally used to Bangladesh produce natural fiber and herbal tea. Direct sowing of both species may encounter Raquel Stefanello, Federal University of Santa Maria, various abiotic stresses such as drought and salinity. However, these effects on Brazil germination remain largely unknown, especially for seeds with different storage periods. *Correspondence: The aim of this study was to evaluate the effects of storage period, light condition, Lei Wang [email protected] temperature regime, drought, and salinity on germination performances of both species.
    [Show full text]
  • Plastome Assembly in the Wax Plants (Hoya) and Near Relatives (Marsdenieae, Apocynaceae)
    University of Pennsylvania ScholarlyCommons Internship Program Reports Education and Visitor Experience 2017 Plastome Assembly in the Wax Plants (Hoya) and Near Relatives (Marsdenieae, Apocynaceae) Trista Crook University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/morrisarboretum_internreports Part of the Botany Commons Recommended Citation Crook, Trista, "Plastome Assembly in the Wax Plants (Hoya) and Near Relatives (Marsdenieae, Apocynaceae)" (2017). Internship Program Reports. 16. https://repository.upenn.edu/morrisarboretum_internreports/16 An independent study project report by The Eli Kirk Price Endowed Flora of Pennsylvania Intern This paper is posted at ScholarlyCommons. https://repository.upenn.edu/morrisarboretum_internreports/16 For more information, please contact [email protected]. Plastome Assembly in the Wax Plants (Hoya) and Near Relatives (Marsdenieae, Apocynaceae) Abstract The present research sought to assemble the plastomes of 42 species in the Apocynaceae, tribe Marsdenieae. Fast-Plast, a chloroplast assembly pipeline, was used to assemble the plastomes, with alignment to reference plastomes (Asclepias syriaca and Nerium oleander) and manual editing of the alignments carried out in Geneious. Marsdenieae plastomes proved difficulto t assemble, due to presequencing, sequencing, or assembly errors or biological realities. Only 35.7% of the species of Marsdenieae included assembled at all, and no finalized contigs were produced for any species. In most taxa, not all of the
    [Show full text]
  • Kentucky Unwanted Plants
    Chapter 6 A Brief Guide to Kentucky’s Non-Native, Invasive Species, Common Weeds, and Other Unwanted Plants A publication of the Louisville Water Company Wellhead Protection Plan, Phase III Source Reduction Grant # X9-96479407-0 Chapter 6 A Brief Guide to Kentucky’s Non-native, Invasive Species, Common Weeds and Other Unwanted Plants What is an invasive exotic plant? A plant is considered exotic, (alien, foreign, non- indigenous, non-native), when it has been introduced by humans to a location outside its native or natural range. Most invasive, exotic plants have escaped cultivation or have spread from its origin and have become a problem or a potential problem in natural biological communities. For example, black locust, a tree that is native to the southern Appalachian region and portions of Indiana, Illinois, and Missouri, was planted throughout the U.S. for living fences, erosion control, and other uses for many years. Black locust is considered exotic outside its natural native range because it got to these places Kudzu is an invasive exotic plant that has spread by human introduction rather than by natural from Japan and China to become a large problem in dispersion. It has become invasive, displacing native much of the US. Local, state, and the federal species and adversely impacting ecosystems and governments spend millions of dollars per year to several endangered native bird species that depend on control the spread of kudzu. Even yearly control other plants for food, as well as several endangered may not be enough to successfully remove kudzu. Seeds can remain dormant in the plant species.
    [Show full text]