Using Quantized Breakdown Voltage Signals to Determine the Maximum Electric Fields in a Quantum Hall Effect Sample

Total Page:16

File Type:pdf, Size:1020Kb

Using Quantized Breakdown Voltage Signals to Determine the Maximum Electric Fields in a Quantum Hall Effect Sample Volume 100, Number 3,. May-June 1995 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 100, 269 (1995)] Using Quantized Breakdown Voltage Signals to Determine the Maximum Electric Fields in a Quantum Hall Effect Sample Volume 100 Number 3 May-June 1995 M. E. Cage and C. F. Lavine We estimate the maximum values of occurring between states distributed the electric field across the width of a across the sample width can be de- National Institute of Standards GaAs/AlGaAs heterostructure quantum tected as voltage signals along the sam- and Technology, Hall effect sample at several currents ple length. Gaithersburg, MD 20899-0001 when the sample is in the breakdown regime. This estimate is accomplished Key words: breakdown; electric fields; by measuring the quantized longitudinal voltage drops along a length of the quantized dissipation; quantized voltage sample and then employing a quasi- states; quantum Hall effect; quasi-elas- tic inter-Landau level scattering; two-di- elastic inter-Landau level scattering mensional electron gas. (QUILLS) model to calculate the elec- tric field. We also present a pictorial description of how QUILLS transitions Accepted: March 16, 1995 1. Introduction In the integer quantum Hall effect [1-3] the Hall quantized. We will use this quantization phe- resistance RH of the i th plateau of a fully quantized nomenon, and a black-boxmodel that is based on two-dimensional electron gas (2DEG) has the the conservationof energy, to determine the frac- value RH(i) =h/(e2i), where h is the Planck con- tion of electrons making transitions between stant, e is the elementary charge, and i is an in- Landau levels and their transition rates [7-9]. We teger. The current flow within the 2DEG is nearly will also use this quantization phenomenon, and dissipationless in the Hall plateau regions of high- the quasi-elastic inter-Landau level scattering quality devices, and the longitudinal voltage drops, (QUILLS) model of Heinonen, Taylor, and Girvin ~, along the sides of the sample are very small. At [10] and Eaves and Sheard [11], to deduce the high currents, however, energy dissipation can sud- maximum electric field experienced by the con- denly appear in these devices [4,5] and ~ can be- ducting electrons. come quite large. This is the breakdown regime of Finally,there has been a puzzle about howinter- the quantum Hall effect. Landau level transitions-which in the QUILLS .The dissipative breakdown voltage Vxcan be de- model occur between states distributed across the tected by measuring voltage differences between sample width- can be detectedas voltagesignals potential probes placed on either side of the device a!ong the sample length. We will give a pictorial in the direction of current flow. Cage et al. [6-9] explanation of a solution to this puzzle. have found that these breakdown voltages can be 269 Volume 100, Number 3, May-June 1995 Journal of Research of the National Institute of Standards and Technology 2. Experiment tive x axis points along the sample in the direction of the current ISD. Note that the conducting 2.1 Sample and Coordinate System charges are electrons. The y axis points across the The sample is a GaAs/AlxGal-xAs heterostruc- sample, and the z axis is into the figure for a right- ture grown by molecular beam epitaxy at AT&T handed coordinate system. The location of the 00- Bell Laboratories,l with x = 0.29 being the fraction ordinte system origin is arbitrary; it is convenient, of Al atoms replacing Ga atoms in the crystal. The however, to place it at the source S, and halfway sample is designated as GaAs(8), has a zero mag- across the sample, so that - w/2:S:;Y :s:;w/2. (This lo- netic field mobility of about 100 000 cm2/(V's) at cation is not shown in the figure for lack of space.) 4.2 K, and exhibits excellent integral quantum Hall The .magnetic field, B, is perpendicular to the sam- effect properties. This sample is currently used as a ple and points into the figure, in the positive z di- quantized Hall resistance standard to maintain the rection. Therefore, in the presence of a B field, the United States unit of resistance. electrons enter at the upper left hand corner of the The inset of Fig. 1 shows the sample geometry. It sample and exit at the lower right hand corner. The is 4.6 mm long and has a width, w, of 0.4 mm. The potential probes 2, 4, and 6 are near the potential two outer Hall potential probe pairs are displaced of the source S, which is grounded. Probes 1,3, and from the central pair by plus and minus 1 mm. The 5 are near the drain potential D, and have a posi- inset also shows the coordinate system. The posi- tive potential relative to the source. GaAs(8) Vx(4,6) 1 mm E 60 1--1 E 215 JlAto 225 JlA r;x 5 3 1 ;; yS~D 6 4 2 :> 40 --E ~ 20 o 12.2 12.3 12.4 12.5 B (T) Fig. 1. Eleven sweeps of Vx(4,6) versus B for the i = 2 plateau at 0.33 K with applied currents ISD between + 215 J-LAand + 225 J-LAin 1 J-LAincrements. The values of Vx generally increase with current. The arrow shows the sweep direction. A family of eight shaded curves is fitted to these data in the vicinity of 12.3 T where the data are current-independent. Voltage quantization num- bers are shown in brackets. The inset displays the sample geometry. The actual origin of the coordinate system is located at the source S, halfway across the sample width w. 1Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identifica- tion does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it im- ply that the materials or equipment identified are necessarily the best available for the purpose. 270 Volume 100, Number 3, May-June 1995 Journal of Research of the National Institute of Standards and Technology 2.2 Longitudinal Voltage Versus Magnetic Field to arise from transitions in which electrons occupy- ing states of the originally full ground state Landau The dissipative breakdown voltages ~ for this level are excited to states in higher Landau levels paper were measured between potential probe pair and then return to the lowest Landau level. The 4 and 6, hereafter denoted as ~(4,6) = V( 4) V(6). - electrical energy loss per carrier for M Landau The longitudinal voltage signals on the opposite level transitions is MhWe,where We= eB /m * is the side of the sample, ~(3,5), were the same as cyclotron angular frequency and m * is the reduced ~(4,6), and integer quantum Hall voltages mass of the electron (0.068 times the free electron VH=RHIsD were observed on probe sets VH(3,4) mass me in GaAs). The power loss is I~, and and VH(5,6). I~ =r(2/i)MhWc, where r is the combined transi- Figure 1 shows 11 sweeps of ~ (4,6) versus the tion rate from the ground state to the excited state magnetic field.B-for the i =2 (12 906.4 0) quan- and then back to the ground state, and i is the Hall tized Hall resistance plateau at a temperature of plateau number. Thus 0.33 K for injected electron currents ISDof + 215 fJ.Ato + 225 fJ.Ain 1 fJ.Aincrements, where posi- tive current corresponds to electrons entering the fM=(r;)M=(~)(~*)(~), (1) source and exiting the drain. These sweeps are for increasing B; similar sweeps were obtained for de- where f is the ratio of the transition rate r within creasing B. The data clearly show discrete, well-de- the breakdown region to the rate I/e that electrons fined, quantized voltage states, with switching between states. transit the device; f can also be interpreted as the fraction of conducting electrons that undergo tran- A family of eight equally-spaced shaded curves is sitions. also shown in Fig. 1 in the region near 12.3 T The black-box model predicts that, in the vicinity where the ~ voltage spacings are nearly current-in- of B = 12.3 T, about 22 % of the conducting elec- dependent. The curves have equal (quantized) trons are making inter-Landau transitions, with voltage separations at each value of magnetic field, transition rates between 3.0 x 1014/Sand 3.1 x 1014/S but the voltage separations are allowed to vary for currents between 215 fJ.Aand 225 fJ.A. slightly with B in order to obtain smooth curves that provide the best fit to the data. The eight shaded curves correspond to a ~ =0.0 mV ground 3.2 QUILLSModel state and seven excited states. Several quantum To predict the maximum value of the electric numbers M of the voltage states are labeled in field, Emax,within the sample when breakdown is brackets. Note that, over the shaded curve portion occurring we use the quasi-elastic inter-Landau of Fig. 1 near 12.3 T, the M = 1 transition first oc- level scattering (QUILLS) model of Heinonen, curs at a current of 215 fJ.A,and the M = 7 state Taylor, and Girvin[10]and Eaves and Sheard [11], first appears at 225 fJ.A. and the notation of Cage, Yu, and Reedtz [12]. The conducting electrons have completely filled the maximumallowed number of states of the first 3.
Recommended publications
  • 25 Years of Quantum Hall Effect
    S´eminaire Poincar´e2 (2004) 1 – 16 S´eminaire Poincar´e 25 Years of Quantum Hall Effect (QHE) A Personal View on the Discovery, Physics and Applications of this Quantum Effect Klaus von Klitzing Max-Planck-Institut f¨ur Festk¨orperforschung Heisenbergstr. 1 D-70569 Stuttgart Germany 1 Historical Aspects The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It was the night of the 4th to the 5th of February 1980 at around 2 a.m. during an experiment at the High Magnetic Field Laboratory in Grenoble. The research topic included the characterization of the electronic transport of silicon field effect transistors. How can one improve the mobility of these devices? Which scattering processes (surface roughness, interface charges, impurities etc.) dominate the motion of the electrons in the very thin layer of only a few nanometers at the interface between silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and Dr. Pepper (Plessey Company) provided specially designed devices (Hall devices) as shown in Fig.1, which allow direct measurements of the resistivity tensor. Figure 1: Typical silicon MOSFET device used for measurements of the xx- and xy-components of the resistivity tensor. For a fixed source-drain current between the contacts S and D, the potential drops between the probes P − P and H − H are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage increases the carrier density below the gate. For the experiments, low temperatures (typically 4.2 K) were used in order to suppress dis- turbing scattering processes originating from electron-phonon interactions.
    [Show full text]
  • SKYRMIONS and the V = 1 QUANTUM HALL FERROMAGNET
    o 9 (1997 ACA YSICA OŁOICA A Νo oceeigs o e I Ieaioa Scoo o Semicoucig Comous asowiec 1997 SKYMIOS A E v = 1 QUAUM A EOMAGE M MAA GOEG e o ysics oso Uiesiy oso MA 15 USA EIE A K WES e aoaoies uce ecoogies Muay i 797 USA ece eeimea a eoeica iesigaios ae esue i a si i ou uesaig o e v = 1 quaum a sae ee ow eiss a wea o eiece a e eciaio ga a e esuig quasiaice secum a v = 1 ae ue prdntl o e eomageic may-oy ecage ieacio A gea aiey o eeimeay osee coeaios a v = 1 nnt e icooae io a euaie easio aou e sige-aice moe a sceme og oug o escie e iega qua- um a eec a iig aco 1 eoiss ow ee o e v = 1 sae as e quaum a eomage I is ae we eiew ece eoei- ca a eeimea ogess a eai ou ow oica iesigaios o e v = 1 quaum a egime e ecique o mageo-asoio sec- oscoy as oe o e oweu a oe o e occuacy o e owes aau ee i e egime o 7 v 13 aou e si ga Aiioay we ae eome simuaeous measuemes o e asoio oou- miescece a ooumiescece eciaio seca o e v = 1 sae i oe o euciae e oe o ecioic a eaaio eecs i oica secoscoy i e quaum a egime ACS umes 73Ηm 7-w 73Mí 717Gm 73 1 Ioucio Some iee yeas ae e iscoey o e acioa quaum a e- ec [1] e suy o woimesioa eeco sysems (ES coie o e owes aau ee ( coiues o e a eie aoaoy o e iesiga- io o may-oy ieacios e oieaio o eeimeay osee ac- ioa a saes [] e iscoey o comosie emios a a-iig [3] a e ossiiiy o eoic si-uoaie acioa gou saes [] ae u a ew eames o e aomaies a coiue o caege ou uesaig o sog eeco—eeco coeaios i e eeme mageic quaum imi ecey e v = 1 quaum a sae a egio oug o e we-uesoo wii e (1 622 M.J.
    [Show full text]
  • Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene
    Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene X. Lin, R. R. Du and X. C. Xie International Center for Quantum Materials, Peking University, Beijing, People’s Republic of China 100871 ABSTRACT The phenomenon of fractional quantum Hall effect (FQHE) was first experimentally observed 33 years ago. FQHE involves strong Coulomb interactions and correlations among the electrons, which leads to quasiparticles with fractional elementary charge. Three decades later, the field of FQHE is still active with new discoveries and new technical developments. A significant portion of attention in FQHE has been dedicated to filling factor 5/2 state, for its unusual even denominator and possible application in topological quantum computation. Traditionally FQHE has been observed in high mobility GaAs heterostructure, but new materials such as graphene also open up a new area for FQHE. This review focuses on recent progress of FQHE at 5/2 state and FQHE in graphene. Keywords: Fractional Quantum Hall Effect, Experimental Progress, 5/2 State, Graphene measured through the temperature dependence of I. INTRODUCTION longitudinal resistance. Due to the confinement potential of a realistic 2DEG sample, the gapped QHE A. Quantum Hall Effect (QHE) state has chiral edge current at boundaries. Hall effect was discovered in 1879, in which a Hall voltage perpendicular to the current is produced across a conductor under a magnetic field. Although Hall effect was discovered in a sheet of gold leaf by Edwin Hall, Hall effect does not require two-dimensional condition. In 1980, quantum Hall effect was observed in two-dimensional electron gas (2DEG) system [1,2].
    [Show full text]
  • From Rotating Atomic Rings to Quantum Hall States SUBJECT AREAS: M
    From rotating atomic rings to quantum Hall states SUBJECT AREAS: M. Roncaglia1,2, M. Rizzi2 & J. Dalibard3 QUANTUM PHYSICS THEORETICAL PHYSICS 1Dipartimento di Fisica del Politecnico, corso Duca degli Abruzzi 24, I-10129, Torino, Italy, 2Max-Planck-Institut fu¨r Quantenoptik, ATOMIC AND MOLECULAR Hans-Kopfermann-Str. 1, D-85748, Garching, Germany, 3Laboratoire Kastler Brossel, CNRS, UPMC, E´cole normale supe´rieure, PHYSICS 24 rue Lhomond, 75005 Paris, France. APPLIED PHYSICS Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly Received correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments 15 March 2011 with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic Accepted path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped 4 July 2011 fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic Published gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial 22 July 2011 angular frequencies, the giant-vortex state is adiabatically connected to the bosonic n 5 1/2 Laughlin state. hile coherence between atoms finds its realization in Bose–Einstein condensates1–3, quantum Hall Correspondence and states4 are emblematic representatives of the strongly correlated regime. The fractional quantum Hall requests for materials effect (FQHE) has been discovered in the early 1980s by applying a transverse magnetic field to a two- W 5 should be addressed to dimensional (2D) electron gas confined in semiconductor heterojunctions .
    [Show full text]
  • Quantum Hall Drag of Exciton Superfluid in Graphene
    1 Quantum Hall Drag of Exciton Superfluid in Graphene Xiaomeng Liu1, Kenji Watanabe2, Takashi Taniguchi2, Bertrand I. Halperin1, Philip Kim1 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan Excitons are pairs of electrons and holes bound together by the Coulomb interaction. At low temperatures, excitons can form a Bose-Einstein condensate (BEC), enabling macroscopic phase coherence and superfluidity1,2. An electronic double layer (EDL), in which two parallel conducting layers are separated by an insulator, is an ideal platform to realize a stable exciton BEC. In an EDL under strong magnetic fields, electron-like and hole-like quasi-particles from partially filled Landau levels (LLs) bind into excitons and condense3–11. However, in semiconducting double quantum wells, this magnetic-field- induced exciton BEC has been observed only in sub-Kelvin temperatures due to the relatively strong dielectric screening and large separation of the EDL8. Here we report exciton condensation in bilayer graphene EDL separated by a few atomic layers of hexagonal boron nitride (hBN). Driving current in one graphene layer generates a quantized Hall voltage in the other layer, signifying coherent superfluid exciton transport4,8. Owing to the strong Coulomb coupling across the atomically thin dielectric, we find that quantum Hall drag in graphene appears at a temperature an order of magnitude higher than previously observed in GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of BEC across Landau levels with different filling factors and internal quantum degrees of freedom.
    [Show full text]
  • Quantum Hall Transport in Graphene and Its Bilayer
    Quantum Hall Transport in Graphene and its Bilayer Yue Zhao Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 c 2011 Yue Zhao All Rights Reserved Abstract Quantum Hall Transport in Graphene and its Bilayer Yue Zhao Graphene has generated great interest in the scientific community since its dis- covery because of the unique chiral nature of its carrier dynamics. In monolayer graphene, the relativistic Dirac spectrum for the carriers results in an unconventional integer quantum Hall effect, with a peculiar Landau Level at zero energy. In bilayer graphene, the Dirac-like quadratic energy spectrum leads to an equally interesting, novel integer quantum Hall effect, with a eight-fold degenerate zero energy Landau level. In this thesis, we present transport studies at high magnetic field on both mono- layer and bilayer graphene, with a particular emphasis on the quantum Hall (QH) effect at the charge neutrality point, where both systems exhibit broken symmetry of the degenerate Landau level at zero energy. We also present data on quantum Hall edge transport across the interface of a graphene monolayer and bilayer junction, where peculiar edge state transport is observed. We investigate the quantum Hall effect near the charge neutrality point in bilayer graphene, under high magnetic fields of up to 35 T using electronic transport mea- surements. In the high field regime, we observe a complete lifting of the eight-fold degeneracy of the zero-energy Landau level, with new quantum Hall states corre- sponding to filling factors ν = 0, 1, 2 & 3.
    [Show full text]
  • Unconventional Quantum Hall Effect in Graphene Abstract
    Unconventional Quantum Hall Effect in Graphene Zuanyi Li Department of Physics, University of Illinois at Urbana-Champaign, Urbana 61801 Abstract Graphene is a new two-dimensional material prepared successfully in experiments several years ago. It was predicted theoretically and then observed experimentally to present unconventional quantum Hall effect due to its unique electronic properties which exists quasi-particle excitations that can be described as massless Dirac Fermions. This feature leads to the presence of a Landau level with zero energy in single layer graphene and hence a shift of ½ in the filling factor of the Hall conductivity. Name: Zuanyi Li PHYS 569: ESM term essay December 19, 2008 I. Introduction The integer Quantum Hall Effect (QHE) was discovered by K. von Klitzing, G. Dorda, and M. Pepper in 1980 [1]. It is one of the most significant phenomena in condensed matter physics because it depends exclusively on fundamental constants and is not affected by irregularities in the semiconductor like impurities or interface effects [2]. The presence of the quantized Hall resistance is the reflection of the properties of two-dimensional electron gases (2DEG) in strong magnetic fields, and is a perfect exhibition of basic physical principles. K. von Klitzing was therefore awarded the 1985 Nobel Prize in physics. Further researches on 2DEG led to the discovery of the fractional quantum Hall effect [3]. These achievements make 2DEG become a very vivid field in condensed matter physics. Since a few single atomic layers of graphite, graphene, was successfully fabricated in experiments recently [4,5], a new two-dimensional electron system has come into physicists’ sight.
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE PHYSICS Copyright © 2019 The Authors, some Observation of new plasmons in the fractional rights reserved; exclusive licensee quantum Hall effect: Interplay of topological American Association for the Advancement and nematic orders of Science. No claim to original U.S. Government 1 2,3 4 4 5,6 Works. Distributed Lingjie Du *, Ursula Wurstbauer , Ken W. West , Loren N. Pfeiffer , Saeed Fallahi , under a Creative 6,7 5,6,7,8 1,9 Geoff C. Gardner , Michael J. Manfra , Aron Pinczuk Commons Attribution NonCommercial Collective modes of exotic quantum fluids reveal underlying physical mechanisms responsible for emergent quantum License 4.0 (CC BY-NC). states. We observe unexpected new collective modes in the fractional quantum Hall (FQH) regime: intra–Landau-level plasmons measured by resonant inelastic light scattering. The plasmons herald rotational-symmetry-breaking (nematic) phases in the second Landau level and uncover the nature of long-range translational invariance in these phases. The intricate dependence of plasmon features on filling factor provides insights on interplays between topological quantum Hall order and nematic electronic liquid crystal phases. A marked intensity minimum in the plasmon spectrum at Landau level filling factor v = 5/2 strongly suggests that this paired state, which may support non-Abelian excitations, overwhelms competing nematic phases, unveiling the robustness of the 5/2 superfluid state for small tilt angles. At v =7/3,asharpand Downloaded from strong plasmon peak that links to emerging macroscopic coherence supports the proposed model of a FQH nematic state. INTRODUCTION with FQH states that occur in the environment of a nematic phase (FQH The interplay between quantum electronic liquid crystal (QELC) phases nematic phase) (9–12, 14, 27, 28).
    [Show full text]
  • Field Theory of Anyons and the Fractional Quantum Hall Effect 30- 50
    NO9900079 Field Theory of Anyons and the Fractional Quantum Hall Effect Susanne F. Viefers Thesis submitted for the Degree of Doctor Scientiarum Department of Physics University of Oslo November 1997 30- 50 Abstract This thesis is devoted to a theoretical study of anyons, i.e. particles with fractional statistics moving in two space dimensions, and the quantum Hall effect. The latter constitutes the only known experimental realization of anyons in that the quasiparticle excitations in the fractional quantum Hall system are believed to obey fractional statistics. First, the properties of ideal quantum gases in two dimensions and in particular the equation of state of the free anyon gas are discussed. Then, a field theory formulation of anyons in a strong magnetic field is presented and later extended to a system with several species of anyons. The relation of this model to fractional exclusion statistics, i.e. intermediate statistics introduced by a generalization of the Pauli principle, and to the low-energy excitations at the edge of the quantum Hall system is discussed. Finally, the Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect is studied, mainly focusing on edge effects; both the ground state and the low- energy edge excitations are examined in the simple one-component model and in an extended model which includes spin effets. Contents I General background 5 1 Introduction 7 2 Identical particles and quantum statistics 10 3 Introduction to anyons 13 3.1 Many-particle description 14 3.2 Field theory description
    [Show full text]
  • Observation of the Fractional Quantum Hall Effect in Graphene
    1 Observation of the Fractional Quantum Hall Effect in Graphene Kirill I. Bolotin*1, Fereshte Ghahari*1, Michael D. Shulman2, Horst L. Stormer1, 2 & Philip Kim1, 2 1Department of Physics, Columbia University, New York, New York 10027, USA 2Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA *These authors contributed equally to this work. 12 When electrons are confined in two dimensions c 0.3T 0.5T a 10 (2D) and subjected to strong magnetic fields, the 1T 8 ) h Coulomb interactions between them become / 6 2 e ( dominant and can lead to novel states of matter 4 G 1 1 μm such as fractional quantum Hall (FQH) liquids . In 2 these liquids electrons linked to magnetic flux -2 0 2 quanta form complex composite quasipartices, n (1011 cm-2) b ρmax~16 kΩ which are manifested in the quantization of the 15 -6 -2 +2 +6 +10 1 Hall conductivity as rational fractions of the d ) Ω 10 conductance quantum. The recent experimental (T) (k 0 ρ B discovery of an anomalous integer quantum Hall (a.u.) effect in graphene has opened up a new avenue in 5 G V =+2V D dG/dV 1 0 the study of correlated 2D electronic systems, in -10 -5 0 5 10 -2 0 2 V (V) 11 -2 which the interacting electron wavefunctions are G n (10 cm ) 2,3 those of massless chiral fermions . However, due Figure 1 Electrical properties of suspended graphene at low to the prevailing disorder, graphene has thus far magnetic field a, False-colour scanning electron micrograph of a exhibited only weak signatures of correlated typical device.
    [Show full text]
  • Energy Relaxation of Two-Dimensional Electrons in the Quantum Hall Effect Regime K
    JETP Letters, Vol. 71, No. 1, 2000, pp. 31–34. Translated from Pis’ma v Zhurnal Éksperimental’noœ i Teoreticheskoœ Fiziki, Vol. 71, No. 1, 2000, pp. 47–52. Original Russian Text Copyright © 2000 by Smirnov, Ptitsina, Vakhtomin, Verevkin, Gol’tsman, Gershenzon. CONDENSED MATTER Energy Relaxation of Two-Dimensional Electrons in the Quantum Hall Effect Regime K. V. Smirnov, N. G. Ptitsina, Yu. B. Vakhtomin,1 A. A. Verevkin, G. N. Gol’tsman, and E. M. Gershenzon Moscow State Pedagogical University, Moscow, 113567 Russia Received November 19, 1999 Abstract—The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation τ times e of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B = 0–4 T under quasi-equilibrium τ conditions at T = 4.2 K. With increasing B, a considerable increase in e from 0.9 to 25 ns is observed. For high ν τ–1 B and low values of the filling factor , the energy relaxation rate e oscillates. The depth of these oscillations ν ν τ–1 and the positions of maxima depend on the filling factor . For > 5, the relaxation rate e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the τ–1 ν relaxation rate e is maximum at half-integer values of when the Fermi level is coincident with the Landau τ–1 level. The characteristic features of the dependence e (B) are explained by different contributions of the intra- level and interlevel electron–phonon transitions to the process of the energy relaxation of 2D electrons.
    [Show full text]
  • Aspects of the Quantum Hall Effect
    Aspects of the Quantum Hall Effect S. A. Parameswaran Slightly edited version of the introductory chapter from Quixotic Order and Bro- ken Symmetry in the Quantum Hall Effect and its Analogs, S.A. Parameswaran, Princeton University Ph.D. Thesis, 2011. Contents I. A Brief History, 1879-1984 2 II. Samples and Probes 6 III. The Integer Effect 8 A. Single-particle physics: Landau levels 9 B. Semiclassical Percolation 10 IV. Why is the Quantization Robust? 12 A. Laughlin’s Argument 12 B. Hall Conductance as a Topological Invariant 15 V. The Fractional Effect 17 A. Trial Wavefunctions 18 B. Plasma Analogy 21 C. Neutral Excitations and the Single-Mode Approximation 22 D. Fractionally Charged Excitations 23 E. Life on the Edge 25 F. Hierarchies 27 1. Haldane-Halperin Hierarchy 28 2. Composite Fermions and the Jain Hierarchy 29 VI. Half-Filled Landau Levels 30 A. Composite Fermions and the Halperin-Lee-Read Theory 31 2 B. Paired States of Composite Fermions 36 VII. Landau-Ginzburg Theories of the Quantum Hall Effect 39 A. Composite Boson Chern-Simons theory 40 B. A Landau-Ginzburg Theory for Paired Quantum Hall States 41 C. Off-Diagonal Long Range Order in the lowest Landau level 44 VIII. Type I and Type II Quantum Hall Liquids 46 IX. ν =1 is a Fraction Too: Quantum Hall Ferromagnets 47 A. Spin Waves 49 B. Skyrmions 49 C. Low-energy Dynamics 50 D. Other Examples 53 X. Antiferromagnetic Analogs and AKLT States 53 References 56 I. A BRIEF HISTORY, 1879-1984 In 1879, Edwin Hall, a twenty-four-year-old graduate student at Johns Hopkins Univer- sity, was confounded by two dramatically different points of view on the behavior of a fixed, current-carrying wire placed in a magnetic field.
    [Show full text]