II.7.4 Carbamate Pesticides by Kiyoshi Ameno

Total Page:16

File Type:pdf, Size:1020Kb

II.7.4 Carbamate Pesticides by Kiyoshi Ameno 7.4 II.7.4 Carbamate pesticides by Kiyoshi Ameno Introduction Among many carbamate pesticides commercially available in Japan, those with relatively high toxicities are shown in > Table 4.1 [1]. Carbamate pesticides are generally classifi ed into N-methylcarbamate insecticides and N -allylcarbamate herbicides in view of their chemical structures and biological actions. Th e number of fatalities due to poisoning by carbamate pes- ticides is 50–100 every year in Japan; many of them are poisoned by methomyl [2]. According to statics reported by National Research Institute of Police Science of Japan, the number of fatalities is highest with paraquat plus diquat, followed by organophosphates and then carba- mates among pesticides. Th e toxicity of carbamate pesticides is due to inhibition of acetylcho- linesterase (AchE) by their binding with the active site of the enzyme; the inhibition of the hydrolysis reaction of acetylcholine (Ach) results in the accumulation of Ach, provoking poisoning symptoms, such as miosis, lacrimation, sweating, hypersalivation and convulsion of extremities. Th e binding of carbamate pesticides to AchE is much weaker than that of organo- phosphorus pesticides, and the former pesticides are easily decomposeda in mammalian bodies. Th erefore, the damages of organs by carbamate pesticides have not been reported. For analysis of carbamate pesticides, methods by GC [3–7], GC/MS [5, 7, 8–10], HPLC [11] and LC/MS [10] were reported. In this chapter, the extraction procedures and analytical methods using the above 4 instruments are described for this group of pesticides. Reagents and their preparation • Th e authentic standards of compounds listed in > Table 4.1 and ethion can be purchased from Wako Pure Chemical Industries, Ltd., Osaka, Japan. A standard mixture of seven N-methylcarbamate pesticides can be obtained from Kanto Chemicals (Tokyo, Japan)b. Carbofuran, carbaryl and ethion are separately dissolved in acetone to prepare 100 µg/mL solutions as stock solutions for internal standards (ISs)c. Carbendazole (Aldrich, Milwau- kee, WI, USA) is dissolved in distilled water to prepare 100 µg/mL solution. o-Methoxyl- phenol can be also obtained from Aldrich. • Sep-Pak C18 and Oasis MCX cartridges are purchased from Waters (Milford, MA, USA). • Th e solutions to be prepared are: n-hexane/ethyl acetate (1:1, v/v); acetonitrile/distilled water (1:1, v/v); methanol/distilled water (5:59, v/v); 0.1 M HCl solution; and 2 % NaCl solution. • 0.1 M Phosphate buff er solution (pH 7.0): 6.81 g of KH2PO4 is dissolved in 400 mL distilled water, and the pH of the solution is adjusted to 7.0 with 1.0 M NaOH solution; the fi nal volume is adjusted to 500 mL with distilled water. • 5 % Ammonia/methanol solution: 2.5 mL of 3 M NH4OH solution is mixed with 47.5 mL methanol. • HPLC mobile phases: methanol/distilled water (65:35, v/v); acetonitrile/2 mM ammonium formate (30:70 and 80:20, v/v, pH 3.0). © Springer-Verlag Berlin Heidelberg 2005 560 Carbamate pesticides ⊡ Table 4.1 Structures, properties and toxicities of carbamate pesticides Name, MF, MW, property and structure Use Acute oral LD50 (rat, mg/kg) bendiocarb insecticide 40 ~ 156 C11H13NO4 MW: 223.2 MP: 125 ~ 129 benfuracarb insecticide 223 205 C20H30N2O5S MW: 410.5 MP: 110 carbaryl insecticide 850 500 C12H15NO2 MW: 201.2 MP: 142 carbofuran insecticide 8 C12H15NO3 MW: 221.3 MP: 153 ~ 154 carbosulfan insecticide 623 657 C20H32N3O3S MW: 380.5 BP: 124 ~ 128 ethiofencarb insecticide 200 approx. C11H15NO2S MW:: 225.3 MP: 33.4 fenobucarb insecticide 250 185 C12H17NO2 MW: 207.3 MP: 31 ~ 32 furathiocarb insecticide 53 C18H26N2O5S MW: 382.5 BP: 250< Carbamate pesticides 561 ⊡ Table 4.1 (continued) isoprocarb insecticide 450 C11H15NO2 MW: 225.3 MP: 93 ~ 96 metolcarb insecticide 580 498 C9H11NO2 MW: 162.2 MP: 76 ~ 77 methomyl insecticide 17 24 C5H13N2O2S MW: 162.2 MP: 78 ~ 79 oxamyl insecticide 5.4 C7H13N3O3S MW: 219.3 MP: 100 ~ 102 pirimicarb insecticide 147 C11H18N4O2 MW: 238.3 MP: 90.5 propoxur insecticide 50 C11H15NO3 MW: 209.2 MP: 90 thiodicarb insecticide 66 C10H18N4O4S3 MW: 354.5 MP: 173 ~ 174 XMC insecticide 542 C10H13NO2 MW: 179.2 MP: 99 xylylcarb insecticide 375 325 C10H13NO2 MW: 179.2 MP: 79 ~ 80 MF: molecular formula; MW: molecular weight; MP (°C): melting point; BP (°C): boiling point. 562 Carbamate pesticides Extraction methods It is absolutely necessary to extract carbamate pesticides from crude biomedical specimens containing many impurity compounds as pretreatments before instrumental analysis. As spec- imens, body fl uids (whole blood, serum and urine), tissues and stomach contents are objects for analyses. Th e whole blood should be completely hemolyzed before extraction. Homogeni- zation is needed for tissues (organs) specimens; for stomach contents, the supernatant fraction aft er their centrifugation should be used. Liquid-liquid extraction i. A 2-g aliquot of specimens (blood, tissues and stomach contents d) is mixed with 10 mL acetonitrile (containing an appropriate IS), homogenized with a Polytron homogenizer and centrifuged at 3,000 rpm for 5 min to obtain clear supernatant solution. ii. For the sediment, the above i) step of extraction is repeated two times. iii. Th e three acetonitrile supernatant solutions thus obtained are combined and mixed with 80 mL of 2 % NaCl solution and 25 mL of n-hexane/ethyl acetate (1:1, v/v) in a 250-mL volume separating funnele. iv. Th e funnel is shaken for 10 min (with a shaking machine). v. Th e n-hexane/ethyl acetate layer is obtained. vi. Th e layer is evaporated to dryness under reduced pressure in a rotary evaporator at room temperature. vii. Th e residue is dissolved in 100 µL methanol. viii. A 2-µL aliquot of it is injected into GC or GC/MS; a 20-µL aliquot into HPLC. ix. For quantitation, each calibration curve is constructed using peak area ratios of a target compound to IS. A ratio obtained from a specimen is applied to the curve to calculate its concentration. Solid-phase extraction-1 [4] f i. A Sep-Pak C18 cartridge is washed and activated by passing chloroform, acetonitrile, acetonitrile/distilled water (1:1) and distilled water, 10 mL each, successively. ii. A 1-mL volume of a specimen (blood, serum or urine) is mixed with 9 mL distilled water, g stirred well and poured into the Sep-Pak C18 cartridge. iii. It is washed with 10 mL distilled water. iv. A target compound and IS are eluted with 3 mL chloroform. v. A small amount of aqueous layer (upper) of the eluate is carefully removed with a Pasteur pipette h. i vi. Th e above organic extract is dehydrated with anhydrous Na2SO4 . vii. It is evaporated to dryness under a stream of nitrogen at room temperature. viii. Th e residue is dissolved in 100 µL methanol j. ix. A 2-µL aliquot of it is injected into GC or GC/MS; a 20-µL aliquot into HPLC or LC/MS. GC and GC/MS analysis 563 Solid-phase extraction-2 [10] i. An Oasis MCX cartridge k is activated by passing 1 mL methanol and 1 mL of 0.1 M phos- phate buff er solution (pH 7) through it. ii. A 1-mL volume of serum is mixed well with 100 µL of IS (for example carbendazole) so- lution and poured into the cartridge. iii. Th e cartridge is washed with 1 mL distilled water. iv. Th e fi rst elution is made by passing 1 mL methanol through it. v. Th e cartridge is washed with 1 mL of 0.1 M HCl solution. vi. Th e second elution is made by passing 1 mL methanol again. vii. Th e third elution is made by passing 1 mL of 5 % ammonia/methanol. viii. Th e three eluates obtained at the steps iv, vi and vii are combined l, and evaporated to dry- ness under a stream of nitrogen. ix. Th e residue is dissolved in 100 µL methanol for GC or GC/MS analysis; an appropriate amount is injected into GC (/MS). For HPLC (/MS), the residue is dissolved in 100 µL of a mobile phase to be used and injected into HPLC (/MS). GC and GC/MS analysis GC conditions GC columnsm: DB-5 and DB-1 fused silica capillary columns (30 m × 0.25 mm i.d., fi lm thick- ness 0.25 µm, J&W Scientifi c, Folsom, CA, USA). GC conditions; instrument: Shimadzu GC14B (Shimadzu Corp., Kyoto, Japan); detector: fl ame thermionic ionization detector (FTD)n; column temperature: 50 °C → 20 °C/min → 120 °C → 5 °C/min → 260 °C(10 min); injection and detector temperature o: 230 °C; carrier gas: He (13 kPa). GC/MS conditions GC column: a DB-5MS fused silica capillary column (30 m × 0.25 mm i.d., fi lm thickness 0.25 µm, J&W Scientifi c). GC/MS; instrument: Shimadzu GC-MS5000 (Shimadzu Corp.); column temperature: 120 °C (1 min) → 20 °C/min → 240 °C (8 min); injection and separator temperature: 230 °C; carrier gas: He (2.0 mL/min); ionization mode: EI (70 eV). Assessment of the method For GC analysis of carbamate pesticides, an FTD detector is recommendable, because it is specifi c and sensitive, and is not infl uenced by impurities and organic solvents appreciably. Qualitative analysis only with a single column is insuffi cient; multiple columns of diff erent properties should be used for testing an identity of a compound. > Table 4.2 shows retention 564 Carbamate pesticides ⊡ Table 4.2 Retention times of carbamate pesticides obtained by GC* Carbamate Retention time Carbamate Retention time (min) (min) oxamyl 5.9 bendiocarb 15.1 methomyl-oxime 7.1 carbofuran 16.5 propamocarb 9.3 ethiofencarb 18.8 metolcarb (MTMC) 11.2 pirimicarb 18.8 isoprocarb 12.2 carbaryl 19.7 methomyl 12.2 methiocarb 20.7 XMC 12.6 benthiocarb 21.1 xylylcarb (MPMC) 13.3 diethofencarb 21.4 propoxur (PHC) 13.6 furathiocarb 31.5 fenobucarb 13.7 benfuracarb 33.6 * Detection limits were 0.5–1.0 ng on-column.
Recommended publications
  • Environmental Properties of Chemicals Volume 2
    1 t ENVIRONMENTAL 1 PROTECTION Esa Nikunen . Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 1 O O O O O O O O OO O OOOOOO Ol OIOOO FINNISH ENVIRONMENT INSTITUTE • EDITA Esa Nikunen e Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 HELSINKI 1000 OlO 00000001 00000000000000000 Th/s is a second revfsed version of Environmental Properties of Chemica/s, published by VAPK-Pub/ishing and Ministry of Environment, Environmental Protection Department as Research Report 91, 1990. The pubiication is also available as a CD ROM version: EnviChem 2.0, a PC database runniny under Windows operating systems. ISBN 951-7-2967-2 (publisher) ISBN 952-7 1-0670-0 (co-publisher) ISSN 1238-8602 Layout: Pikseri Julkaisupalvelut Cover illustration: Jussi Hirvi Edita Ltd. Helsinki 2000 Environmental properties of chemicals Volume 2 _____ _____________________________________________________ Contents . VOLUME ONE 1 Contents of the report 2 Environmental properties of chemicals 3 Abbreviations and explanations 7 3.1 Ways of exposure 7 3.2 Exposed species 7 3.3 Fffects________________________________ 7 3.4 Length of exposure 7 3.5 Odour thresholds 8 3.6 Toxicity endpoints 9 3.7 Other abbreviations 9 4 Listofexposedspecies 10 4.1 Mammais 10 4.2 Plants 13 4.3 Birds 14 4.4 Insects 17 4.5 Fishes 1$ 4.6 Mollusca 22 4.7 Crustaceans 23 4.8 Algae 24 4.9 Others 25 5 References 27 Index 1 List of chemicals in alphabetical order - 169 Index II List of chemicals in CAS-number order
    [Show full text]
  • Veterinary Toxicology
    GINTARAS DAUNORAS VETERINARY TOXICOLOGY Lecture notes and classes works Study kit for LUHS Veterinary Faculty Foreign Students LSMU LEIDYBOS NAMAI, KAUNAS 2012 Lietuvos sveikatos moksl ų universitetas Veterinarijos akademija Neužkre čiam ųjų lig ų katedra Gintaras Daunoras VETERINARIN Ė TOKSIKOLOGIJA Paskait ų konspektai ir praktikos darb ų aprašai Mokomoji knyga LSMU Veterinarijos fakulteto užsienio studentams LSMU LEIDYBOS NAMAI, KAUNAS 2012 UDK Dau Apsvarstyta: LSMU VA Veterinarijos fakulteto Neužkre čiam ųjų lig ų katedros pos ėdyje, 2012 m. rugs ėjo 20 d., protokolo Nr. 01 LSMU VA Veterinarijos fakulteto tarybos pos ėdyje, 2012 m. rugs ėjo 28 d., protokolo Nr. 08 Recenzavo: doc. dr. Alius Pockevi čius LSMU VA Užkre čiam ųjų lig ų katedra dr. Aidas Grigonis LSMU VA Neužkre čiam ųjų lig ų katedra CONTENTS Introduction ……………………………………………………………………………………… 7 SECTION I. Lecture notes ………………………………………………………………………. 8 1. GENERAL VETERINARY TOXICOLOGY ……….……………………………………….. 8 1.1. Veterinary toxicology aims and tasks ……………………………………………………... 8 1.2. EC and Lithuanian legal documents for hazardous substances and pollution ……………. 11 1.3. Classification of poisons ……………………………………………………………………. 12 1.4. Chemicals classification and labelling ……………………………………………………… 14 2. Toxicokinetics ………………………………………………………………………...………. 15 2.2. Migration of substances through biological membranes …………………………………… 15 2.3. ADME notion ………………………………………………………………………………. 15 2.4. Possibilities of poisons entering into an animal body and methods of absorption ……… 16 2.5. Poison distribution
    [Show full text]
  • Pesticide Composition Comprising Propamocarb-Fosetylate and an Insecticide Active Substance
    (19) & (11) EP 2 255 638 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 01.12.2010 Bulletin 2010/48 A01N 57/12 (2006.01) A01N 59/06 (2006.01) A01N 43/90 (2006.01) (21) Application number: 10167840.7 (22) Date of filing: 21.12.2007 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Van den Eynde, Koen HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE B-1785 Merchtem (BE) SI SK TR • Andrieux, Marc Designated Extension States: 40699 Erkrath (DE) AL BA HR MK RS • Hundenberg, Heike 40764, Langenfeld (DE) (30) Priority: 22.12.2006 EP 06127172 • Thielert, Wolfgang 51519 Odenthal (DE) (62) Document number(s) of the earlier application(s) in •Suty-Heinze, Anne accordance with Art. 76 EPC: 40764 Langenfeld (DE) 07858039.6 / 2 124 566 Remarks: (71) Applicant: Bayer CropScience AG This application was filed on 30-06-2010 as a 40789 Monheim (DE) divisional application to the application mentioned under INID code 62. (54) Pesticide composition comprising propamocarb-fosetylate and an insecticide active substance (57) The present invention relates to a pesticide com- invention is a pesticide composition based on propamo- position intended for protecting plants, crops or seeds carb-fosetylate, an insecticide active substance and op- against phyto-pathogenic fungi or damaging insects, and tionally a further fungicide active substance. the corresponding methods of treatment using the said composition. More precisely, the subject of the present EP 2 255 638 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 255 638 A2 Description [0001] The present invention relates to a pesticide composition intended for protecting plants, crops or seeds against fungal diseases or insect damages, and the corresponding methods of protection by application of the said composition.
    [Show full text]
  • Expression and Functional Analysis of the Propamocarb-Related Gene
    Liu et al. BMC Plant Biology (2018) 18:16 DOI 10.1186/s12870-018-1236-2 RESEARCHARTICLE Open Access Expression and functional analysis of the Propamocarb-related gene CsDIR16 in cucumbers Chunhong Liu1,2, Zhiwei Qin1*, Xiuyan Zhou1, Ming Xin1, Chunhua Wang1, Dong Liu1 and Shengnan Li1 Abstract Background: Cucumber downy mildew is among the most important diseases that can disrupt cucumber production. Propamocarb, also known as propyl-[3-(dimethylamino)propyl]carbamate (PM), is a systemic carbamate fungicide pesticide that is widely applied in agricultural production because of its high efficiency of pathogens control, especially cucumber downy mildew. However, residual PM can remain in cucumbers after the disease has been controlled. To explore the molecular mechanisms of PM retention, cucumber cultivars ‘D9320’ (with the highest residual PM content) and ‘D0351’ (lowest residual PM content) were studied. High-throughput tag-sequencing (Tag-Seq) results showed that the CsDIR16 gene was related to PM residue, which was verified using transgenic technology. Results: We investigated the activity of a dirigent cucumber protein encoded by the CsDIR16 in gene response to stress induced by PM treatment. Gene-expression levels of CsDIR16 were up-regulated in the fruits, leaves, and stems of ‘D0351’ plants in response to PM treatment. However, in cultivar ‘D9320’, CsDIR16 levels were down-regulated in the leaves and stems after PM treatment, with no statistically significant differences observed in the fruits. Induction by jasmonic acid, abscisic acid, polyethylene glycol 4000, NaCl, and Corynespora cassiicola Wei (Cor) resulted in CsDIR16 up-regulation in ‘D0351’ and ‘D9320’. Expression after salicylic acid treatment was up-regulated in ‘D0351’, but was down-regulated in ‘D9320’.
    [Show full text]
  • The Insecticides Act, 1968 (Act No.46 of 1968)
    The Insecticides Act, 1968 (Act No.46 of 1968) An Act to regulate the import, manufactures, sale, transport, distribution and use of insecticides with a view to prevent risk to human beings or animals and for matters connected therewith. [2 nd September 1968] Be it enacted by Parliament in the Nineteenth Year of the Republic of India as follows: 1. Short title, extent and commencement. * a. This Act may be called the Insecticides Act, 1968. b. It extends to the whole of India. c. It shall come into force on such date as the Central Government may, by notification in the official Gazette, appoint and different dates may be appointed for different States and for different provisions of Act. 2. Application of other laws not barred * The provisions of this Act shall be in addition to, and not in derogation of, any other law for the time being in force. 3. Definitions- In this Act, unless the context otherwise requires- a. "animals" means animals useful to human beings and includes fish and fowl, and such kinds of wild life as the Central Government may, by notification in the official Gazette, specify, being kinds which in its opinion, it is desirable to protect or preserve; b. "Board" means the Central Insecticides Board constituted under Sec.4; c. "Central Insecticides Laboratory" means the Central Insecticides Laboratory established, or as the case may be, the institution specified under Sec.16; d. "Import" means bringing into any place within the territories to which this Act extends from a place outside those territories; e. "Insecticide" means- i.
    [Show full text]
  • Registration Division Conventional Pesticides -Branch and Product
    Registration Division Conventional Pesticides - Branch and Product Manager (PM) Assignments For a list of Branch contacts, please click the following link: http://www2.epa.gov/pesticide-contacts/contacts-office-pesticide-programs-registration-division Branch FB=Fungicide Branch. FHB=Fungicide Herbicide Branch. HB=Herbicide Branch. Abbreviations: IVB*= Invertebrate-Vertebrate Branch 1, 2 or 3. MUERB=Minor Use and Emergency Response Branch. Chemical Branch PM 1-Decanol FHB RM 20 1-Naphthaleneacetamide FHB RM 20 2, 4-D, Choline salt HB RM 23 2,4-D HB RM 23 2,4-D, 2-ethylhexyl ester HB RM 23 2,4-D, butoxyethyl ester HB RM 23 2,4-D, diethanolamine salt HB RM 23 2,4-D, dimethylamine salt HB RM 23 2,4-D, isopropyl ester HB RM 23 2,4-D, isopropylamine salt HB RM 23 2,4-D, sodium salt HB RM 23 2,4-D, triisopropanolamine salt HB RM 23 2,4-DB HB RM 23 2,4-DP HB RM 23 2,4-DP, diethanolamine salt HB RM 23 2,4-DP-p HB RM 23 2,4-DP-p, 2-ethylhexyl ester FB RM 21 2,4-DP-p, DMA salt HB RM 23 2-EEEBC FB RM 21 2-Phenylethyl propionate FHB RM 20 4-Aminopyridine IVB3 RM 07 4-Chlorophenoxyacetic acid FB RM 22 4-vinylcyclohexene diepoxide IVB3 RM 07 Abamectin IVB3 RM 07 Acephate IVB2 RM 10 Acequinocyl IVB3 RM 01 Acetaminophen IVB3 RM 07 Acetamiprid IVB3 RM 01 Acetic acid, (2,4-dichlorophenoxy)-, compd. with methanamine (1:1) HB RM 23 Acetic acid, trifluoro- FHB RM 20 Acetochlor HB RM 25 Acibenzolar-s-methyl FHB RM 24 Acid Blue 9 HB RM 23 Acid Yellow 23 HB RM 23 Sunday, June 06, 2021 Page 1 of 17 Chemical Branch PM Acifluorfen HB RM 23 Acrinathrin IVB1 RM 03
    [Show full text]
  • Case Fatality As an Indicator for the Human Toxicity of Pesticides—A
    International Journal of Environmental Research and Public Health Review Case Fatality as an Indicator for the Human Toxicity of Pesticides—A Systematic Scoping Review on the Availability and Variability of Severity Indicators of Pesticide Poisoning Susanne Moebus 1 and Wolfgang Boedeker 2,* 1 Institute for Urban Public Health, University Hospital, University of Duisburg-Essen, 45128 Essen, Germany; [email protected] 2 EPICURUS—Impact Assessment, 45136 Essen, Germany * Correspondence: [email protected] Abstract: Objective: To investigate if case fatality and other indicators of the severity of human pesticide poisonings can be used to prioritize pesticides of public health concern. To study the heterogeneity of data across countries, cause of poisonings, and treatment facilities. Methods: We searched literature databases as well as the internet for studies on case-fatality and severity scores of pesticide poisoning. Studies published between 1990 and 2014 providing information on active ingredients in pesticides or chemical groups of active ingredients were included. The variability of case-fatality-ratios was analyzed by computing the coefficient of variation as the ratio of the standard deviation to the mean. Findings: A total of 149 papers were identified of which 67 could be included after assessment. Case-fatality-ratio (CFR) on 66 active ingredients and additionally on 13 groups of active ingredients were reported from 20 countries. The overall median CFR for group Citation: Moebus, S.; Boedeker, W. of pesticides was 9%, for single pesticides 8%. Of those 12 active ingredients with a CFR above 20% Case Fatality as an Indicator for the more than half are WHO-classified as “moderately hazardous” or “unlikely to present acute hazard”.
    [Show full text]
  • FQPA: Economic Impact on Potatoes, Onions, Cabbage and Watermelon Produced in Texas
    E-36 3-00 FQPA: Economic Impact on Potatoes, Onions, Cabbage and Watermelon Produced in Texas Kent D. Hall and Rodney L. Holloway* *Extension Associate, Pesticide Assessment; and Associate Professor and Extension Pesticide Assessment Specialist, The Texas A&M University System. i Figure 1. Map of Texas displaying the major growing areas of the study. ii CONTENTS Executive Summary. .. 1 Introduction .................................................................. 2 Methods ..................................................................... 3 Results...................................................................... 4 Potatoes ............................................................... 5 Insects and Insecticides ............................................. 5 High Plains................................................. 5 Winter Garden.............................................. 6 Lower Rio Grande Valley ..................................... 6 All of Texas................................................ 7 Weeds and Herbicides.............................................. 7 High Plains................................................. 7 Winter Garden.............................................. 7 Lower Rio Grande Valley ..................................... 8 All of Texas................................................ 8 Diseases and Fungicides ............................................ 8 High Plains................................................. 8 Winter Garden.............................................. 9 Lower Rio Grande
    [Show full text]
  • Montreal Protocol on Substances That Deplete The
    Methyl Bromide Technical Options Committee 2018 Assess ment Report Montreal Protocol on Substances that Deplete the Ozone Layer Ozone Secretariat MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER 2018 REPORT OF THE METHYL BROMIDE TECHNICAL OPTIONS COMMITTEE 2018 Assessment Montreal Protocol on Substances that Deplete the Ozone Layer United Nations Environment Programme (UNEP) 2018 Report of the Methyl Bromide Technical Options Committee 2018 Assessment The text of this report is composed mainly in Times New Roman. Composition of the Report: Methyl Bromide Technical Option Committee Coordination: Marta Pizano, Ian Porter, MBTOC Co-Chairs. Final editing and layout: Marta Pizano, Ian Porter, MBTOC co-chairs Reproduction: Ozone Secretariat, Nairobi Date: January, 2019 Under certain conditions, printed copies of this report are available from: United Nations Environment Programme Ozone Secretariat P.O. Box 30552 Nairobi, Kenya This document is also available in portable document format from: https://ozone.unep.org/science/assessment/teap No copyright involved. This publication may be freely copied, abstracted and cited, with acknowledgement of the source of the material. Methyl Bromide Technical Options Committee: Co-Chairs: Marta Pizano (Colombia); Ian Porter (Australia) Members: Jonathan Banks (Australia), Mohammed Besri (Morocco), Fred Bergwerff (The Netherlands), Aocheng Cao (China), Sait Erurk (Turkey), Ken Glassey (New Zealand), Alfredo Gonzalez (Philippines), Rosalind James (USA), Takashi Misumi (Japan), Christoph Reichmuth (Germany), Jordi Riudavets (Spain), Akio Tateya (Japan), Alejandro Valeiro (Argentina), Nick Vink (South Africa). Acknowledgments: MBTOC acknowledges support from Dr Paul Fraser, Dr Steve Montzka and Nada Derek for Chapter 4 of this report in assisting with preparation of some text, figures and review of information.
    [Show full text]
  • Pesticides EPA-738-F-95-031 Environmental Protection and Toxic Substances September 1995 Agency (7508W) R.E.D
    United States Prevention, Pesticides EPA-738-F-95-031 Environmental Protection And Toxic Substances September 1995 Agency (7508W) R.E.D. FACTS Propamocarb Hydrochloride Pesticide All pesticides sold or distributed in the United States must be Reregistration registered by EPA, based on scientific studies showing that they can be used without posing unreasonable risks to people or the environment. Because of advances in scientific knowledge, the law requires that pesticides which were first registered before November 1, 1984 be reregistered to ensure that they meet today's more stringent standards. In evaluating pesticides for reregistration, EPA obtains and reviews a complete set of studies from pesticide producers, describing the human health and environmental effects of each pesticide. The Agency develops mitigation measures or any regulatory controls needed to effectively manage each pesticide's risks. EPA then reregisters pesticides that can be used without posing unreasonable risks to human health or the environment. When a pesticide is eligible for reregistration, EPA explains the basis for its decision in a Reregistration Eligibility Decision (RED) document. This fact sheet summarizes the information in the RED document for reregistration case 3124, propamocarb hydrochloride. Use Profile Propamocarb hydrochloride is a fungicide used to control Pythium spp. and Phytophthora spp. on turf, outdoor woody and herbaceous ornamentals. The fungicide is formulated as a soluble concentrate/liquid. Propamocarb hydrochloride is applied as a bare-root dip, drench and foliar application. Propamocarb hydrochloride cannot be applied through any type of irrigation system. For terrestrial uses, it cannot be applied directly to water or to areas where water is present or to intertidal areas below the mean high water mark.
    [Show full text]
  • Functional and Pharmacological Comparison of Human, Mouse, and Rat Organic Cation Transporter 1 Toward Drug and Pesticide Interaction
    International Journal of Molecular Sciences Article Functional and Pharmacological Comparison of Human, Mouse, and Rat Organic Cation Transporter 1 toward Drug and Pesticide Interaction Saskia Floerl, Annett Kuehne and Yohannes Hagos * PortaCellTec Biosciences GmbH, 37075 Goettingen, Germany; fl[email protected] (S.F.); [email protected] (A.K.) * Correspondence: [email protected]; Tel.: +49-551-30966440 Received: 20 July 2020; Accepted: 18 September 2020; Published: 19 September 2020 Abstract: Extrapolation from animal to human data is not always possible, because several essential factors, such as expression level, localization, as well as the substrate selectivity and affinity of relevant transport proteins, can differ between species. In this study, we examined the interactions of drugs and pesticides with the clinically relevant organic cation transporter hOCT1 (SLC22A1) in comparison to the orthologous transporters from mouse and rat. We determined Km-values (73 7, 36 13, and 57 5 µM) of human, mouse and rat OCT1 for the commonly used ± ± ± substrate 1-methyl-4-phenylpyridinium (MPP) and IC -values of decynium22 (12.1 0.8, 5.3 0.4, 50 ± ± and 10.5 0.4 µM). For the first time, we demonstrated the interaction of the cationic fungicides ± imazalil, azoxystrobin, prochloraz, and propamocarb with human and rodent OCT1. Drugs such as ketoconazole, clonidine, and verapamil showed substantial inhibitory potential to human, mouse, and rat OCT1 activity. A correlation analysis of hOCT1 versus mouse and rat orthologs revealed a strong functional correlation between the three species. In conclusion, this approach shows that transporter interaction data are in many cases transferable between rodents and humans, but potential species differences for other drugs and pesticides could not be excluded, though it is recommendable to perform functional comparisons of human and rodent transporters for new molecular entities.
    [Show full text]
  • The Analysis of Pesticides & Related Compounds Using Mass Spectrometry
    APPENDICES The analysis of pesticides & related compounds using Mass Spectrometry John P. G. Wilkins 3 December 2015 Appendix I – Compilation of EI+ MS Data for Pesticides & related compounds Pesticides & Chemical Warfare (CW) agents .................................... 5 - 318 GC Contaminants & Artefacts ........................................................ 319 - 322 Supplementary accurate mass data for selected pesticides ........... 323 - 350 Appendix II – Eight Peak Index of MS Data in Appendix I ........................... 1 - 26 Appendix III – Comprehensive Pesticide MW Index ...................................... 1 - 30 Appendix - Page 1 Introduction to the Appendices The purpose of these data compilations is to provide a convenient source of data for analysts involved in the identification of pesticides using mass spectrometry. Data for related compounds, such as metabolites and degradation products produced during analysis, have been included when relevant. Where direct GC-MS techniques are unlikely to be of use, alternative analytical strategies are sometimes suggested. The MS data in Appendices I and II are presented in two ways: alphabetically by compound name in Appendix I (with data for commonly encountered GC contaminants at the end); and by most intense ion, in a style similar to that of The Eight Peak Index of Mass Spectra (MSDC, 1983), in Appendix II, in order to facilitate the identification of unknowns, without recourse to dedicated MS search software. Where possible, mass spectra were obtained following GC separation. When this was not possible, direct insertion (DI) introduction into the mass spectrometer was used. Most of the data are the averaged results of several acquisitions, generated at different times and (in many cases) on different mass spectrometers. Two magnetic sector instruments were used by the author to generate the data; a VG7070 (for packed column GC introduction) and a JEOL DX300 (for capillary GC introduction).
    [Show full text]