Energy Relaxation of Two-Dimensional Electrons in the Quantum Hall Effect Regime K
JETP Letters, Vol. 71, No. 1, 2000, pp. 31–34. Translated from Pis’ma v Zhurnal Éksperimental’noœ i Teoreticheskoœ Fiziki, Vol. 71, No. 1, 2000, pp. 47–52. Original Russian Text Copyright © 2000 by Smirnov, Ptitsina, Vakhtomin, Verevkin, Gol’tsman, Gershenzon. CONDENSED MATTER Energy Relaxation of Two-Dimensional Electrons in the Quantum Hall Effect Regime K. V. Smirnov, N. G. Ptitsina, Yu. B. Vakhtomin,1 A. A. Verevkin, G. N. Gol’tsman, and E. M. Gershenzon Moscow State Pedagogical University, Moscow, 113567 Russia Received November 19, 1999 Abstract—The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation τ times e of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B = 0–4 T under quasi-equilibrium τ conditions at T = 4.2 K. With increasing B, a considerable increase in e from 0.9 to 25 ns is observed. For high ν τ–1 B and low values of the filling factor , the energy relaxation rate e oscillates. The depth of these oscillations ν ν τ–1 and the positions of maxima depend on the filling factor . For > 5, the relaxation rate e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the τ–1 ν relaxation rate e is maximum at half-integer values of when the Fermi level is coincident with the Landau τ–1 level. The characteristic features of the dependence e (B) are explained by different contributions of the intra- level and interlevel electron–phonon transitions to the process of the energy relaxation of 2D electrons.
[Show full text]